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Abstract: Dramatic success in cancer immunotherapy has been achieved over the last decade with
the introduction of checkpoint inhibitors, leading to response rates higher than with chemotherapy
in certain cancer types. These responses are often restricted to cancers that have a high mutational
burden and show pre-existing T-cell infiltrates. Despite extensive efforts, therapeutic vaccines
have been mostly unsuccessful in the clinic. With the introduction of next generation sequencing,
the identification of individual mutations is possible, enabling the production of personalized
cancer vaccines. Combining immune check point inhibitors to overcome the immunosuppressive
microenvironment and personalized cancer vaccines for directing the host immune system against
the chosen antigens might be a promising treatment strategy.

Keywords: cancer vaccines; immunotherapy; combination strategies; cancer immunity cycle; neoantigens;
personalized cancer vaccine

1. Introduction

An effective host immune response against cancer depends on an intact chain of carefully
regulated steps known as the cancer-immunity cycle. The first event is the release of cancer antigens,
followed by antigen presentation to T cells on dendritic cells via major histocompatibility complex
(MHC) class I and II molecules. This leads to priming and activation of T cells, followed by
trafficking and infiltration of T cells into the cancer. Recognition of target cancer cells by T cells
and destruction of the cancer are the final steps of the chain which leads to release of additional
cancer antigens and subsequently restart of the cancer immunity cycle [1]. Cancer cells use different
strategies to interfere with every step of the cancer immunity cycle including the activation of negative
immunoregulatory pathways and upregulation of the immunosuppressive checkpoint programmed
death-ligand 1 (PD-L1) [2–6]. Furthermore, cancer cells create their own immunosuppressive
tumour microenvironment (TME). They secrete a variety of chemokines and inflammatory mediators
like chemokine ligand 2 (CCL2), interleukin (IL) 6 and 10, transforming growth factor (TGF) ß,
granulocyte-macrophage colony-stimulating factor (GM-CSF) and vascular endothelial growth factor
(VEGF) that lead to recruitment of myeloid-derived suppressor cells (MDSCs), tumour-associated
macrophages (TAMs) and tumour-associated neutrophils (TANs) [7]. MDSCs promote tumour invasion
and metastases by secretion of soluble factors such as multiple matrix metalloproteinases (MMPs),
VEGF, TGF-ß and S100A8/9, but they also play a key role in checkpoint regulation. Cancer associated
hypoxia increases the expression of PD-L1 on MDSCs via induction of hypoxia-inducible factor 1-α [8].
TAMs and TANs also take part in checkpoint regulation. They produce cytokines and chemokines
like TGF-ß and IL-10 to recruit T-regulatory cells (Tregs) into the TME [9]. Tregs are a subclass of
CD4+ T cells, further classified by CD25 and FoxP3 expression, and are highly immunosuppressive.
They express the checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) which binds to B7

Vaccines 2018, 6, 52; doi:10.3390/vaccines6030052 www.mdpi.com/journal/vaccines

http://www.mdpi.com/journal/vaccines
http://www.mdpi.com
https://orcid.org/0000-0001-8321-4212
http://www.mdpi.com/2076-393X/6/3/52?type=check_update&version=1
http://dx.doi.org/10.3390/vaccines6030052
http://www.mdpi.com/journal/vaccines


Vaccines 2018, 6, 52 2 of 17

molecules on antigen presenting cells (APCs) and thereby hinders the interaction of CD28 molecules
on T cells and the B7 molecules on APCs [10].

The avoidance of immune destruction is now recognised as one of the hallmarks of cancer [11].
Monoclonal antibodies to these checkpoint proteins have shown clinical efficacy in a wide range of
malignancies with approvals by the FDA for the treatment of a rapidly growing list of tumour types.
Emerging translational analyses from the initial checkpoint inhibitor studies across tumour types
have consistently demonstrated that checkpoint inhibitor therapies are most efficient in patients with
pre-existing tumour infiltrating T-cells that were inhibited by PD-L1 [12,13]. In stark contrast, these
therapies are much less efficacious in tumours devoid of infiltrating lymphocytes, suggesting that
failure of effective T cell priming may hinder the generation of an effective immune response [14].

In this review, we aim to provide an overview of the current understanding of the dynamic
interaction between tumour and host immune system, focusing on the key steps required for efficient
T cell priming and how these can be subverted by cancer. We then discuss strategies to amplify
tumour-specific T cell responses through therapeutic active immunization with vaccines, and in
combination with checkpoint inhibitors.

