
MethodsX 13 (2024) 102946 

Contents lists available at ScienceDirect 

MethodsX 

journal homepage: www.elsevier.com/locate/methodsx 

A critical review of RNN and LSTM variants in hydrological time 

series predictions 

Muhammad Waqas a , b , Usa Wannasingha Humphries c , ∗ 

a The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10140, 

Thailand 
b Center of Excellence on Energy Technology and Environment (CEE), Ministry of Higher Education, Science, Research and Innovation, Bangkok, 

Thailand 
c Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand 

a r t i c l e i n f o 

Method name: 

RNN and LSTM variants for Time Series 
Prediction. 

Keywords: 

Recurrent neural networks 
Long short-term memory 
Deep learning 
Hydrological prediction 
Artificial intelligence 

a b s t r a c t 

The rapid advancement in Artificial Intelligence (AI) and big data has developed significance in 
the water sector, particularly in hydrological time-series predictions. Recurrent Neural Networks 
(RNNs) and Long Short-Term Memory (LSTM) networks have become research focal points due 
to their effectiveness in modeling non-linear, time-variant hydrological systems. This review ex- 
plores the different architectures of RNNs, LSTMs, and Gated Recurrent Units (GRUs) and their 
efficacy in predicting hydrological time-series data. 

• RNNs are foundational but face limitations such as vanishing gradients, which impede their 
ability to model long-term dependencies. LSTMs and GRUs have been developed to overcome 
these limitations, with LSTMs using memory cells and gating mechanisms, while GRUs provide 
a more streamlined architecture with similar benefits. 

• The integration of attention mechanisms and hybrid models that combine RNNs, LSTMs, and 
GRUs with other Machine learning (ML) and Deep Learning (DL) has improved prediction 
accuracy by capturing both temporal and spatial dependencies. 

• Despite their effectiveness, practical implementations of these models in hydrological time 
series prediction require extensive datasets and substantial computational resources. 

Future research should develop interpretable architectures, enhance data quality, incorporate 
domain knowledge, and utilize transfer learning to improve model generalization and scalability 
across diverse hydrological contexts. 
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Specifications table 

Subject area: Engineering 
More specific subject area: Modeling and Forecasting 
Name of the reviewed methodology: Recurrent Neural Networks and Long Short-term Memory 
Keywords: Recurrent Neural Networks, Long Short-Term Memory, Deep Learning, Hydrological Prediction, Artificial Intelligence 
Resource availability: N.A. 
Review questions: RQ-1: What are the key architectural differences and advancements between traditional RNNs, LSTM networks, and 

GRU networks, and how do these differences impact their performance in hydrological predictions? 
RQ-2: How have LSTM networks been adapted or modified to improve their accuracy and efficiency in hydrological 
time series forecasting, and what innovative methodologies have been introduced in recent research? 
RQ-3: In what ways have RNN, LSTM, and GRU models been implemented in hydrological applications, and what case
studies highlight their effectiveness and limitations in real-world scenarios? 
RQ-4: What are the significant trends in the application of hybrid models in hydrological predictions over the past 
decade? 
RQ-5: What gaps exist in the current literature on the use of RNNs, LSTMs, and GRUs for hydrological forecasting, and
what future research directions are suggested to address these gaps and enhance the models’ predictive capabilities? 

Background 

Developments in Deep learning (DL) techniques have enabled scientists to extract facts from a wide range of data types [ 1 ]. Given
the several features of input time series data, DL includes recurrent neural networks (RNNs) [ 2–7 ], deep neural networks (DNNs)
[ 8–12 ], Feedforward neural networks (FFNNs) [ 13–15 ], and convolutional neural networks (CNNs) [ 16–20 ]. While CNNs and DNNs
struggle with temporal information in input data, RNNs excel in fields that need sequential information, such as time series, text, audio,
and video [ 21 ]. This subject extends FFNNs to allow variable or indefinite length sequences, covering notable recurrent architectures
such as LSTM and gated recurrent units (GRUs) [ 22 ]. RNNs can be divided into discrete-time and continuous-time RNNs [ 5 ]. Cyclic
connections are a critical component of RNN architecture, allowing the network to update its current state based on previous states
and current input [ 3 ]. Fully connected RNNs [ 23 ] and selective RNNs [ 24 ], which use typical recurrent cells such as sigma cells,
have proven effective in specific applications. However, when there is a substantial gap between crucial input data points, these
RNNs struggle to connect the dots [ 24 ]. RNNs overcome short-term dependencies caused by challenges such as the vanishing or
expanding gradient problem. However, RNNs have limits. Pre-segmented training data is required, as is output post-processing to 
convert it into labeled sequences [ 22 ]. To address “long-term dependencies, ” Hochreiter and Schmidhuber (1997) created LSTM 

[ 25 ]. The most prominent advances in RNNs have been driven by LSTM, making it a focus point in DL. RNN and the LSTM networks
are sequential frameworks that use prior sequence items to predict future components. Recent research has shown that processing 
sequences bidirectionally can improve performance, particularly in offline processing settings where sequence fragments can be 
stored and analyzed rather than streamed [ 26 ]. As a result, bidirectional RNNs [ 2 ] and bidirectional LSTMs [ 27 , 28 ] were developed
to process sequences in both forward and backward directions. LSTMs and RNNs have been widely adopted for various tasks, including
hydrological prediction [ 29–31 ], speech recognition [ 28 , 32–34 ], trajectory prediction [ 35–38 ], and correlation analysis [ 39–42 ]. 

In predicting hydrological components, traditional forecasting models struggle to capture the complex temporal dependencies and 
non-linear relationships present in hydrological data [ 43 ]. Many researchers have used LSTM and RNNs to solve various problems
in water treatment and management systems. For example, Aslam et al. (2021) compared advanced DL models (LSTM, GRU) to
conventional models (RNN, Support Vector Regression (SVR), FFNN) for forecasting global solar radiation (GSR) and found that DL 
models performed better [ 44 ]. For flood forecasting, Kao et al. (2020) suggested an encoder-decoder model based on LSTM [ 45 ].
Pham et al. (2021) investigated flood susceptibility modeling with DL [ 46 ]. Ni et al. (2020) employed LSTM for streamflow and
rainfall prediction, building two models: one incorporating the wavelet network with LSTM and the other combining CNNs with
LSTM to improve performance [ 47 ]. Li et al. (2023) proposed a soft sensor water quality forecasting system. This model’s reliability
for anaerobic processes is estimated using evaluation and probability projection [ 48 ]. Similarly, Wongburi and Park (2023) developed 
prediction models for runoff variables using basic RNN and LSTM architectures. The efficiency of these models is carefully validated
using different training data conditions and model designs [ 49 ]. For precipitation forecasting, Waqas et al. (2024) used hybrid models,
a combination of LSTM and RNNs, to decompose wavelets for daily and monthly forecasts [ 29 , 30 ]. LSTM-RNNs were also employed
by Wangwongchai et al. (2023) to estimate the missing daily rainfall dataset [ 50 ]. It has numerous uses in water quality prediction;
for example, Liu et al. (2019) used the LSTM network to develop a model to assess drinking water quality in the Yangtze River basin.
The LSTM network can forecast drinking water’s pH, DO, COD, and NH3-N concentrations [ 51 ]. The LSTM network was also used
to predict water temperature [ 52 ]. Barzegar et al. (2020) suggested a hybrid model that employs CNN and LSTM to determine DO
and chlorophyll-a (Chl-a) concentrations in Greece’s Small Prespa Lake. Their findings demonstrated that the combined CNN-LSTM 

model outperformed standalone machine learning (ML) models such as CNN, LSTM, SVR, and decision trees (DTs) [ 53 ]. 
The selection and implementation of RNNs and LSTM variants, independently or in combination with other models, necessitates a

