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Abstract

Accurate transfer learning of clinical outcomes from one cellular context to another, between cell types, developmental stages, omics
modalities or species, is considered tremendously useful. When transferring a prediction task from a source domain to a target
domain, what counts is the high quality of the predictions in the target domain, requiring states or processes common to both the
source and the target that can be learned by the predictor reflected by shared denominators. These may form a compendium of
knowledge that is learned in the source to enable predictions in the target, usually with few, if any, labeled target training samples to
learn from. Transductive transfer learning refers to the learning of the predictor in the source domain, transferring its outcome label
calculations to the target domain, considering the same task. Inductive transfer learning considers cases where the target predictor is
performing a different yet related task as compared with the source predictor. Often, there is also a need to first map the variables in
the input/feature spaces and/or the variables in the output/outcome spaces. We here discuss and juxtapose various recently published
transfer learning approaches, specifically designed (or at least adaptable) to predict clinical (human in vivo) outcomes based on preclinical
(mostly animal-based) molecular data, towards finding the right tool for a given task, and paving the way for a comprehensive and
systematic comparison of the suitability and accuracy of transfer learning of clinical outcomes.

Keywords: transfer learning, shared denominators, biomarkers, transductive transfer learning, inductive transfer learning,
unsupervised transfer learning

Introduction
‘Translation’ in biomedicine can often be fostered by the
transfer of knowledge from a source domain to a target
domain. In biomedicine, more and more molecular data
have become available, with the potential to help with
diagnosis, prognosis as well as treatment development,
selection and monitoring. Such data may be available
as a source of knowledge from, e.g. human blood, cell
cultures or animals, but they are often not available
for the human target tissue, e.g. an inoperable tumor
or brain tissue. More generally, translating (i.e. transfer-
ring) insights from models, across tissues or species, or
to the human in vivo situation has been a long-term
challenge [1–3]. Given cancer cell line or advanced tumor
model data, can we predict human treatment success
of cancer drugs? Given toxicology data from rabbits,
rodents or dogs, can we predict drug-mediated toler-
ance or toxicity in humans? For this narrative review,

we collected a diverse set of recently published trans-
fer learning tools, all with application examples from
biomedicine. We enable their comparison in terms of
their application domain(s), input, output and method-
ology, and we give some guidance regarding the choice of
these tools for a specific learning task.

Easily accessible molecular data for the model
(or proximate) situations of blood, cell cultures or
animal experiments are becoming more abundant in
biomedicine often based on high-throughput technolo-
gies (omics) [4, 5]. Organoids and multi-organ-chip
models are also sources of additional model data with
increasing relevance and usage [6]. As a first transfer
learning step, we may wish to work on the successful
transfer of conserved molecular processes and associated
biomarkers across data sets. On that basis, we may be
able to process and organize the model data to enable
a successful transfer of insights about outcomes, referring
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to the human in vivo situation. Alternatively, outcome
predictors may be transferred directly from the model to
humans. For the example of predicting intervention out-
comes in humans, knowledge of processes and biomark-
ers then enables clinical trials ‘enriched’ with likely
responders, or with co-treatment of non-responders, to
counter insufficient effect (or overly-strong side-effects).
Even better, we would like to estimate the chances of
success of a clinical trial a priori. In turn, clinical insights
can inform preclinical work (“reverse translation”) [1]
and transfer learning can thus be of high value also in
the direction from the clinical to the preclinical world.

Accurate transfer is so valuable because insights
for human in vivo data are so hard to obtain; clinical
outcomes are usually expensive to establish, limited
in numbers and cannot easily be shared with other
researchers due to data protection regulations. The
constrained accessibility of most human tissues implies
that detailed clinical data, mechanistic understanding
and useful biomarkers cannot easily be obtained.
Moreover, biomedicine is a ‘rich’ and highly hetero-
geneous discipline, where most molecular processes,
including their causal influence on phenotypes, are
rarely conserved: they differ by cellular context (in
vitro versus ex vivo versus in vivo, or across tissues),
cell type, developmental stage, molecular entity (omics
modality) and species, and even by the genetics of
the individual cells, animals or humans from which
the data are gathered. Case in point are the on-going
discussions about the similarity or dissimilarity of
immune responses in mouse versus human (e.g. [7]
versus [8] and the discussion in [9]). Thus, the context-
dependency of cellular responses and of their high-
level phenotypic implications is significant. It is one
of several causes of what is called the ‘reproducibility
crisis’ and it can cause translational failures. Also,
correlation and causality are not easy to discern. While
correlative relationships are sometimes sufficient (e.g.
for a biomarker to be predictive), causal relationships
are telling us much more about the information flow
that starts molecularly and ends up in generating the
high-level outcome phenotypes that are of ultimate
clinical interest [10]. Transfer learning, if based on causal
relationships, can thus be expected to be more successful
in general. In any case, we must aim for accurate transfer
learning to the best of our abilities.