2. Tumour Antigens

Much work has gone into identifying tumour antigens able to drive effective T-cell responses
against cancer (Table 1). In general, tumour antigens can be categorized as being tumour associated or
tumour specific [15,16].

2.1. Tumour Associated Antigens

Tumour associated antigens are a group of non-mutant molecules that are “shared” by normal
tissue and the cancer like overexpressed antigens or differentiation antigens. Amplification of genes
like in Her2/Neu positive breast cancer can lead to overexpression of a normal protein. Differentiation
antigens are molecules expressed on the cancer and on non-malignant cells of the same cell lineage,
for example tyrosinase in melanoma cells which is also expressed in normal melanocytes. Since tumour
associated antigens are self-proteins, they are more likely to have induced some form of centrally or
peripherally mediated immunological tolerance often resulting in a reduced repertoire of immune
effectors specific for the tumour associated antigen [16–18]. A potential problem in activating
an immune response against differentiation antigens is the induction of autoimmune response against
the normal tissue. Cancer–germline antigens are subsets of tumour associated antigens that are
thought to provide higher tumour specificity as they are not expressed in normal adult tissues,
except in germline and trophoblastic cells but are highly expressed across cancer. They include
melanoma-associated antigen (MAGE)-A1, MAGE-A3, G antigen (GAGE), B-melanoma antigen
(BAGE), and cancer testis antigen (NY-ESO-1) [15]. Other onco-fetal antigens, such as trophoblast
glycoprotein (TPBG) are also thought to be specific to tumours as they are present only during fetal
development [16,19]. However, all of these antigens are subject to a degree of tolerance and also
lack complete specificity to tumour, leading to concerns about toxicity as seen in the recent trials
with MAGE-A3 adoptive T-cells where cross-reaction with MAGE-A12 present in the brain led to
neurotoxicity [15,16].

2.2. Tumour Specific Antigens

Tumour specific antigens are exclusively expressed by the cancer, and as such not subject to
central tolerance, and are ideally suited as therapeutic targets. Oncogenic viral antigens can be used
as targets in virus-associated cancers such as human papillomavirus (HPV) in cervical, anogenital
and oropharyngeal cancers, hepatitis B virus in hepatocellular carcinoma and human herpesvirus 8
in Kaposi sarcoma [20,21]. Cytomegalovirus proteins are expressed in the majority of glioblastoma
patients although their role in etiology is unclear [22,23]. Vaccines against oncogenic HPV infections
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are already FDA approved in the prophylactic setting but have also shown efficacy in the therapeutic
setting [22]. However, only a minority of cancers are caused by viruses.

Tumour neoantigens arise from a somatic mutation in the cancer and can be common recurrent
mutations such as the BRAF V600E mutation or Kirsten rat sarcoma (KRAS) G12D [24]. However,
the majority of these shared mutant antigens are poorly immunogenic [16] and with the advance of
more widely available next-generation sequencing techniques, it is now clear that tumours express
a varied number of neoantigens [25,26]. Higher neoantigen load is associated with increased T-cell
infiltration and improved outcomes [27–29]. Importantly, only a small fraction of putative mutated
peptides are presented on MHC class I and/or MHC class II, and an even smaller subset of those are
immunogenic [30,31]. The beauty of these neoantigens is that they are unique to the individual patient,
and pave the way for personalized treatment strategies.

Table 1 HER human epidermal growth factor receptor, TERT telomerase reverse transcriptase, PSA
prostate specific antigen, MAGE melanoma-associated antigen, BAGE B-melanoma antigen, GAGE
G antigen, NY-ESO-1 known as cancer testis antigen, CEA carcinoembryonic antigen, MUC mucin,
TPBG trophoblast glycoprotein, HPV human papillomavirus, HBV hepatitis B virus, HHV human
herpesvirus, KRAS Kirsten rat sarcoma

Table 1. Examples of tumour antigens and vaccine trials.

Type of Tumour Antigen Examples (Ref.)