profound grasp of their architectural intricacies and operational mechanisms. While numerous review studies explain these aspects, a 
critical need remains for a comprehensive exploration of their recent applications in hydrological time-series predictions. Therefore, 
this review stems from the need to enhance hydrological forecasting models by leveraging advancements in RNN, LSTM, and GRU
architectures. Traditional models struggle with complex temporal dependencies and non-linear relationships, while recent DL tech- 
niques have demonstrated superior performance. By examining theoretical foundations and practical applications, this review aims 
to bridge gaps in the current literature and highlight the potential of these advanced models in improving hydrological predictions.
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This study investigates RNNs, GRUs, and LSTM networks, with advancements in LSTM cell design that set it apart from other RNN ar-
chitectures. The study is structured into three main sections, transitioning from theoretical foundations to practical applications. The 
first section studies RNN, LSTM, and GRU components, their architecture, interactions, and implementation methodologies, catering 
to readers seeking a deep theoretical understanding of these models. The second section presents applications of RNNs, LSTMs, GRUs,
and their variants in hydrological time series forecasting. Finally, the review assesses the deployment of these models in hydrological
predictions over recent years, concluding with insights that have the potential to enhance the accuracy and efficiency of hydrological
forecasting models. 

Method details 

This review was initiated with a comprehensive search strategy to identify relevant literature on RNNs, LSTM, and GRU networks.
The search included papers containing the terms “Recurrent Neural Networks ” or “RNN, ” “Long Short-Term Memory ” or “LSTM, ” and
“Gated Recurrent Unit ” or “GRU ” in their titles, abstracts, or keywords. Databases and search engines such as Google Scholar, Springer-
Link, ScienceDirect, IEEE Xplore, ACM Digital Library, and Web of Science were utilized. To ensure the inclusion of high-quality and
impactful research, we focused on papers published in reputable peer-reviewed journals. We presented at major conferences, including 
those on Neural Data Processing Systems (NeurIPS), AI, Deep Learning (DL), and ML, with a focus on hydrological predictions. 

Emphasis was placed on papers that significantly contributed to the theoretical advancements or practical applications of LSTM, 
including foundational works, innovative methodologies, and impactful case studies. Given the rapid evolution of the field, priority 
was given to recent publications to capture the latest advancements and trends. The initial search yielded a total of 223 papers. The
screening process involved a review of titles and abstracts to assess the relevance of each paper, followed by a full-text review for
those that passed the initial screening. Duplicate papers were identified and removed to ensure each study was considered only once.
The selected papers extracted critical information consisting of authorship, publication year, title, source of publication, research 
objectives, hypotheses, methodologies, key findings, contributions, applications in hydrological predictions, limitations, and future 
research directions. The extracted data was synthesized to provide a comprehensive overview of advancements in LSTM research, 
structured to cover foundational concepts, methodological innovations, practical implementations, significant findings, and emerging 
trends. 

Hydrological time series prediction and RNN, LSTM, and GRU-based models 

Hydrological time series prediction is a critical study area for managing water resources in the face of climate change and increasing
water demand [ 54 ]. ML and DL address different hydrological challenges, such as river flow, rainfall, and water levels [ 55 , 56 ]. RNN,
Long LSTM, GRU variants, and hybrid models have emerged as powerful tools for predicting various hydrological variables [ 56 ]. This
section synthesizes the application of these models, the types of input datasets used, and their effectiveness in different hydrological
prediction scenarios. RNNs have shown utility in short-term and seasonal hydrological predictions [ 57 ]. For example, in sequence-
based hydrological downscaling, RNNs have improved over traditional methods, providing more accurate short-term predictions [ 58 ]. 
Similarly, LSTMs have been employed to predict river flow [ 59 ], rainfall-runoff prediction [ 60 ], and lake water levels [ 61 ]. Studies
have shown that LSTMs outperform traditional methods and basic RNNs, particularly for long-term predictions. For example, LSTM 

models have been used to predict lake water levels with significant accuracy for 60-day ahead forecasts, showing a 78 % improvement
over the Naïve Method [ 62 ]. GRU models have been shown to handle longer prediction periods effectively, such as 120-day ahead
forecasts of water levels, where GRU achieved better performance metrics compared to both RNNs and LSTMs [ 62 ]. GRUs allow
faster training times, making them suitable for real-time hydrological predictions where quick model updates are necessary [ 63 ].
Hybrid models, which combine and integrate RNN, LSTM, and GRU algorithms with other statistical, ML, and DL techniques such as
LSTM-CNN [ 64 ], wavelet decomposed LSTM [ 65 ], wavelet decomposed AutoRegressive Integrated Moving Average (ARIMA)-LSTM 

[ 66 ], hybrid RNN-LSTM [ 67 ], hybrid LSTM-GRU [ 56 , 68 ] and ARIMA-GRU [ 69 ] has also gained traction in hydrological time series
prediction. These models leverage the strengths of individual components to improve overall predictive performance. For example, 
hybrid models that combine CNNs with LSTMs (CNN-LSTM) have been used to predict outlet water temperature [ 70 ]. The CNN
component captures spatial features from the data, while the LSTM component models the temporal dependencies. Such hybrid 
models have shown improved accuracy over standalone LSTM or CNN models, particularly in complex urban environments where 
both spatial and temporal patterns are crucial. 

The effectiveness of standalone RNN, LSTM, and GRU models in hydrological prediction largely depends on the quality and quan-
tity of input data [ 56 ]. High-dimensional datasets, which include various hydrological and meteorological variables, enhance the 
model’s ability to capture complex relationships in the data [ 71 ]. One of the significant challenges in applying DL models to hydro-
logical prediction is the availability of high-quality, continuous data [ 72 ]. Missing or inconsistent data can significantly impact the
model’s performance. Therefore, data preprocessing techniques such as imputation and normalization are critical steps in preparing 
datasets for model training [ 50 ]. Additionally, the interpretability of DL models remains a concern. The “black-box ” nature of these
models makes it difficult to understand how they arrive at their predictions, which can hinder their adoption in operational and
policy-making contexts [ 73 ]. 

RNNs, LSTMs, GRUs, and hybrid models have demonstrated significant potential in hydrological time series prediction. While 
challenges such as data quality, model interpretability, and computational demands need to be addressed, the benefits of these 
models in improving water resource management and planning are substantial. Therefore, there is a need to understand these model’s
architectures and variants before implementation in hydrological predictions. 
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Fig. 1. (a): Different DL models and (b): the iterative DL prediction process. 

Fig. 2. Flow Diagram of a Recurrent Neural Network (the sequential processing of inputs, hidden states, and outputs across time steps). 

 

 

 

 

 

 

 

 

 

 

 

Theoretical foundations of the RNN and LSTM 

DL has become a critical tool in hydrological time series forecasting and modeling, which provides a data-driven approach to pre-
dicting complex hydrological trends. Enhanced computational power and greater data availability have further pushed the adoption 
of DL in this domain [ 74 ]. Fig. 1 shows the types of DL and the iterative DL process in hydrology. This critical review is focused on
RNN, LSTM, and GRU variants. RNNs are artificial neural networks (ANNs) created for sequence prediction applications. RRNs are
excellent in the determination of temporal relationships in sequential data since they use internal memory to interpret variable-length
input sequences. 

Recurrent neural networks 

Hopfield introduced the RNN in 1982 [ 75 ]. Neural network structures were developed based on the theory that human cognition
relies on experience and memory [ 7 ]. In 1990, Elman introduced RNNs trained through backpropagation methods [ 23 ]. These methods
underscored significant challenges in capturing long-term dependencies due to issues with vanishing and exploding gradients [ 23 ]. 
This issue was first identified by Bengio and Hochreiter in 1991, although their findings were written in German [ 76 , 77 ]. While
gradient clipping can mitigate exploding gradients, vanishing gradients require more advanced solutions. One of the pioneering and 
influential methods was the LSTM model, introduced by Hochreiter and Schmidhuber [ 25 ]. RNNs are dynamic systems with internal
states at each time step, facilitated by cyclic connections between neurons and potential self-feedback mechanisms. These feedback 
connections allow RNNs to transmit information from previous events to current processing steps, thus creating a memory of time
series occurrences [ 4–6 ]. 