With the introduction of high-throughput technologies
such as genotype–phenotype association mapping in
clinical cohorts (GWAS and polygenic risk scores)
and gene expression measurements by microarray or
RNAseq (transcriptomics), we can investigate molecular
mechanisms, including intervention effects, side effects
and other changes in time. These investigations are
becoming more and more thorough, in vitro (for human
and animal models) as well as in vivo (mostly for
animal). However, the molecules that we can measure
as potential markers are just a glimpse of the intricate
in vivo situation, whereby the measurements for one
molecular modality (such as mRNA) are in a complex

relationship to the measurements of another (such
as proteins) [11]. Furthermore, the available datasets
often differ significantly in quality and granularity, show
large batch effects from one measurement to the other
and lack comprehensive sample descriptions including
detailed source specifications as well as adequate
sample (pre)processing details, impeding straightforward
comparability. As described, clinical molecular data
(from human in vivo studies) are scarce mainly due to
limited tissue availability and data protection issues,
even though blood may be more readily available and
genetic information is readily obtainable even though it
may not be easy to share. One particular consideration
in transfer learning is the context-dependency and
consistency of data in the source and target domains,
as the authors of AITL [12] pointed out. Domain
discrepancies can include differences in extracted
features, due to divergent biology, e.g. cell types versus
tissues, and they can arise from differences in effect
measurements, e.g. continuous versus binary outcomes.
Therefore, training a computational model on cell lines
and testing it on patients violates the i.i.d. assumption
that train and test data are from the same distribution
[12]. Other frequently encountered source versus target
domain differences hindering transfer learning are the
species gap and the complex relationships between the
molecular entities, e.g. mRNA versus proteins, that may
constitute the source versus target domain.

Transfer learning, terminology and examples
By default, we follow [12] in adopting the terminology
of Pan and Yang [13], which is a widely cited review
and reference in the field of transfer learning. In their
paper, as in the more recent review of Zhuang et al.
[14], transfer learning is defined in terms of source and
target domains (of features with probability distributions
associated with these), as well as source and target tasks
(mapping features to labels using predictors) so that
the predictor in the target domain is based on training
examples from the source domain, which depends on
the extraction of shared denominators to enable the
transfer into the target domain. In a simple case, that
means to learn a predictor for the source task in the
source domain, and then to just use it, after matching
the input/output variables, as the predictor for the tar-
get task in the target domain. For any real transfer to
take place, the source and target domain, or the source
and target tasks, must of course be distinct but con-
tain shared denominators to be transferred. According to
Pan and Yang, such shared denominators can be at the
level of (i) weighted instances, (ii) feature representations,
(iii) model parameters or (iv) logical relationships—this
review will not discuss these in detail for the transfer
learning approaches that are presented, but it will simply
refer to these as ‘shared denominators’. Frequently in the
literature, shared feature representations are known as
‘latent variables’ (LVs), and we will specifically mention
these when describing some of the tools.
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Considering the transfer gaps just described, a suffi-
cient degree of similarity, or conservation, of the source
and the target is the key to accurate transfer learning
from a well-sampled source domain to an under-sampled
or unknown target domain. Considering the predictors,
which map the input features to output labels, shared
denominators are calculated by these predictors in the
source domain, and their similar role in the target is a
necessity for transfer learning to succeed. After learning
in the source domain, the predictor contains knowledge
about this domain. If the prediction is based on a neural
net, this knowledge is represented by the weights and
the biases of the neural net based on the input features
provided and learned in the source domain. As an exam-
ple, gene expression to phenotype relationships may be
learned by a neural net predictor in one species and
then transferred to another species. Then, the weights
and biases are supposed to reflect how gene expression
maps to phenotypes. If the mapping is sufficiently
similar in the two domains, then the predictor can be
applied successfully to the target domain. If the shared
denominators refer to features, they can be thought of as
low-dimensional representations of the input data that
reflect the major features for a given prediction task. As
an analogy, principal component analysis (PCA) derives
these as eigenvectors of a matrix of an all-against-all
covariance analysis. Often, a compendium of shared
denominators is learned from the source data to enable
transfer learning, and the example of ‘MultiPlier’ [15] as a
compendium of LVs based on analyzing gene expression
data using matrix factorization will be presented below.