Tumour associated

Overexpression HER2 [32]
TERT [33]

Tissue differentiation
PSA [34]

Mammaglobin-A [35]
Tyrosinase [36]

Cancer-germline
MAGE [37]
BAGE [38]

NY-ESO-1 [26]

Oncofetal
CEA [39]

MUC-1 [39]
TPBG [16]

Tumour specific
Oncogenic viral

HPV [21]
HBV [20]

HHV-8 [30]

Neoantigens BRAF V600E [40]
KRAS G12D [41]

3. Antigen Presentation

The concept that the body can differentiate between self and non-self tissue earned Macfarlane
Burnett the Nobel Prize in 1960 [42] but a further half century of work was required to appreciate the
complexity of how tumours coopt the immune system to ensure tolerance (Figure 1). Antigens released
by dying cancer cells are ingested by dendritic cells and presented to CD8+ T-cells on MHC class I
molecules. In order to induce a potent immune response, the antigen released must be accompanied
by the emission of damage-associated molecular patterns (DAMPs) [43,44]. Surface-exposed DAMPs
like heat-shock proteins (HSP 70/90), calreticulin (CRT) on cancer cells or secreted DAMPs such
as adenosine triphopsphate (ATP), nucleic acids and high mobility group Table 1 protein (HMGB1)
interact with respective receptors on DCs and lead to their maturation with upregulation of MHC
class II expression [44,45]. Presentation of antigens by professional APC to naïve T cells requires
at least 3 signals: (i) signal 1 which results from the interaction of the MHC/Ag complex with the
T cell receptor (TCR) and sends an activating signal to the T cells, (ii) signal 2 which results from the
interaction of the B7 molecules (CD80 and CD86) with the CD28 stimulatory receptor expressed on
T cells and (iii) signal 3 which results from secretion of cytokines like IL-12 and interferon (INF) α/β
from APC. Il-12 receptors are expressed on natural killer cells (NKs), B and T lymphocytes [46]. Binding



Vaccines 2018, 6, 52 4 of 17

of IL-12 leads to activation of the JAK-STAT (Janus kinases and signal transducer and activator of
transcription proteins) pathway and thus to transcription of genes for immune cell activation. Il-12 also
increases INF-γ production from NKs and T cells which in turn leads to increased antigen presentation
through upregulation of MHC molecules [47]. The combination of these 3 signals is hence essential
for the activation of CD4 (through MHC class II) and CD8 (through MHC class I) T cells. Priming
CD4+ T-helper cells is necessary to generate effective CTL-mediated anti-tumour responses as well as
long-lasting memory CTLs [16,44,48–50].

Loss or ineffective antigen presentation therefore both reduces direct antigen priming of naive
T-cells and prevents the recognition of tumour cells by antigen-experienced T cells, thereby rendering
tumour cells essentially ‘invisible’ to the immune system. Several mechanisms contribute to the defect
of antigen presentation by tumour cells including firstly a lack of tumour antigens; a downregulation
or loss of MHC expression, alterations of the machinery responsible for the loading of tumour antigens
onto MHC or the loss of co-stimulatory molecules (Figure 1).

Figure 1. Key steps required for efficient priming of T cell responses within the cancer immunity cycle.
Tumour antigen (yellow) is processed via the immune-proteasome (green) and other components of
the antigen processing machinery leading to its expression on MHC class I molecule. Grey crosses
indicate nodes at which tumour cells can lose antigen presentation rendering themselves ‘invisible’ to
the immune system. Aside from loss of antigen expression itself, other ways that cancer cells can reduce
their ability to present tumour antigen include: (a) alterations/loss of b2-microglobulin resulting in
absence of MHC class I impairing target recognition by CD8+ T cells; and (b) impairments of the
antigen processing machinery.

4. Cancer Vaccines

The idea of cancer vaccines was born more than 100 years ago [51]. Despite intensive effort and
promising preclinical results, their implementation into clinic as therapeutic agents has been disappointing
so far. However, the recent success of checkpoint inhibitors has paved the way for combination strategies
and led to re-investigation of cancer vaccines. PROSPECT was a phase 3 randomized trial that investigated
a PSA-targeted, poxvirus-based cancer vaccine alone or in combination with GM-CSF against placebo in
patients with metastatic castration resistant prostate cancer. There was no significant difference in overall
survival regarding the three different treatment arms (updated ASCO 2018) [52]. The PROSTVAC-V/F
vaccine is now being investigated in combination with the checkpoint inhibitor nivolumab (NCT02933255).
Table 2 gives an overview of different types of cancer vaccines that are currently being investigated in
combination with checkpoint inhibitors. In general, there are two strategies for cancer vaccines—either
direct delivery of the antigen into the patient (in vivo approach) or collecting monocytes from the patient
followed by ex vivo antigen loading.
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Table 2. Examples of clinical trials combining different type of cancer vaccines with checkpoint inhibitors. The result section gives an overview of results from earlier
phase trials if data are available for the specific cancer type. Abbreviations: TNBC, triple negative breast cancer; NSCLC, non-small cell lung cancer; SCLC, small cell
lung cancer; OS, overall survival; PFS, progression free survival; WT 1, Wilms tumour gene 1; id, intradermal; im, intramuscular; sc, subcutaneous; iv, intravenous.