An RNN processes a sequence of inputs x1 , x2 …………., xt. At each time step “t, ” the network updates its hidden state. “ℎ𝑡 by
considering both the current input “xt ” and the hidden state from the previous time step “ht-1 ” ( Fig. 2 ). This hidden state is calculated
using the following equation: 

ℎ𝑡 = σ
(
𝑊ℎ ∗ ℎ𝑡 −1 +𝑊𝑥 ∗ 𝑥𝑡 + 𝑏ℎ 

)
(1) 

Where: 

ℎ𝑡 is the hidden state at the current time step “t. ”
ℎ𝑡 −1 is the hidden state from the previous time step “t-1. ”
xt is the input at the current time step “t. ”
𝑊ℎ is the weight matrix associated with the hidden state. 
𝑊𝑥 is the weight matrix for the input. 
4
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𝑏ℎ is the bias vector. 
“𝜎” is the non-linear activation function, typically a function like tanh or ReLU, which introduces non-linearity to the network

and helps it learn complex patterns. 

The output at each time step “yt ” is computed using the current hidden state ℎ𝑡 with the following equation: 

𝑦𝑡 = 𝜙
(
𝑊𝑦 ∗ ℎ𝑡 + 𝑏𝑦 

)
(2) 

Where: 

yt is the output at time step “t. ”
Wy is the weight matrix for the output layer, 
by is the bias vector for the output, 
“Φ” is the activation function used at the output layer . 

RNNs are trained by minimizing a loss function L across the entire sequence, calculated as the sum of individual losses at each
time step: 

𝐿 =
𝑇 ∑
𝑡 =1 

𝐿𝑡 

(
𝑦𝑡 , 𝑦𝑡 

)
(3) 

Where: 

𝐿𝑡 is the loss at time step “t. ”
𝑦𝑡 is the predicted output at time step “t. ”
𝑦𝑡 is the actual target output at time step “t. ”
T is the total number of time steps in the sequence. 

Backpropagation Through Time (BPTT) is used to train the RNN. The gradients of the loss function are computed by applying the
chain rule to the sequence. The gradient of the loss concerning the hidden state at time step “t ” is: 

𝜕𝐿 

𝜕ℎ𝑡 

= 𝜕𝐿 

𝜕𝑦𝑡 

∗
𝜕𝑦𝑡 

𝜕ℎ𝑡 

+ 𝜕𝐿 

𝜕ℎ𝑡 −1 
∗

𝜕ℎ𝑡 −1 
𝜕ℎ𝑡 

(4) 

Where: 
𝜕𝐿 

𝜕ℎ𝑡 
is the gradient of the loss for the hidden state ℎ𝑡 , 

𝜕𝐿 

𝜕𝑦𝑡 
is the gradient of the loss for the output 𝑦𝑡 , 

𝜕𝑦𝑡 

𝜕ℎ𝑡 
is the gradient of the output for the hidden state, 

𝜕𝐿 

𝜕ℎ𝑡 −1 
is the gradient of the loss for the previous hidden state ℎ𝑡 −1 , 

𝜕ℎ𝑡 −1 
𝜕ℎ𝑡 

is the gradient of the hidden state at time step “t − 1 ” for the hidden state at time step “t ”. 

This recurrent computation is at the core of BPTT, enabling the RNN to learn from the entire sequence and adjust the weights to
minimize the loss. 

RNNs can be seen as FFNNs enhanced with loops in their architecture. As shown in Fig. 3 , an RNN, like an FFNN, includes an input
layer (with nodes such as x1 , x2 , etc.), a hidden layer (with nodes such as h1 , h2 , etc.), and an output layer. The critical difference lies
in the interconnections of the hidden layer nodes. These connections are unidirectional, meaning h2 depends on h1 (and x2 ), and h3 
depends on h2 (and x3 ). This configuration ensures that each hidden node relies on the previous hidden node, creating a sequential
process. This interconnected structure allows RNNs to retain and leverage the context of preceding inputs, enhancing prediction 
accuracy. 

The vanishing gradients issue occurs when gradients of the loss function of RNN parameters become exceedingly small or large
over time. As shown in Fig. 4 , the color gradient of nodes in the unfolded network signifies their responsiveness to initial inputs,
which diminishes as subsequent inputs overwrite activations in the hidden layer, leading the network to ’forget’ initial inputs. 

Long short-term memory (LSTM) 

The LSTM is meant to overcome the problems of exploding and vanishing gradients during training, even after long delays [ 78 ].
This problem is alleviated using a constant error carousel (CEC) that holds the error within each unit’s cell [ 25 ]. Such cells are recurrent
networks with a distinct topology in which the CEC is supplemented by input and output gates, resulting in a memory cell. The self-
recurrent links within these cells allow feedback with a one-step delay [ 25 ]. The term “long short-term memory ” originates from
the concept that simple RNNs possess long-term memory encoded in weights that change slowly during training ( Fig. 4 ), capturing
overarching information about the data. Short-term memory is represented by transient activations exchanged between nodes [ 22 ]. 
The LSTM model features a memory cell composed of simpler nodes arranged in a predefined connectivity pattern, distinguished by
the inclusion of multiplicative nodes [ 79 ]. LSTMs are designed to ease the challenges associated with long-term dependencies [ 30 ].
LSTM excels at retaining information over extended durations, which is inherent to their operational design rather than a learned
behavior. While all RNNs are cyclic structures comprising a single tanh layer ( Fig. 5 (a)). In contrast, LSTMs maintain this sequential
architecture with a repeating module structure that integrates four interacting layers. Within an LSTM, the repeating module consists 
of four interconnected layers ( Fig. 5 (b)). 
5
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Fig. 3. Architectures of general FFNNs and RNNs. 

Fig. 4. Vanishing gradient problem for RNNs. 

 

 

 

 

 

 

 

 

Memory cell 

The LSTM architecture’s memory cell incorporates an internal state and multiplicative gating mechanisms, each overseeing distinct 
functions ( Fig. 5 (b)). These functions include (i) modulation of the impact of new input vectors on the internal state via the input
gate, (ii) control of the retention or disposal of information within the internal state through the forget gate, and (iii) determining
the extent to which the internal state of the neuron contributes to the cell’s output via the output gate. 