Generally, transfer learning is defined as belonging to
transductive, inductive or unsupervised approaches. The
transductive flavor of transfer learning (sometimes also
called heterogeneous transfer learning) entails different
but related source and target domains, but the tasks are
the same and the target domain does not need to have
any labeled samples [13], so that the predictor that uses
the shared denominators from the source domain can
be successfully applied to the target domain. The predic-
tion/classification task must be the same in the source
and target, as it was for the simple neural net example
discussed above, which learned to map gene expression
to phenotype data. The inductive flavor of transfer learn-
ing considers tasks that are different yet ‘related’, and the
target domain must include labeled samples [13]. While
the tasks are different, the source and target domains
(and the marginal distributions of the data) are supposed
to be the same. There is usually no formal definition of
the relatedness of the tasks; the ‘proof is in the pudding’,
that is, accurate transfer in terms of correct prediction-
s/classifications is the indicator of sufficient relatedness
of the task in the source and the task in the target
domain. At least, a few labeled samples are needed in the
target domain, so that the knowledge about the shared
denominators can be grounded to some true relations in
the target domain. Modifying our simple example from
above, about mapping gene expression to phenotype, if
the phenotype is morbidity in one species and mortality

in the other species, the task is different yet related and
inductive transfer learning may be applied. We also con-
sider the entirely unsupervised flavor of transfer learning,
where the source and target domains are different but
related and the tasks are also different but related, and
none of the samples contain any labels, neither in the
source nor in the target domain. In this case, the underly-
ing shared denominators are employed to transfer, from
the source to the target, information useful for clustering,
for better feature representation or for dimensionality
reduction [13]; see the examples given below.

In this review, we specifically consider preclinical
source and clinical target domains, towards clinical
outcome prediction, as well as molecular omics data
as the dominant sample features that are input for
the predictors. As an aside, the notion of pre-training
is sometimes used to refer to the first step of transfer
learning, as described by [14] for the example of using
neural nets to learn images. Pre-training with a large
compendium of images then avoids initializing the
neural net with random weights, and it prepares for
learning a more specific set of images; it can improve
accuracy (by avoiding overfitting) as well as execution
time of the final classification [16, 17].

Application of transfer learning
In Figure 1, we provide a simple flowchart regarding
the selection process for the different transfer learning
approaches, as detailed in the previous section. Appli-
cation areas of transfer learning feature on one hand a
target domain where few or no solutions are given, and
on the other hand, a source domain where many more
solutions are available. Thus, for a user faced with a task
that they think could be solved by transfer learning, the
first and foremost goal is to answer the question: ‘Is there
a problem domain, and a learning task in that domain,
different from what we are looking at, where there are
already (many) solutions that may be of relevance to the
task we have?’. If yes, the second question then is: ‘Is our
task a case for inductive, transductive or unsupervised
transfer?’. For this second question, Figure 1 summa-
rizes how to select among the approaches for transfer
learning. In principle, any need to learn labels (such as
diagnoses, or outcomes, be they a disease prognosis or
the prediction of the success or failure of an intervention)
requires a supervised approach, which may be inductive
or transductive, as both use labeled source domain data.
Furthermore, an inductive method will be needed if the
learning tasks are different, comparing the source to the
target; in this case, some labeled samples are required
for the target domain. For example, in the case of AITL
[12], based on gene expression data as input, the source
task is to predict the IC50 (a quantity), and the target
task is to predict patient response (yes or no). If the
tasks are the same, a transductive method would be
sufficient, and ‘domain adaptation’, e.g. by relabeling,
may be the way to go; furthermore, no labeled samples
are required for the target domain. For example, in case
of the semi-supervised transfer learning of [9], the task
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Figure 1. How to select a transfer learning methodology for a given task. This given task is the ‘learning task with existing solutions’ and it refers to the
source domain, see also Table 1 and [13]. For the examples (FIT, AITL and PRECISE), please see Table 1.

is phenotype/outcome prediction for human (the target
domain), transferred from the same task for mouse (the
source domain), and domain adaptation entails the map-
ping of homologous genes. Finally, if no labels need to
be learned, our user may explore whether unsupervised
transfer learning, e.g. of association or enrichment data,
is possible and useful.