Clinical Trials.gov
Identifier; Phase Tumour Type; Setting Intervention Mode of Action Results from Previous Vaccine Trials

NCT03328026;
Phase 1/2 Breast cancer; palliative

SV-BR-1-GM id.,
pembrolizumab,

ipilimumab,
cyclophosphamide,

interferon

GM-CSF secreting whole cell
vaccine,

anti-PD-1,
anti-CTLA-4,

chemotherapy,
cytokine

Clinical responses seen in monotherapy
with SV-BR-1-GM (phase 1

NCT03066947)

NCT02826434;
Phase 1 TNBC; adjuvant PVX-410 im.,

durvalumab
Peptide vaccine,

anti-PD-L1 –

NCT03199040;
Phase 1 TNBC; adjuvant Neoantigen DNA vaccine im.

alone or plus durvalumab
DNA vaccine,

anti-PD-L1 –

NCT03362060;
Phase 1 TNBC; palliative PVX-410 sc. alone or plus

pembrolizumab
Peptide vaccine,

anti-PD-1 –

NCT02451982;
Phase 1/2

Pancreatic cancer;
neoadjuvant and adjuvant

GVAX id., cyclophosphamide
alone or plus nivolumab

GM-CSF secreting whole tumour
cell vaccine, chemotherapy,

anti-PD-1

Palliative phase 2 study (ECLIPSE)
with GVAX and cyclophosphamide and

CRS-207 showed no OS compared to
standard of care

(ASCO GI abstract 2017)

NCT03050814;
Phase 2

Colorectal cancer;
palliative

Standard of care alone or plus
ad-CEA vaccine sc. and

avelumab

Adenovirus vector vaccine
expressing CEA,

anti-PD-L1

Ad-CEA induced T cell mediated
immune response measured by IFNγ

Elispot (phase 1) [53]

NCT03152565;
Phase 1/2

Colorectal cancer;
palliative

ADC id.,
avelumab

Autologous dendritic cell vaccine,
anti-PD-L1 –

NCT03029403;
Phase 2

Ovarian, tubal, peritoneal;
palliative

DPX survivac sc.,
cyclophosphamide,

pembrolizumab

Survivin targeting peptide vaccine,
chemotherapy,

anti-PD-1

DPX induced CD8+ T-cell responses,
measured by IFNγ Elispot (phase 1)

[54]
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Table 2. Cont.

Clinical Trials.gov
Identifier; Phase Tumour Type; Setting Intervention Mode of Action Results from Previous Vaccine Trials

NCT02499835;
Phase 1

Prostate cancer;
palliative

pTVG-HP id.,
pembrolizumab

Plasmid DNA vaccine encoding
prostatic acid phosphatase,

anti-PD-1

pTVG-HP induced CD8+ T-cell
responses, measured by IFNγ Elispot

(phase 1) [55]

NCT02933255;
Phase 1/2

Prostate cancer; metastatic
and localized

PROSTVAC sc.,
nivolumab

Poxvirus expressing PSA vaccine,
anti-PD-1

PROSTVAC alone no difference in OS
(phase 3, ASCO abstract 2018)

NCT02808143;
Phase 1

Non-muscle-invasive
bladder cancer; recurrent

BCG,
pembrolizumab intravesically

BCG,
anti-PD-1 –

NCT03164772;
Phase 1/2 NSCLC; palliative

BI 1361849 id.,
durvalumab alone or
plus tremelimumab

mRNA vaccine,
anti-PDL-1,

anti-CTLA-4
–

NCT02879760;
Phase 1/2 NSCLC; palliative

Ad-MAGEA3 im.,
MG1-MAGEA3 iv.,

pembrolizumab

Adenovirus vaccine expressing
MAGEA3,

Maraba virus expressing MAGEA3,
anti-PD-1

–

NCT03380871;
Phase 1 NSCLC; palliative

NEO-PV-01 sc.,
pembrolizumab,

carboplatin,
pemetrexed

Personalized cancer vaccine,
anti-PD-1, chemotherapy –

NCT02955290;
Phase 1/2 NSCLC; palliative CIMAvax im.,

nivolumab

Peptide vaccine containing
recombinant human EGF,

anti-PD-1

Phase 2 study of CIMAvax showed
increased OS for patients with good

anti-EGF antibody response [56]