Gates in LSTM memory cell 

The LSTM design employs gating mechanisms that accept input vectors from the current time (t) and hidden state vectors from the
previous time step, as shown in Fig. 6 (a). These vectors change three fully linked layers, each using a sigmoid activation function so
that the resulting gate values —the input gate, forget gate, and output gate —are confined within the interval [0, 1 ]. An additional input
node, typically activated by a tanh function, plays a crucial role in this process, as shown in Fig. 6 (b). To understand it numerically,
assume there are “h ” hidden units, “n, ” and g inputs. The input is 𝑋𝑡 ∈ ℝ𝑛 ×𝑔 , and the hidden state from the previous time step is
ℎ𝑡 −1 ∈ ℝ𝑛 ×ℎ . Similarly, the gates at time step t are specified as follows. The input gate is 𝐼𝑡 ∈ ℝ𝑛 ×ℎ . The forget gate is 𝐹𝑡 ∈ ℝ𝑛 ×ℎ . The
output gate is 𝑂𝑡 ∈ ℝ𝑛 ×ℎ . 𝐼𝑡 , 𝐹𝑡 , and 𝑂𝑡 can be determined using the following formulas: 

𝐼𝑛𝑝𝑢𝑡 𝐺𝑎𝑡𝑒 = 𝐼𝑡 = 𝜎
(
𝑥𝑡 ∗ 𝑊𝑥𝑖 + ℎ𝑡 −1 ∗ 𝑊ℎ𝑖 + 𝑏𝑖 

)
(5) 

𝑂 𝑢𝑡𝑝𝑢𝑡 𝐺 𝑎𝑡𝑒 = 𝑂𝑡 = 𝜎
(
𝑥𝑡 ∗ 𝑊𝑥𝑜 + ℎ𝑡 −1 ∗ 𝑊ℎ𝑜 + 𝑏𝑜 

)
(6) 

𝐹 𝑜𝑟𝑔𝑒𝑡 𝐺𝑎𝑡𝑒 = 𝐹𝑡 = 𝜎
(
𝑥𝑡 ∗ 𝑊𝑥𝑓 + ℎ𝑡 −1 ∗ 𝑊ℎ𝑓 + 𝑏𝑓 

)
(7) 

where 𝑏𝑖 , 𝑏𝑜 , 𝑏𝑓 ∈ ℝ1×ℎ are biases and 𝑊𝑥𝑖 , 𝑊𝑥𝑜 , 𝑊𝑥𝑓 ∈ ℝ𝑔×ℎ and 𝑊ℎ𝑖 , 𝑊ℎ𝑜 , 𝑊ℎ𝑜 ∈ ℝℎ ×ℎ are weights. 
6
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Fig. 5. The difference between LSTM and RNN (a): RNN contains a single layer, and (b): LSTM contains four interacting layers. 

 

 

 

 

 

 

 

 

 

Input node and internal state 

In LSTM networks, the computation at the input node involves three gates, each employing an activation function with a specific
value range. At “t , ” the input gate. “𝐼𝑡 ” controls the incorporation of new data via. “𝐶̂𝑡 ” during the forget gate. “𝐹𝑡 controls the extent
to which the previous cell 𝐶𝑡 −1 ∈ ℝ𝑛 ×ℎ is recalled. These gates utilize the elementwise Hadamard product, pointwise operator ⊙. 
Mathematically, this relationship can be expressed as: 

𝐶̃𝑡 = tanh 
(
𝑥𝑡 ∗ 𝑊𝑥𝑐 + ℎ𝑡 −1 ∗ 𝑊ℎ𝑐 + 𝑏𝑐 

)
(8) 

Where 𝑊𝑥𝑐 ∈ ℝ𝑔×ℎ and 𝑊ℎ𝑐 ∈ ℝℎ ×ℎ are weight and 𝑏𝑐 ∈ ℝ1×ℎ is a bias. 

Hidden state 

LSTMs differ from basic RNNs in that they employ gating mechanisms in the hidden state. These mechanisms allow precise
control over when to update or reset the hidden state, addressing issues like vanishing and exploding gradients. During training,
these mechanisms are learned, enabling LSTMs to retain valuable information early in a sequence, skip irrelevant observations, and
reset the state as needed. In LSTMs, the output gate regulates how much the memory cell’s internal state influences subsequent layers.
A high gate value (near 1) allows considerable influence, while a low value (near 0) limits impact, enabling the cell to accumulate
information over time and impact the network strategically. 

𝐻𝑡 = 𝑂𝑡 ⊙ tanh 
(
𝐶𝑡 

)
(9) 

Gated recurrent unit 

Cho et al. (2014) introduced the GRU, a kind of RNN architecture [ 80 ]. It was created to solve the drawbacks of conventional
RNNs. GRUs are a popular option since they maintain comparable performance while simplifying the architecture of LSTM networks
7
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Fig. 6. (a): In an LSTM model, many key components contribute to its functionality. The memory cell includes input gates, output gates, forget 
gates, and input nodes, each playing a crucial role in regulating information flow (b): The internal state of the memory cell maintains a record of 
past information, updated through interactions with these gates. (c): the hidden state of the LSTM model serves as its output, capturing the network’s 
learned representations and insights from the input sequence. 

Fig. 7. Difference between LSTM and GRU. 

 

 

 

[ 81 ]. GRU attempted to improve the architecture of LSTMs. These gates control the information flow within the unit, allowing the
model to identify temporal relationships and manage long-term memory [ 82 , 83 ] ( Fig. 7 ). 

The update gate ( 𝑧𝑡 ) controls how much of the previous memory will be carried over to the next step, as shown in Fig. 8 . It
merges the features of the input and forgets the gates in LSTM. The reset gate ( 𝑟𝑡 ) controls how much of the previous memory is to
be forgotten. It helps the model decide the extent to which the past state should be ignored. The 𝑧𝑡 , 𝑟𝑡 is defined as follows: 

𝑧𝑡 = 𝜎
(
𝑊𝑧 ∗

(
𝑥𝑡 , ℎ𝑡 −1 

))
(10) 
8
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Fig. 8. Architecture of Gated Recurrent Unit. 

Fig. 9. The architecture of Bi-LSTM. 

 

 

 

 

 

 

Here, 𝑊𝑧 denotes the weight matrix at ( 𝑧𝑡 ) , (ℎ𝑡 −1 , 𝑥𝑡 ) is the concatenation of the prior hidden state ℎ𝑡 −1 with the current input
𝑥𝑡 , where 𝜎 is the sigmoid activation function. 

𝑟𝑡 = 𝜎
(
𝑊𝑟 ∗

(
ℎ𝑡 −1 , 𝑥𝑡 

))
(11) 

𝑊𝑟 is the weight matrix at ( 𝑧𝑡 ) . 
The current memory ( ̃ℎ𝑡 ) represents a possible hidden state that includes the reset gate. It mixes the new input and the previous

concealed state. 

ℎ̃𝑡 = tanh 
(
𝑊 ∗

(
𝑟𝑡 ∗ ℎ𝑡 −1 , 𝑥𝑡 

))
(12) 

W is the weight matrix, and tanh is the hyperbolic tangent activation function. 
The final hidden state ( ℎ𝑡 ) is a mixture of the prior hidden state ℎ𝑡 −1 and the current memory content ℎ̃𝑡 , operated by the update

gate. 

ℎ𝑡 =
(
1 − 𝑧𝑡 

)
∗ ℎ𝑡 −1 + 𝑧𝑡 ∗ ℎ̃𝑡 (13) 

Bidirectional LSTM 

In a basic LSTM, the hidden outputs are passed between LSTM layers to both neighboring LSTM cells and used as inputs for
the subsequent LSTM cell [ 22 , 74 ]. A Bidirectional LSTM architecture enhances this by allowing information to flow forward and
backward ( Fig. 9 ). In a Bidirectional LSTM, the forward flow captures system variations, while the backward flow helps to smooth
9
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Fig. 10. The architecture of stacked LSTM. 

 

 

 

 

 

 

the predictions [ 84 ]. The outputs from the forward and backward paths are then concatenated. The output 𝑦𝑖 is obtained by combining
the results from both directions. The governing equations for a Bidirectional LSTM are as follows: 

𝐻𝑖 1 = 𝑓
(
𝑈1 ∗ 𝑥𝑖 +𝑊1 ∗ ℎ𝑖 −1 

)
(14) 

𝐻𝑖 2 = 𝑓
(
𝑈2 ∗ 𝑥𝑖 +𝑊2 ∗ ℎ𝑖 −1 

)
(15) 

𝑦𝑖 = 𝜎
(
𝑉 ∗

[
ℎ𝑖 1 ∗ ℎ𝑖 2 

])
(16) 

Here, [ℎ𝑖 1 ∗ ℎ𝑖 2 ] is a hidden state at time step iii for the forward LSTM layer, and “f ” is the activation function, such as ReLU or
tanh, applied to the weighted sums. 𝑈1 𝑎𝑛𝑑 𝑈2 are weight matrices for the input-to-hidden connections in the forward LSTM layer. 
𝑊1 𝑎𝑛𝑑 𝑊2 are weight matrix for the hidden-to-hidden connections in the forward LSTM layer and V weight matrix used to transform
the concatenated hidden states from the forward and backward LSTM layers. 