Recent examples of transfer learning
In the biomedical application areas we consider here,
the distinct domains or tasks to be transferred reflect
different cellular contexts (in vitro versus ex vivo versus
in vivo), tissues or cell types, omics modalities or species.
Due to the great need for improved clinical translation,
many studies investigated ‘preclinical’ source data and
‘clinical’ target data.

In Table 1, we collected some recently published
representative examples without claim to completeness.
We aimed for high-level descriptions while keeping
formulas at a minimum. We describe the source domain,
frequently also known as the ‘background model’ or
‘compendium’, and the target domain. Further, we
describe the input and output of the predictor that
is learned, the kind of transfer learning methodology
employed, labeling it as ‘transductive’, ‘inductive’ or
‘unsupervised’, following [13], and we describe whether
the method was compared with others (and if so, how
it performed). This table lays the foundation for finding
the right tool for a user’s task by conceptual similarity
matching of the user’s task to the entries in the table.
Optimally, this matching follows a principled approach,
considering the kind of transfer learning (Figure 1). It
can also be seen as the starting point for a comprehensive

and systematic comparison of state-of-the-art transfer
learning methods, considering a variety of application
scenarios. In the following, we give a textual description
of the examples in Table 1, providing details not fitting
into the table.

Semisupervised Transfer Learning, as described by [9],
matches the transductive paradigm. The authors col-
lected gene expression data from the Gene Expression
Omnibus (GEO) for inflammatory diseases, consisting
of samples labeled either ‘healthy’ or ‘sick’, that had
been measured for mouse and human and constructed
36 matched pairs to which they applied various machine
learning techniques [e.g. support-vector machines (SVM),
k-nearest-neighbor classifiers (kNN), random forests (RF)
and neural nets]. The best result in terms of precision
and recall for learning the human labels, and, conse-
quently, differentially expressed genes (DEGs, contrasting
‘healthy’ and ‘sick’), and pathways, were obtained by
a semi-supervised neural net, which iteratively used
the human data to augment the mouse data sets
(when validating the method, the ground truth comes
from DEGs and pathways that were identified from
human data using human labels). Initially, the neural
net classifier was exclusively trained on labeled mouse
data and used to predict human labels based on human
expression data. In the next step, the human samples
with the highest classification confidence were used
to generate an augmented training set consisting of
mouse and human data. After re-training, the classifier
was then anew applied to the remaining human data,
and again, the samples with the highest classification
confidence were incorporated into the cross-species
training set. The iteration ended when finally all human
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data were incorporated and classified. Note that this
algorithm does not require the true human labels, the
integration works by only using the predicted labels; the
true human labels are used for validation. This strategy
is a clever way to humanize animal data and seems to
be applicable to a wide field of problems and shows
high relevance, given the lack of generalization that is
often encountered between mouse and human biology.
It does, however, require a classification task and is
not suitable for regression problems (such as predicting
age, speed or other numerical values), since only in the
classification case the output of the machine learning
algorithm can be used to assign a high or low confidence
to the prediction (depending on how much a prediction
is ‘between’ classes).