NCT02823990;
Phase 2 NSCLC; palliative TG4010 sc.,

nivolumab

Ankara-virus vaccine expressing
MUC1and IL-2,

anti-PD-1

Phase 2 of first line chemo with TG4010
or placebo showed improved PFS for

the vaccine arm [57]

NCT02439450;
Phase 1/2 NSCLC; palliative Viagenpumatucel-L id.,

nivolumab
gp96-Ig secreting lung cancer cells,

anti-PD-1 –
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Table 2. Cont.

Clinical Trials.gov
Identifier; Phase Tumour Type; Setting Intervention Mode of Action Results from Previous Vaccine Trials

NCT03406715;
Phase 2 SCLC; palliative Ad.p53-DC id., nivolumab,

ipilimumab

Autologous dendritc cell based p53
vaccine,

anti-PD-1,
anti-CTLA-4

Ad.p53-DC induced immune-cell
responses, measured by IFNγ Elispot

(phase 1) [58]

NCT02775292;
Phase 1 Solid tumours; palliative

NY-ESO-1 TCR iv.,
NY-ESO-1 DC id.,

nivolumab, cyclophosphamide,
fludarabine

Gene modified T cells,
peptide-pulsed dendritic cells,

anti-PD-1,
chemotherapy

–

NCT03289962;
Phase 1 Solid tumours; palliative RO7198457 iv.,

atezolizumab
Personalized RNA mutanome

vaccine, anti-PD-L1

RO7198457 induced T cell mediated
immune response measured by IFNγ

Elispot (phase 1) [59]

NCT03311334;
Phase 1

Solid tumours;
palliative

DSP-7888 id.,
nivolumab or atezolizumab

WT1 protein-derived peptide
vaccine,

anti-PD-1 or anti-PD-L1
–

NCT03162224;
Phase 1/2

Head and neck cancer;
palliative

MEDI0457 im.,
durvalumab

HPV DNA vaccine,
anti-PD-L1 –

NCT03260023;
Phase 1/2

HPV-16 positive cancer;
palliative

TG4001 sc.,
avelumab

Modified vaccinia of Ankara-virus
expressing HPV 16 and IL-2,

anti PD-L1

Clinical responses seen in patients with
HPV-16 related cervical intraepithelial

neoplasia after TG4001 injections
(phase 2) [60]

NCT03047928;
Phase 1/2 Melanoma; palliative PD-L1/IDO vaccine sc.,

nivolumab
Peptide based vaccine,

anti-PD-1 –

NCT02385669;
Phase 1/2

Melanoma; neoadjuvant,
adjuvant, palliative

6MHP,
ipilimumab

Melanoma-associated helper
peptide vaccine,

anti-CTLA-4

6MHP decreased CD8+ T-cell
responses, measured by IFNγ Elispot

(phase 1) [61]
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4.1. Ex Vivo Approaches

Dendritic cells (DCs) are the professional antigen-presenting cells of the immune system, capable
of capturing exogenous antigens and not only presenting them in the MHC class II pathway but also
presenting them in the class I antigen presentation pathway to CD8+ T cells (called ‘cross presentation’)
which is essential for long lasting immune responses. The ability of DCs to cross present made
them an ideal instrument for therapeutic use in the field of cancer immunotherapy. DC vaccines
are generated ex vivo with the collection of monocytes from patients via leukapheresis which are
then activated and differentiated in a laboratory, and subsequently loaded with whole tumour cells,
DNA or mRNA encoding tumour antigens, or recombinant virus expressing tumour antigens as
well as antigenic peptides or proteins [62–65]. The only FDA approved cancer vaccine, Sipuleucel-T,
is based on this method. It is produced by ex vivo exposure of dendritic cell precursors to PA 2024,
a fusion protein combining recombinant prostatic acid phosphatase with Granulocyte-macrophage
colony-stimulating factor (GM-CSF). In the phase III IMPACT trial, Sipuleucel-T has shown an overall
survival benefit of 4.1 months in men with castration-resistant prostate cancer when compared to
placebo [34]. The IMPACT trial has not been left without criticism. First, the product itself is a mixture
of monuclear cells, with less than 20% being antigen-presenting cells, so technically not a pure DC
vaccine [62]. Secondly, no significant difference in biochemical failure or progression free survival
could be shown. It is therefore hard to explain the difference in overall survival as effect of the
treatment. There have been differences in the two treatment arms as two thirds of the cells harvested
from the placebo group were not reinfused. This effect on its own could have potentially influenced
the outcome [66,67].