Stacked LSTM 

Stacked LSTM networks are composed of multiple LSTM layers stacked on top of one another, which is the model used to detect
more complicated patterns and connections in the data [ 85 , 86 ]. Each LSTM layer evaluates data sequences and feeds its output into
the next layer[ 85 ]. In a stacked LSTM network, the hidden state output of one LSTM layer is used as input for the next LSTM layer,
as shown in Fig. 10 . 

Mathematically, the first LSTM layer: 

𝑓 1 
𝑡 
= σ

((
𝑊 1 

𝑓 

)
∗ 
(
ℎ1 
𝑡 −1 , 𝑥𝑡 

)
+ 𝑏1 

𝑓 

)
(17) 

𝑖1 
𝑡 
= σ

((
𝑊 1 

𝑖 

)
∗

(
ℎ1 
𝑡 −1 , 𝑥𝑡 

)
+ 𝑏1 

𝑖 

)
(18) 

𝐶̃1 
𝑡 
= tanh 

((
𝑊 1 

𝑐 

)
∗

(
ℎ1 
𝑡 −1 , 𝑥𝑡 

)
+ 𝑏1 

𝑐 

)
(19) 

𝐶1 
𝑡 
= 𝑓 1 

𝑡 

(
𝑐1 
𝑡 −1 , 𝑖𝑡 

)
+ 𝑏1 

𝑐 
∗ 𝐶̃1 

𝑡 
(20) 

𝑜1 
𝑡 
= σ

((
𝑊 1 

𝑜 

)
∗

(
ℎ1 
𝑡 −1 , 𝑥𝑡 

)
+ 𝑏1 

𝑜 

)
(21) 

ℎ1 
𝑡 
= 𝑜1 

𝑡 
∗ tanh 

(
𝐶1 

𝑡 

)
(22) 

Mathematically, the second LSTM layer: 

𝑓 2 
𝑡 
= σ

((
𝑊 2 

𝑓 

)
∗

(
ℎ2 
𝑡 −1 , ℎ

1 
𝑡 

)
+ 𝑏2 

𝑓 

)
(23) 

𝑖2 
𝑡 
= σ

((
𝑊 2 

𝑖 

)
∗

(
ℎ2 
𝑡 −1 , ℎ

1 
𝑡 

)
+ 𝑏2 

𝑖 

)
(24) 

𝐶̃2 
𝑡 
= tanh 

((
𝑊 2 

𝑐 

)
∗

(
ℎ2 
𝑡 −1 , ℎ

1 
𝑡 

)
+ 𝑏2 

𝑐 

)
(25) 

𝐶2 
𝑡 
= 𝑓 2 

𝑡 

(
𝑐2 
𝑡 −1 , 𝑖

2 
𝑡 

)
+ 𝑏1 

𝑐 
∗ 𝐶̃1 

𝑡 
(26) 
10
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Fig. 11. The architecture of Convolutional LSTM memory cell. 

 

 

 

 

𝑜2 
𝑡 
= σ

((
𝑊 2 

𝑜 

)
∗

(
ℎ2 
𝑡 −1 , 𝑥𝑡 

)
+ 𝑏2 

𝑜 

)
(27) 

ℎ2 
𝑡 
= 𝑜2 

𝑡 
∗ tanh 

(
𝐶2 

𝑡 

)
(28) 

Output Layer: 

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(
𝑉 . ℎ2 

𝑡 
+ 𝑏𝑦 

)
(29) 

Where, ℎ1 
𝑡 
, ℎ2 

𝑡 
are the hidden states of the first and second LSTM layers, respectively, at time step t. 𝐶1 

𝑡 
. 𝐶2 

𝑡 
are the cell states of the

first and second LSTM layers, respectively, at time step t. W and V are weight matrices. 

Convolutional LSTM 

Convolutional LSTM (ConvLSTM) networks enhance the regular LSTM [ 87 ] by introducing convolutional elements into the LSTM 

design to handle spatiotemporal data [ 88 ], as shown in Fig. 11 . ConvLSTM excels in spatially organized data applications like pre-
cipitation forecasting [ 89 ] and hydrological modeling [ 64 ]. ConvLSTM replaces LSTM’s fully linked operations with convolutional
operations. It enables the network to capture spatial and temporal dependencies in the data [ 88 ]. The ConvLSTM architecture can be
stated as follows: 

Input Gate: 

𝑖𝑡 = σ
(
𝑊𝑥𝑖 ∗ 𝑋𝑡 + 𝑊ℎ𝑖 ∗ 𝐻𝑡 −1 + 𝑊𝑐𝑖 ∗ 𝐶𝑡 −1 + 𝑏𝑖 

)
(30) 

Forget Gate: 

𝑓𝑡 = σ
(
𝑊𝑥𝑓 ∗ 𝑋𝑡 + 𝑊ℎ𝑓 ∗ 𝐻𝑡 −1 + 𝑊𝑐𝑓 ∗ 𝐶𝑡 −1 + 𝑏𝑓 

)
(31) 

Cell State: 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡 −1 + 𝑖𝑡 ∗ tanh 
(
𝑊𝑥𝑐 ∗ 𝑋𝑡 + 𝑊ℎ𝑐 ∗ 𝐻𝑡 −1 + ∗ 𝑏𝑐 

)
(32) 

Output Gate: 

𝑂𝑡 = σ
(
𝑊𝑥𝑜 ∗ 𝑋𝑡 + 𝑊ℎ𝑜 ∗ 𝐻𝑡 −1 + 𝑊𝑐𝑜 ∗ 𝐶𝑡 −1 + 𝑏𝑜 

)
(33) 

Hidden State: 

𝐻𝑡 = 𝑜𝑡 ∗ tanh 𝐶𝑡 (34) 
11



M. Waqas and U.W. Humphries MethodsX 13 (2024) 102946

Table 1 

Overview of implementation of different hybrid LSTM models in time series prediction. 

Hybrid Model Purpose Country/Region Year Study Findings Limitations Sources 

LSTM-CNN Rainfall Prediction India 2022 Improved accuracy in capturing 
spatial features and temporal 
dependencies 

High computational cost [ 90 ] 

LSTM-SVR Streamflow 

forecasting 
Malaysia 2023 Enhanced prediction accuracy by 

combining LSTM’s temporal modeling 
with SVR’s non-linear relationship 
handling 

Sensitivity to hyperparameters [ 64 ] 

Wavelet 
decomposed 
STM 

Precipitation 
Forecasting 

Thailand 2024 Enhanced prediction accuracy by 
decomposed wavelet LSTM and 
well-captured non-linear relationship 
handling 

May require more data for training [ 29 ] 

LSTM-SOM Anomaly detection Japan 2019 Improved anomaly detection using 
SOM to cluster input features before 
feeding into LSTM 

Dependency on the quality of input 
data 

[ 91 ] 

LSTM-GRU Short-term runoff
prediction 

China 2020 Enhanced computational efficiency 
compared to traditional LSTM while 
maintaining prediction accuracy. 