XGSEA aims to predict gene sets of interest in a target
species under a given condition based on the gene
expression of another (source) species under the same or
a comparable condition [18]. Shortly, gene set enrichment
analysis is performed on the gene expression data of
the source species, say mice, comparing a condition of
interest to a control and thus determining significantly
enriched gene sets (e.g. mouse gene ontology terms)
for that condition. The gene sets of the target species
(e.g. human gene ontology terms) are then subjected
to domain adaptation based on sequence homology
between their constituent genes, minimizing divergence
between source and target domains while maintaining
the pairwise distance between the gene sets across the
domains. After domain adaptation, the tool then offers
multiple options for transferring gene set enrichment
predictions from the source domain to the target domain,
using (i) logistic regression to predict the P-values of
each gene set in the target domain based on those in
the source domain; (ii) regression on the enrichment
values for each gene set, then calculating the P-values
directly from those or (iii) regression on the enrichment
values for each gene set in each direction (over and under
enrichment) before calculating P-values as described
before. These methods were evaluated against three
naïve methods (all three based on mapping target
genes to source genes based on sequence homology)
in four different datasets, three mouse to human
and one zebrafish to human transfer tasks. Generally,
XGSEA outperformed the naïve methods for these
datasets [evaluated by comparing the area under the
receiver operating characteristic (AUROC) at a range
of enrichment P-value thresholds], in particular when
performing regression on enrichment values for each
direction of enrichment separately. To test the method
further, XGSEA was used to analyze a CD8+ T-cell
ATACseq dataset, predicting the enriched pathways in
human solid tumors from murine tumor data. The
method identified gene expression and immune system
terms as likely being enriched in the human tissue. A
naïve approach performed on the same data returned a
larger number of more diverse terms, so that in this case,
XGSEA gave more focused results.

Found In Translation (FIT) [19] follows the unsupervised
paradigm, aiming to transfer the property of being
a high-effect gene from mouse to human, where a
high-effect gene is characterized by a high fold change
for RNA-seq datasets or a high z-test value for microarray
datasets. The authors assembled mouse and human
gene expression datasets from GEO database that each
compared a disease condition versus healthy, created 170
cross species pairings (CSP) spanning 28 human diseases
(and the corresponding mouse models) and constructed
a model for each CSP that aims to predict human
expression values based on mouse expression values
according to a linear relationship. The resulting model
parameters are used to predict human gene expression
from mouse gene expression, in a disease-specific
manner, highlighting the high-effect genes. Figure 2
provides an overview of the algorithm. The accuracy of
the transfer is estimated from human disease-specific
datasets (disjunct from the ones on which the CSP are
based) by checking whether the predicted high-effect
human genes match already known ones. In fact, the
FIT approach increases the number of true-positive
predictions of human DEGs from mouse data by 20–
50% compared with direct from mouse extrapolation
[19]. The smaller the confidence interval of the fitted
parameters (Figure 2), the higher the increase of true-
positives. Furthermore, it is possible to predict which
new mouse data can be extrapolated to humans by FIT
using an SVM classifier. The SVM basically tests whether
the new mouse data bear enough resemblance to the
mouse data of the 170 CSPs or not.

Translatable Components Regression (TransComp-R) by [20]
presents an application of transfer learning to predict
resistance to inflammatory bowel disease treatment
with infliximab. The authors aim to transfer knowledge
not only from one species to another but also from the
space of transcriptomics to proteomics. Labeled human
transcriptomics data are used to infer which mouse
proteomics data are predictive for responder versus non-
responder phenotype in humans. First, human gene
expression data are selected for genes associated with
the responder phenotype. Next, mouse proteomics data
are chosen for genes homologous to the human ones
selected in the previous step, and a PCA analysis is
performed on these. Finally, the human transcriptomics
data are projected into the PCA space and regression
against the human responder phenotype is performed,
allowing to identify new mouse proteins that might
be predictive for the human phenotype. Using this
approach, the authors predicted a collagen-binding
integrin to be involved in resistance to treatment, a
result that was supported in vitro (in humans) using anti-
integrin antibodies. A limitation of the current approach
is that it requires one-to-one mouse–human homologous
proteins/genes, but it can be extended to other molecular
data and species.

PROGENy and DoRothEA, in this context, are two
approaches specifically aiming to recover perturbations
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Figure 2. Overview of the FIT algorithm [19]. FIT consists of a compendium of 170 CSP of mouse and human transcriptomics data for 28 different
diseases. First, a lasso regression is performed to fit parameters α and β of a linear model based on all genes, g, of all CSP, p, penalizing α values deviating
from 0 and β values deviating from 1. The fitting process is repeated 100 times to obtain mean values and confidence intervals of the two parameters
(see also main text). For a new mouse expression data set, the mean values of the parameters α and β are then used to predict human effects sizes ZH

for each gene therein. (Mouse clipart by Vincent Le Moign / CC BY 4.0.)