Numerous trials utilising autologous DCs pulsed with autologous tumour RNA (NCT02993315,
NCT01983748), synthetic mRNA encoding tumour antigens (e.g., TriMix) and synthetic peptides
are ongoing across multiple tumour indications [23,68,69]. However, the optimal strategy for the
strongest immune response to DC vaccines has not been identified yet. One of the challenges is
the maturation process of DCs. Early trials have shown superiority for the delivery of mature DCs
as immature DCs can potentially induce immunogenic tolerance against the used antigen [70–72].
Therefore, cytokine cocktails including tumour necrosis factor (TNF)-α or GM-CSF combinations with
IL1ß, IL6, prostaglandin E2 and toll like receptor (TLR) agonists are used for DC maturation [63].
TNF-α and GM-CSF are needed to induce DC differentiation from monocytes or haematopoetic
progenitor cells. PGE2 is thought to be mandatory for DC migration into lymph nodes [73].
However, there are data suggesting PGE2 reduces IL-12 production by DCs which is essential
for T cell stimulation [73]. An option to overcome that problem is to add TLR agonists into
the maturation cocktail. Upon activation TLRs recruit adaptor proteins which signal through
NFκB and mitogen-activated protein kinase (MAPK). This induces transcription and translation
of proinflammatory cytokines and MHC molecules [46]. Furthermore, different forms of vaccine
administration, dosing and schedules exist and need to be compared in clinical trials to prove
superiority of any of the protocols [74]. Currently under investigation are also different kinds
of combination therapies involving administration of DC-based vaccines with chemotherapies,
checkpoint inhibitors, TLR agonists and tyrosine kinase inhibitors (e.g., NCT02669719, NCT01697527,
NCT02649829, NCT02678741, NCT03325101, NCT01876212, NCT01976585.

4.2. In Vivo Approaches

This strategy involves the direct delivery of the antigen (either nucleic acid-based or peptide
based) into the patient, usually with the aid of an adjuvant where they are internalised and processed
by antigen presenting cells. In contrast to ex vivo approaches, these can be produced fairly easily and
induce minimal if any toxic effects.

One of the key elements in creating peptide based vaccines is the length of the used peptides.
Short epitope peptides are typically eight to ten amino-acids in length and directly bind to class I MHC
molecules on the surface of immature DCs. However, as short peptides can also bind to class I MHC
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molecules on nonprofessional antigen-presenting cells (e.g., fibroblasts) which lack co-stimulatory
molecules and thereby do not induce immune responses, this may induce immune tolerance [75,76].
Long peptides usually consist of 20–30 amino acids and require internalization by antigen presenting
cells such as DCs.

Antigens alone are often poor inducers of immunity which can result in immune tolerance instead of
immunity. Therefore, adjuvants are needed as vaccine components to enhance immune response [38,77].
The optimal vaccine adjuvant provides adequate availability of the antigen and enhances the immune
response by inducing expression of co-stimulatory molecules and cytokines by APC. A widely used but
controversially discussed adjuvant is the granulocyte-macrophage colony-stimulating factor (GM-CSF).
It can be either delivered via secretion of viral-transduced tumour cells or as a recombinant protein
given together with the vaccine intradermally or subcutaneously. Trials have shown varying success in
achieving T cell responses, suggesting a dose-dependent immunosuppressive or immunostimulant effect
of GM-CSF [78–81]. Other commonly used adjuvants are TLR agonists such as polyinosinic–polycytidylic
acid stabilised with polylysine and carboxymethylcellulose (Poly-ICLC) that mimic microbial stimulation
and thereby enhance T cell responses. Aluminium salts induce a local inflammatory response that results
in trafficking of APC to the injection site [38,77]. More recently, pre-conditioning the vaccine site with
tetanus-diphtheria toxoid has shown improved lymph node homing of DCs in a phase 2 trial with
glioblastoma patients. Also, the delivery process of antigens influences the efficacy of the cancer vaccine.
Micro/nanoparticles can protect the antigen from degradation and are also useful for antigen trafficking to
desired organs such as lymph nodes or the spleen. Liposomes, synthetic polymers or lipoprotein nanodiscs
have been used for antigen delivery and allow for combining antigen with cytokines such as interleukin-2
and GM-CSF into a single particle [16,82].