It requires more data for training 
compared to simpler models 

[ 92 ] 

LSTM-DNN Streamflow 

Prediction 
China 2023 Improved generalization and 

robustness in predicting streamflow 

using deep neural networks 

Sensitivity to architecture design 
choices 

[ 93 ] 

LSTM-Attention Multi-step ahead 
prediction 

South Korea 2023 Enhanced performance in multi-step 
ahead streamflow forecasting by 
attending to relevant input features 

Complexity in tuning attention 
mechanism parameters 

[ 94 ] 

LSTM- 
Transformer 

Time series power 
forecasting 

China 2023 Combined advantages of LSTM’s 
sequential modeling and 
Transformer’s self-attention 
mechanism for improved accuracy 

Higher computational cost and 
memory requirements 

[ 95 ] 

LSTM-SVM Water quality 
prediction 

Algeria 2022 Enhanced prediction accuracy for 
water quality parameters by 
integrating SVM with LSTM 

Sensitivity to kernel and 
regularization parameters 

[ 96 ] 

LSTM-RNN Extreme event 
prediction 

China 2021 Improved prediction of extreme 
hydrological events using a recursive 
neural network in conjunction with 
LSTM 

Limited interpretability of complex 
model structures 

[ 97 , 98 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hybrid models in time series prediction 

Many hybrid LSTM models have been implemented for time series prediction in recent years, as mentioned in Table 1 . The
LSTM-CNN model, applied for rainfall prediction in India in 2022, improved accuracy by capturing spatial features and temporal
dependencies, though at the cost of high computational requirements [ 90 ]. Similarly, the LSTM-SVR model, used for streamflow fore-
casting in Malaysia in 2023, enhanced prediction accuracy by combining LSTM’s temporal modeling capabilities with SVR’s handling 
of non-linear relationships despite its sensitivity to hyperparameter settings [ 64 ]. The wavelet decomposed LSTM model for precip-
itation forecasting in Thailand achieved higher accuracy than other models by capturing non-linear relationships through wavelet 
decomposition, while it requires more data for practical training [ 29 ]. In Japan, the LSTM-SOM model, developed for anomaly detec-
tion in 2019, showed improved performance by clustering input features with SOM before feeding them into LSTM, but dependency
on input data quality was a limitation [ 91 ]. The LSTM-GRU hybrid model, designed for short-term runoff prediction in China in 2020,
enhanced computational efficiency and prediction accuracy compared to traditional LSTM models. It necessitated more training data 
than simpler models [ 92 ]. For streamflow prediction in China in 2023, the LSTM-DNN model demonstrated improved generalization
and robustness by integrating deep neural networks with LSTM. It was sensitive to the design of its architecture [ 93 ]. The LSTM-
Attention model applied for multi-step ahead prediction in South Korea in 2023 advanced from an attention mechanism that focused
on relevant input features, enhancing forecasting performance, and complexity required careful tuning of attention parameters [ 94 ]. 
The LSTM-Transformer model, used for time series power forecasting in China in 2023, combined LSTM’s sequential modeling with
the Transformer’s self-attention mechanism to improve accuracy but at a higher computational and memory cost [ 95 ]. In Algeria in
2022, the LSTM- Support Vector Machine (SVM) model for water quality prediction had good accuracy by integrating SVM with LSTM,
though it was sensitive to kernel and regularization parameter choices [ 96 ]. Lastly, the LSTM-RNN model for extreme event prediction
in China in 2021 improved forecasts of extreme hydrological events by combining RNN with LSTM, yet its complex structure limited
interpretability [ 97 , 98 ]. 

This comparative analysis evaluates the efficacy of RNNs, LSTM, and GRUs in hydrological forecasting. LSTM networks have 
superior performance over traditional RNNs and GRUs due to their advanced memory cells and gating mechanisms, which enhance 
their ability to capture long-term dependencies essential for hydrological predictions [ 93 ]. These attributes enable LSTMs to man-
age complex temporal relationships effectively, providing robust forecasts for streamflow and rainfall. In contrast, GRUs, although 
simpler by integrating input and forget gates into a single update gate, offer a balance between computational efficiency and perfor-
12
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mance, making them suitable for scenarios with limited resources [ 94 ]. Despite their efficiency, GRUs slightly lag LSTMs in capturing
intricate dependencies. Traditional RNNs, constrained by vanishing and exploding gradient issues, are less effective for long-term 

forecasting but remain helpful for short-term predictions due to their simple structure and faster training times. LSTMs have been
widely adopted in hydrological applications, including precipitation forecasting and flood prediction, owing to their capacity for han- 
dling long-term dependencies [ 29 ]. GRUs also show promise in hydrological predictions, providing a viable alternative to LSTMs in
resource-constrained environments. RNNs, while less effective for long-term tasks, are valuable for short-term forecasts and baseline 
comparisons [ 99 ]. 

RNNs, LSTMs, and GRUs, as well as their derivatives, have been applied to a different hydrological problem (rainfall-runoff predic- 
tion); their advantages and shortcomings are shown in Table 2 . RNNs have demonstrated efficacy in capturing temporal dependencies
across various regions, including India and Taiwan, where they have been used for monthly and daily rainfall-runoff modeling. De- 
spite their strength in short-term predictions and managing noisy data, RNNs are limited by the vanishing gradient problem, which
hampers their ability to capture long-term dependencies, as observed in applications within the Bardha Watershed and North Car- 
olina (e.g., [ 100 , 101 ]). LSTM networks, an advanced variant of RNNs, have been applied extensively across different geographical
regions, including the UK and the USA, and are notably effective in addressing the vanishing gradient problem. LSTMs are proficient
in capturing long-term dependencies and managing complex temporal relationships, making them suitable for diverse hydrological 
time series applications. However, their computational intensity and sensitivity to hyperparameters are significant drawbacks, as seen 
in studies involving watersheds in Iowa and the Brays Bayou watershed, Texas ([ 60 , 102 ]). GRU networks, a more simplified variant,
have shown promise in short-term runoff prediction with faster training times and comparable performance to LSTM models. GRUs 
are particularly effective in real-time applications and managing high-dimensional data, as demonstrated in regions like Southeast 
China and Bhutan. However, their simplified architecture may struggle with capturing long-term dependencies, and their effectiveness 
diminishes with smaller datasets, as highlighted in studies conducted in the Fujian Province and the Wei River Basin, Shaanxi, China
([ 92 , 103 ]). The effectiveness of these networks varies depending on the application context, with each model exhibiting specific
advantages and limitations that must be considered for optimal hydrological modeling outcomes. 

Computational efficiency and resource consumption in hydrological prediction 

The computational efficiency and resource consumption of RNNs, LSTMs, and GRUs in hydrological forecasting vary when dealing 
with large-scale datasets. Traditional RNNs, due to their simpler architecture, tend to have lower computational requirements and 
faster training times, making them suitable for smaller datasets or short-term predictions [ 79 ]. However, their inability to capture
long-term dependencies efficiently limits their applicability in large-scale, complex hydrological forecasting [ 22 ]. 

LSTMs, equipped with advanced memory cells and gating mechanisms, excel in capturing long-term dependencies and non-linear 
relationships, but this comes at a high computational [ 78 ]. Their training times are longer and require substantial computational
resources in large-scale applications [ 67 ]. LSTMs also demand more memory due to their complex architecture, which can be a
limiting factor when working with extensive datasets [ 42 ]. 

GRUs offer a balance between LSTMs and RNNs, providing improved computational efficiency while still retaining some ability to
capture longer dependencies [ 81 ]. GRUs have fewer parameters than LSTMs, which results in faster training times and lower resource
consumption [ 113 ]. However, GRUs may struggle with very long-term dependencies and often require larger datasets for optimal
performance. GRUs offer a middle ground for hydrological forecasting with more favorable computational efficiency than LSTMs 
[ 114 ]. 

Effectiveness to outliers, noisy data, and missing data 

RNNs, LSTMs, and GRUs exhibit varying levels of robustness to outliers, noisy data, and missing data, which are common in time
series datasets. RNNs tend to struggle the most with these issues due to their simple architecture. While they can capture temporal
dependencies, RNNs are vulnerable to outliers, which can distort the learning process and lead to inaccurate predictions [ 22 ]. Their
performance also decreases in the presence of noisy data, as they lack advanced mechanisms to filter out irrelevant variations [ 115 ].
Missing data further complicates RNN. It needs imputation techniques or data preprocessing before training to avoid model failure
[ 116 ]. 