in mice at the pathway (PROGENy) and transcription fac-
tor (DoRothEA) level using public human gene expression
data. The first tool (PROGENy) was originally developed
to assess the activity of human signaling pathways from
human gene expression data by finding pathway-specific
transcriptomic footprints that entail targets of such
pathways [21]. In turn, DoRothEA was initially built to
assess associations between transcription factor activi-
ties and drug responses in human transcriptomic data,
and then it was reformulated as a resource of regulons,
i.e. curated transcription factors and their transcriptional
targets [22]; these regulons were curated and collected
from various public experimental and literature sources
and from the GTEx and the TCGA (The Cancer Genome
Atlas). Pathway and transcription factor footprints tend
to be evolutionarily conserved between humans and
mice, and because various studies have demonstrated
that it is possible to estimate human gene expression
from mouse gene expression data [9, 19], the authors
of PROGENy and DoRothEA adapted both tools to work
with mouse data, finding 4020 significant associations
between pathways and transcription factors in mouse
and human diseases by using human–mouse ortholog
information. They demonstrated these approaches by
estimating the transcription factor and pathway activi-
ties from a large collection of mouse in vitro experiments,
such as chemical and genetic perturbations, as well as
from mouse in vivo disease-related experiments, and
provided these results as an interactive web application.
PROGENy and DoRothEA estimate ‘footprints’ of a
pathway or a transcription factor on gene expression,
and the evolutionary conservation of footprint effects
between human and mouse can be further investigated
in detail [23]. On this basis, disease associations and
perturbations can be inferred (and validated, e.g. by
checking human-based predictions in mice), alongside
pathway and transcription factor activity scores for a

large collection of human and mouse perturbation and
disease experiments.

Adversarial Inductive Transfer Learning (AITL) [12] is explic-
itly described using the terminology of [13], and it bridges
in vitro (source domain, human cancer cell line data) and
in vivo (target domain, human cancer patient data) in
two ways. Firstly, it transfers gene expression knowledge
based on cell-lines to patients, where the expression pro-
filing was done to describe the response to chemother-
apeutic drugs. For cell lines, the data stem from the
GDSC (Genomics of Drug Sensitivity in Cancer) database,
and the labels are IC50 values. For patients, the data
stem from the TCGA and some other sources, and the
labels (if available) are binary, reflecting response/non-
response to chemotherapy (yes/no). Then, the different
output labels are handled by multi-task learning. More
specifically, a multi-class predictor is trained on both
source and target samples, utilizing a binarized outcome
in the case of the source samples; this simultaneous
learning on the source and target data is also suggested
to improve accuracy. The ‘biological’ differences in the
gene expression input data are handled by adversarial
domain adaptation. In more detail, shared denominators
(called ‘extracted features’ in the AITL framework) are
learned in a domain-invariant manner by employing
an adversary network tasked with distinguishing the
domains; its failure is rewarded. If the extracted features
learned by AITL play a similar role in both source and
target domains, AITL transfer learning can be successful.
AITL was benchmarked against state-of-the-art methods
such as PRECISE [24] (see below), ADDA [25], MOLI [26],
ProtoNet [27, 28] and [29] based on AUROC and area
under the precision-recall curve. In all experiments, AITL
performed better. AITL is especially relevant for small
clinical sample sizes as encountered in pharmacoge-
nomics. Even though AITL was only used for gene expres-
sion data, it could be extended to multi-omics scenarios.



8 | Kowald et al.

PRECISE (Patient Response Estimation Corrected by
Interpolation of Subspace Embeddings) [24] uses preclin-
ical models (cell lines and patient-derived xenografts) as
predictors, despite their inherent differences compared
with real human tumors. To identify common molecular
mechanisms (based on similarity of gene expression)
in preclinical models and human tumors, PRECISE
processes transcriptomic data to first find specific
underlying ‘factors’ (based on a PCA) for each set
(preclinical models and human tumors) separately,
and the factors from both sets are then aligned and
compared, to generate common factors (or principal
vectors) between both sets, the most similar of which
are then used to generate a consensus representation
of the tumor model. This consensus representation
is then finally employed to train a regression model
of the preclinical gene expression data with respect
to the preclinical drug response data, which is then
applied to the real human tumor gene expression data
to predict human tumor response. Despite the superior
performance of the method compared with state-of-
the-art work, the study only applied its framework to
gene expression data while acknowledging the benefits
of multiomics-based approaches.