Targeting tumour associated antigens with peptide-based cancer vaccines has been a long time focus
of industry as they are shared by several cancer types. However, their use in clinical practice has
been hindered so far by disappointing phase 3 clinical trials [26,37,83–89]. More promising results
could be shown in patients with human papilloma virus type 16 (HPV-16) positive non-invasive
vulvar lesions. Therapeutic vaccination with HPV-16 E6 and E7 synthetic long peptides led to clinical
responses in a phase II study in 12 out of 20 patients, showing complete responses of lesions in five
patients. The grade of clinical response was associated with the strength of vaccine-induced T-cell
response [21,90,91]. Ongoing trials in genital cancers are currently investigating combination modalities
with HPV vaccines and topicals like imiquimod or fluorouracil (NCT03196180, NCT00788164).

5. Personalised Cancer Vaccines

With the establishment of next generation sequencing (NGS) for detection of tumour mutations
the idea of generating vaccines that target personal tumour neoantigens was born.

Non-synonymous somatic mutations are identified by whole exome sequencing of tumours and
normal-cell DNA from individual patients. The listed mutations are then ranked according to their
likelihood of expression and affinity binding of the neoantigen to autologous MHC class I and II
molecules which can be predicted by bioinformatic tools like NetMHCpan or IEDB [25,59].

The advantage of neo-antigens that arise from tumour specific mutation is that they are highly
immunogenic since the cytotoxic T lymphocyte clones with high affinity for these antigens are unlikely
to have been deleted by central tolerance. This concept has been investigated in a phase 1 study with
six stage III and IV melanoma patients after surgical resection with curative intent. These patients
received subcutaneous vaccinations of synthesized long peptides targeting up to 20 personal neo-antigens
per patient, combined with the TLR 3 and melanoma differentiation associated protein 5 agonist
poly-ICLC as immunostimulant. After a median follow-up of 25 months four patients remained without
disease-recurrence [25]. A currently ongoing phase 1 study is investigating a mutation derived-based
personalized vaccine in glioblastoma patients. The vaccine consists of several peptides based on each
patient’s own tumour sequence. The vaccine is given after radiation and chemotherapy, in the maintenance
phase of temozolomide and tumour treating fields (NCT03223103). Another phase 1 study is also using
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the concept of a personalized peptide vaccine in patients with advanced pancreatic adenocarcinoma or
colorectal adenocarcinoma in combination with the checkpoint-inhibitor pembrolizumab (NCT02600949).
The most recent technology is the use of mRNA-based cancer vaccines [82]. The IVAC-Mutanome study
was a phase 1 study including 13 melanoma with advanced disease (stage III and IV) [59]. Ten mutations
per patients were selected and two synthetic RNA molecules coding for five (27 mer) peptides with
the mutation in position 14 were synthesized in vitro. The RNA molecules were then linked to a MHC
trafficking signal peptide for optimized routing and presentation to MHC class I and II presentation.
Patients received eight ultrasound-guided injections into inguinal lymph nodes. Immunogenicity was
analysed by IFNγ-ELISpot in CD4+ and CD8+ T cells in pre and post-vaccination leukapheresis samples.
Responses against one-fifth of the mutations were detectable in blood without in-vitro stimulation.
Two of the five patients with metastatic disease experienced vaccine-related objective responses. Removal
of lymph node metastasis in one patient confirmed vaccine-induced neo-epitope specific T cells in
the tumour [59].

A currently ongoing phase 1 study is investigating an intravenous formulation of a RNA based
personalized vaccine in combination with the PD-L1 targeting agent atezolizumab in patients with
solid tumours (NCT03289962).