LSTM networks, in contrast, are more resilient to outliers and noise due to their memory cells and gating mechanisms, which
allow them to selectively retain relevant information and filter out less critical data points. This capacity makes LSTMs more effective
at handling noisy datasets commonly found in hydrological applications, such as rainfall-runoff modeling and streamflow forecasting 
[ 67 ]. LSTMs are also better equipped to manage missing data due to their ability to maintain context over long sequences, making
them less reliant on continuous data [ 50 ]. However, even with their robustness, LSTMs can be sensitive to extreme outliers, which
still necessitate preprocessing techniques such as outlier removal or normalization to maintain performance [ 43 ]. 

GRUs, like LSTMs, exhibit a higher tolerance to noise and missing data compared to traditional RNNs. Their simpler architecture,
while faster and more computationally efficient, includes mechanisms to retain essential information, which helps them maintain 
stability in the presence of data inconsistencies [ 117 ]. GRUs handle noisy data effectively in applications like drought prediction
and runoff modeling [ 101 ] but are less effective than LSTMs when managing complex temporal relationships in particularly noisy or
incomplete datasets [ 113 ]. 

Impact of hyperparameter tuning on prediction performance 

Hyperparameter tuning is critical in determining the prediction performance of RNNs, LSTMs, and GRUs [ 118 ]. The selection of
appropriate hyperparameters, such as the number of layers, the size of hidden states, learning rate, batch size, and dropout rate, can
13
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Table 2 

RNN, LSTM, GRU variants in hydrological (Rainfall-runoff) times series predictions. 

Network Type Application Input Data Output Study Region Effectiveness Advantages Disadvantages Source 

RNN Monthly 
Rainfall-runoff
modeling 

Historical monthly 
rainfall and runoff
data 

Predicted runoff Bardha Watershed, 
India 

RNN-based model outperformed 
in both training and testing 
periods. 

Captures temporal 
dependencies in data 

vanishing gradient 
problem 

[ 100 ] 

Rainfall-runoff Historical rainfall 
data 

Predicted runoff Five small Amazon 
Basins 

RNN-based models are capable of 
spatial and temporal changes that 
influence long-term simulations 

Suitable for 
short-term 

predictions 

High requirement 
for historical data 

[ 104 ] 

Rainfall-runoff Gridded and 
Meteorological 
Historical rainfall 
and runoff data 

Predicted daily 
runoff

North Carolina, USA RNN models demonstrated the 
superiority of LSTM and GRU. 

Effective in 
capturing seasonal 
variations 

Limited ability to 
capture long-term 

dependencies 

[ 101 ] 

Reconstruction of 
rainfall-runoff
processes 

Historical rainfall 
data 

Predicted runoff Taiwan’s Wu-Tu 
watershed 

RNN-based models are 
appropriate for the reconstruction 
of rainfall-runoff processes 

Timely predictions, 
managing noisy data 

Requires significant 
data preprocessing 

[ 105 ] 

Rainfall-runoff Historical rainfall 
and runoff data 

Predicted runoff Daning and Lushui 
River Basins, China 

The proposed showed promising 
results in both river basins 

Robust against data 
irregularities 

Susceptible to 
outliers 

[ 106 ] 

LSTM Rainfall-runoff Historical rainfall 
and runoff data 

Predicted runoff Two watersheds in 
the State of Iowa, 
USA 

The proposed model is effective 
for short-term flood forecast 
applications 

Addresses vanishing 
gradient problem 

Computationally 
intensive, requires 
careful tuning of 
hyperparameters 

[ 60 ] 

Rainfall-runoff Grided and 
meteorological 
observations and 
streamflow records 
and evaporation 

Predicted runoff 241 catchments in 
the UK 

Findings showed the potential of 
the LSTM for hydrological 
modeling applications. 

Effective in 
capturing long-term 

dependencies 

High computational 
cost 

[ 107 ] 

Rainfall-runoff CAMELS and 
meteorological 
Historical datasets 

Predicted runoff Various River basins 
in the UK 

The proposed model improved 
the performance of daily runoff
prediction and multistep ahead 
prediction 

Manages complex 
temporal 
relationships 

Vulnerable to 
overfitting 

[ 108 ] 

Rainfall-runoff Historical rainfall 
data 

Predicted runoff Brays Bayou 
watershed, Texas 

LSTM model improved the 
outputs 

Suitable for various 
hydrological time 
series applications 

Sensitivity to initial 
conditions 

[ 102 ] 

Rainfall-runoff
Simulation 

Hourly Historical 
rainfall and runoff
data 

Predicted runoff 3 water basins from 

different provinces 
of China 

The proposed LSTM model 
showed better simulation and 
was more intelligent than the 
ANN model 

Effective in learning 
non-linear 
relationships 

Requires significant 
data preprocessing 

[ 109 ] 

GRU Short-term runoff
prediction 

Hourly Historical 
precipitation and 
runoff dataset 

Predicted runoff Fujian Province, 
Southeast China 

GRU performs better than LSTM 

in some cases. 
Simplified 
architecture 
compared to LSTM 

May struggle with 
long-term 

dependencies 

[ 92 ] 

Rainfall-runoff
prediction 

Historical rainfall 
data 

Predicted runoff Simtokha, Bhutan The proposed model 
outperformed LSTM 

Faster training times Less effective with 
small datasets 

[ 110 ] 

Runoff Prediction Historical 
meteorological and 
runoff data 

Predicted runoff Bailong River 
watershed, China 

The developed model has better 
predictivity and adaptability. 

Robust performance 
in real-time 
applications 

Limited 
interpretability 

[ 103 ] 

Runoff Prediction Historical rainfall 
data 

Predicted runoff Wei River Basin, 
Shaanxi, China 

The changes in this study 
enhanced the performance of the 
GRU runoff forecasting model. 

Comparable 
performance to 
LSTM 

Requires more data 
for training 

[ 111 ] 

Runoff Estimation Historical rainfall 
and runoff data 

Predicted runoff India The result suggests that GRU’s 
result is at par with its 
compatriot LSTM model 

Manages 
high-dimensional 
data effectively 

Limited by network 
depth and 
complexity 

[ 112 ] 

14
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impact a model’s ability to capture temporal dependencies and generalize to unseen data [ 119 , 120 ]. Poorly tuned hyperparameters
can result in underfitting or overfitting, where the model either fails to capture essential patterns or fits too closely to the training
data, leading to poor generalization [ 121 ]. 

For RNNs, hyperparameter tuning is more straightforward compared to LSTMs and GRUs [ 122 ]. However, due to their susceptibil-
ity to the vanishing gradient problem, tuning learning rates and the number of hidden units are critical to stability and convergence.
In the case of LSTMs, the challenge of tuning hyperparameters increases due to their complex architecture. The number of memory
cells, the size of the hidden state, and the learning rate must be carefully optimized to balance performance and computational
cost [ 65 ]. LSTMs are sensitive to the choice of hyperparameters, and improper tuning can exacerbate issues such as overfitting or
instability during training [ 30 ]. 

GRUs, with their simple structure, are easier to tune than LSTMs but still require careful optimization of parameters such as the
learning rate, number of layers, and batch size [ 123 ]. Due to their faster training times and reduced computational demands, GRUs
are often more forgiving when it comes to hyperparameter selection [ 123 , 124 ]. However, as with LSTMs, suboptimal tuning can
hinder the model’s ability to capture long-term dependencies and lead to reduced prediction accuracy [ 78 ]. 