6. Challenges

6.1. Choosing the Right Antigen—Improving Bioinformatics

With the possibility of parallel sequencing, a new era for antigen selection began. More challenging
is identifying which of the listed mutations will induce the strongest immunogenicity in vivo [92].
Bioinformatic prediction tools try to rank the immunogenicity of the antigen according to the
binding affinity of the predicted epitope to individual MHC molecules, the likelihood of presentation,
the clonality and the level of expression of the associated RNA. However, recent trials have shown
that CD8+ responses against predicted high-affinity binders were low as 29%, indicating the need for
improvement of the used algorithms [59].

6.2. Choosing the Right Combination

As cancer cells have evolved various mechanisms for immune escape, combination therapies are
needed to restore antitumour-immunity. Conventional therapies like chemotherapy and radiotherapy
can be used to support antigen release by cancer cell death. Checkpoint inhibitors release the break
on endogenous T cells by blocking the negative regulatory pathway used by tumours. They have
shown efficacy on their own in various cancer types, however, less success was achieved in tumours
devoid of infiltrating lymphocytes [14]. The lack of infiltrating T cells might be the result of a tumour
suppressive microenvironment created by the cancer cells through the release of immunosuppressive
cytokines, recruitment of regulatory T cells and myeloid-derived suppressor cells. A high expression
of active indoleamine-pyrole 2,3-dioxygenase (IDO) in cancer cells leads to immunosuppression by
depletion of tryptophan which results in promotion of T regulator cells [86,93,94]. For the migration
of T cells through the vascular endothelium at the tumour site expression of intercellular adhesion
molecules (ICAM-1) and vascular adhesion molecules (VCAM-1) are needed. Angiogenic molecules,
like the vascular endothelial growth factor (VEGF), at the tumour microenvironment inhibit expression
of endothelial adhesion molecules and thereby T cell migration [95,96]. Combination therapies with
VEGF inhibitors, TGF-ß inhibitors or newer immunomodulators like IDO inhibitors might be helpful to
overcome the tumour-suppressive microenvironment and are currently under investigation in clinical
trials (NCT02873962, NCT02423343, NCT03347123) [93]. Depletion of Tregs can also be achieved by
conventional chemotherapy like cyclophosphamide.
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6.3. Choosing the Right Time—Adjuvant vs. Palliative?

Tumour immunosuppression often correlates with tumour burden, making immunotherapy less
effective in patients with advanced disease. In clinical trials immunologic response rates to vaccines are
often higher during adjuvant treatment than in the palliative setting which provides a rationale for the
use of vaccines in earlier stage of disease [59,97,98]. Furthermore, current approaches of personalized
vaccines are technically challenging and manufacturing time of several months might be challenging
for patients with advanced disease. Again, combination strategies could be used to bridge the time
between vaccine manufacturing and application.

6.4. Tumour Evolution and Loss of Antigen

With tumour progression new mutations emerge which can lead to ineffectiveness of neo-epitope
vaccines because of mutation and loss of the antigenicity of the neoepitope itself [25,59]. For target
recognition, T cells depend on antigen processing and presentation through MHC proteins.
Downregulation of MHC class I proteins on the cancer results in reduced antigen presentation and thus
facilitates immune evasion. The down regulation of MHC class I proteins has been observed in various
cancer types [99–104]. It can happen either on the genetic level (mutation or deletion of the MHC class
I gene) or be the result of a defect in protein generation [105]. In order for antigens to bind to MHC
class I they are typically cleaved into peptide fragments by immunoproteasome in the cytosol of cells.
The proteasome complex is a multi-catalytic enzyme complex and down-regulation of subunits of
the proteasome complex has been associated with tumour growth and metastases. The linkage of the
small peptide fragments to MHC class I takes place in the endoplasmatic reticulum. A defect of the
transporter associated with antigen processing (TAP) at the endoplasmatic reticulum or a loss of the
endoplasmatic aminopeptidases (ERAP 1 and ERAP 2) can result in a further reduction of antigen
expression [106].

7. Conclusions

The acceleration of NGS–omics technologies together with rapid progresses in bioinformatics
heralds a very exciting era for research in oncology. There is abundant data detailing how a tumour
is different from normal self tissue on a DNA, RNA and protein level. This does not only help the
search for targeted therapies but also provides possibilities for personalized treatment approaches.
Further development of techniques for collecting cell free DNA or circulating tumour cells are also
likely to provide a more ‘up to date’ picture of the cancer, enabling approaches to overcome the
problem of tumour heterogeneity and cancer evolution. Analysis of the tumour microenvironment and
understanding strategies used by cancer to overcome immune evasion will also open the possibilities
of successful combinatorial therapies.
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