RNNs, LSTMs, and GRUs differ in their robustness to noisy, outlier-laden, or missing data. Their performance is highly dependent
on effective hyperparameter tuning. The right combination of hyperparameters is crucial for unlocking the full potential of these 
models, particularly for complex hydrological forecasting tasks. 

Potential limitations and factors affecting hydrological time series prediction 

The vanishing gradient problem of RNNs delays the ability to capture long-term dependencies, which results in low accuracy in
long-term predictions [ 5 ]. LSTMs address these issues but are computationally intensive and prone to overfitting with small datasets
[ 64 ]. GRUs offer a balance but may struggle with complex, long-term dependencies and require larger datasets for optimal perfor-
mance [ 117 ]. Familiar sources of error in these models include inaccurate input data, insufficient training data, model overfitting,
and sensitivity to hyperparameter settings [ 120 ]. Solutions to these limitations involve using regularization techniques like dropout to
reduce overfitting, employing data augmentation to enhance training sets, and optimizing hyperparameters through cross-validation 
[ 120 ]. Factors affecting hydrological time series prediction include the quality of input data [ 125 ] (e.g., historical rainfall or stream-
flow [ 30 ]), data preprocessing methods, model architecture, and the length of temporal sequences. External factors such as climate
variability, land-use changes, and human interventions (e.g., data collection and handling [ 50 ]) also play a crucial role [ 126 ]. Tackling
these factors requires incorporating diverse data sources, employing advanced preprocessing techniques (e.g., wavelet decomposition 
[ 65 ]), and utilizing ensemble methods to enhance robustness in hydrological forecasting. 

Answers to RQs 

RQ-1: What are the key architectural differences and advancements between traditional RNNs, LSTM networks, and GRU networks, 
and how do these differences impact their performance in hydrological predictions? 

Traditional RNNs had a simple architecture consisting of a single recurrent layer that fed its output back into itself, allowing them
to capture temporal dependencies. However, they suffered from the vanishing gradient problem, which hindered their ability to learn
long-term dependencies. LSTM networks addressed this issue with a more complex architecture that included memory cells and gates
(input, output, and forget) to regulate the flow of information, making them more effective at capturing long-term dependencies. 
GRU networks, a variant of LSTMs, simplified this architecture by combining the forget and input gates into a single update gate
and merging the cell state and hidden state. These advancements enhanced the performance of LSTMs and GRUs in hydrological
predictions by improving their ability to model complex temporal patterns and handle long-term dependencies more efficiently. 

RQ-2: How have LSTM networks been adapted or modified to improve their accuracy and efficiency in hydrological time series
forecasting, and what innovative methodologies have been introduced in recent research? 

LSTM networks have been adapted in various ways to enhance their accuracy and efficiency in hydrological time series forecasting.
One common approach is the integration of attention mechanisms, which allow the model to focus on relevant parts of the input
sequence, thereby improving prediction accuracy. Hybrid models combining LSTMs with CNNs have been introduced to capture 
both spatial and temporal dependencies in hydrological data. Wavelet transform has been employed to decompose the time series 
into different frequency components before feeding them into LSTM networks, enhancing the model’s ability to capture multi-scale 
features. Recent research also explores the use of encoder-decoder architectures and ensemble learning techniques to combine multiple 
LSTM models, leading to more robust and accurate predictions in hydrological forecasting. 

RQ-3: In what ways have RNN, LSTM, and GRU models been implemented in hydrological applications, and what case studies
highlight their effectiveness and limitations in real-world scenarios? 

RNN, LSTM, and GRU models have been implemented in various hydrological applications, including streamflow prediction, rain- 
fall forecasting, and water quality monitoring. For example, LSTM networks have been used to predict streamflow in river basins,
demonstrating superior performance over traditional models due to their ability to capture complex temporal dependencies. In rainfall 
forecasting, hybrid models combining LSTMs with wavelet transforms have shown enhanced accuracy by effectively decomposing and 
modeling the time series data. However, these models face limitations, such as the need for large datasets for training and computa-
tional intensity. Case studies, such as the application of LSTM models in the Yangtze River basin for water quality prediction, highlight
15
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their effectiveness in capturing intricate patterns in hydrological data. They also underscore the challenges in model generalization 
and scalability across different hydrological settings. 

RQ-4: What are the significant trends in the application of hybrid models in hydrological predictions over the past decade? 

Over the past decade, significant trends in the application of hybrid models for hydrological predictions have emerged, focusing
on integrating various machine learning techniques to enhance prediction accuracy. A prominent trend is the combination of LSTM
networks with CNNs to capture both spatial and temporal dependencies in hydrological data, leading to improved performance in
tasks like rainfall and streamflow forecasting. Another trend is the use of wavelet transforms to decompose time series data into
different frequency components before feeding them into LSTM models, allowing for better multi-scale feature extraction. Ensemble 
learning techniques, which combine multiple models to improve robustness and accuracy, have also gained traction. These hybrid 
approaches have shown considerable promise in addressing the complex and non-linear nature of hydrological systems, leading to 
more reliable and accurate predictions. 

RQ-5: What gaps exist in the current literature on the use of RNNs, LSTMs, and GRUs for hydrological forecasting, and what future
research directions are suggested to address these gaps and enhance the models’ predictive capabilities? 

Despite significant advancements, several gaps exist in the current literature on using RNNs, LSTMs, and GRUs for hydrological
forecasting. One crucial gap is the limited understanding of these models’ interpretability, making it challenging to explain and trust
their predictions. Additionally, there is a need for more research on the generalization capabilities of these models across different
hydrological settings and regions. Data scarcity and quality also pose significant challenges, as high-quality, extensive datasets are 
crucial for training these models effectively. Future research should focus on developing more interpretable model architectures 
and enhancing data collection and preprocessing methods. Exploring the integration of domain knowledge into model training and 
leveraging transfer learning techniques can help improve model generalization. Addressing these gaps will enhance the predictive 
capabilities of RNNs, LSTMs, and GRUs in hydrological forecasting. 

Conclusion 

This review has examined the different variants and applications of RNN, LSTM, and GRU architectures in hydrological time-series 
forecasting. 

• Traditional RNNs, although foundational in temporal sequence modeling, are hindered by the vanishing gradient problem, re- 
stricting their ability to capture long-term dependencies. LSTM networks address this limitation through advanced architecture, 
incorporating memory cells and gating mechanisms to enhance their capacity for modeling extended temporal dependencies. GRU 

networks, as a streamlined variant of LSTMs, integrate the forget and input gates into a single update gate, offering comparable
performance with improved computational efficiency. 

• Recent innovations, such as hybrid models combining LSTMs with other ML and DL models (e.g., CNNs), have shown improved
capabilities. The use of wavelet transforms to decompose time-series data before LSTM processing has further enhanced these 
models’ ability to capture multi-scale features. Encoder-decoder architectures and ensemble learning techniques, which aggregate 
multiple LSTM models, have also been explored, contributing to more robust and precise predictions. 

• Despite the promising outcomes of these models in applications such as streamflow prediction, rainfall forecasting, and water 
quality assessment, challenges persist regarding the need for extensive training datasets and the high computational demands of 
these models. As the field advances, addressing issues related to model interpretability, generalization, and data quality will be
critical for improving the scalability and applicability of these architectures across diverse hydrological contexts. 

Future research should focus on predicting and understanding the discrepancies between real and simulated environments to 
enhance model accuracy and applicability. By identifying the factors that cause these differences, researchers can develop more robust
and generalizable models. This approach will be crucial in refining simulation techniques, improving data quality, and ensuring that
models better reflect real-world hydrological systems. 

Limitations 

This review focuses on architectural and methodological innovations in RNN, LSTM, and GRU variants, with limited research 
on practical implementation challenges. Further empirical validation across diverse hydrological settings would be necessary to 
substantiate the findings and ensure their generalizability. 
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