Conditional Out-of-Distribution Transfer Learning [30]
employs a transfer variational autoencoder (trVAE),
which enables the transfer of conditions across domains.
This makes it for instance possible to train a neural net
on images of smiling and non-smiling men and non-
smiling women and then transfer the smiling condition
(‘style’) from the male to the female domain. Similarly,
the authors applied trVAE to a single-cell gene expression
dataset of the gut (comprising eight different cell types)
after infections with different bacteria, obtained from
public data sources published in other papers. The
method could successfully transfer the effects of the
infection to cell types not included in training. As the
name implies, the architecture of trVAE is based on
an autoencoder, an unsupervised neural net where the
output layer is trained to reproduce the input layer
while going through a bottleneck layer in between. trVAE
modifies this approach by explicitly providing the first
decoder layer with information about the condition of the
input sample (e.g. smiling versus non-smiling). During
training, all samples are supplied with their correct
condition, but for prediction the desired condition (e.g.
smiling) is used as extra input to the decoder, causing
the last layer of the decoder to contain a representation
of the input modified by the desired condition. For
a better understanding of the algorithm, we provide
an overview in Figure 3. The authors benchmarked
trVAE against standard CVAE [31], MMD-CVAE (similar
to VFAE) [32], MMD-regularized autoencoder [33, 34],
CycleGAN [35], scGen [36] and scVI [37] by comparing
Pearson’s correlation values for mean and variance of
gene expression and found that trVAE performed best.
Thus, tools like trVAE might be used to make predictions
about human tissues from which no biopsy can be
obtained (e.g. brain) as long as data are available for

another tissue (e.g. blood) and from another domain
(e.g. brain and blood of mice), enabling clinical outcome
predictions based on preclinical data. In principle, trVAE
can be used for many kinds of medical data, not just
omics or image data.

MultiPlier [15] is an unsupervised learning approach
aiming to transfer feature representations (LVs, i.e.
‘patterns’ based on correlation of gene expression
calculated by PLIER [38]) from the source to the target
domain. The source domain is derived from recount2
[39], a collection of disease-related gene expression
datasets generated by next-generation sequencing (NGS),
where all raw data were processed in a unified way,
reflecting a wide variety of biological processes and
pathways based on gene expression of multiple tissues
and diseases. The target domain can entail any gene
expression dataset that is expected to feature at least
some of these processes; rare disease datasets are the
use case, because they feature few samples (almost)
by definition. The LVs (‘patterns’ of correlated genes)
are calculated for the source by matrix factorization, so
that LVs partly associate with some known pathways or
cell-type-specific gene sets. Once the LVs are learned,
a new gene expression dataset can be projected into
the space defined by these, and the authors show
that this projection is effective in revealing biological
processes related to rare disease severity. Even though
the approach addressed rare disease, the method could
also benefit common diseases by stratification of
responsive subgroups. Moreover, even though the model
was based on multiple diseases, these were all related to
diseases involving auto-immune components [40]. Also,
some performance issues were discussed, including the
correlation of LVs with the biological factors [40]. Figure 4
provides a description of the MultiPLIER framework. Most
recently, LVs derived by MultiPlier were used as input
features to classify subtypes of cancer using RF [41].

Discussion, conclusion and perspectives
The ultimate goal in biomedical research is to under-
stand and tackle a disease or dysfunction in humans.
What are the molecular foundations of a certain dis-
ease? Which are the diagnostic, prognostic or predic-
tive biomarkers? Is a certain intervention effective in
humans? What are the pharmacokinetics and pharma-
codynamics of a drug? Unfortunately, it is often not
possible to perform the necessary experiments and mea-
surements in humans for ethical, financial or technical
reasons or because access to existing clinical data is
limited due to data protection and other issues. Also,
measuring longitudinal outcomes may simply take too
long, given the long lifespan of humans. For these rea-
sons, researchers use alternative model systems in the
hope that the insights from those systems can be applied
to humans, yet, due to the limited generalizability of
such alternative model systems, conclusions drawn can
lead to failures. Accurate transfer learning is expected to
improve this situation by extracting the shared denomi-
nators of the two domains, preclinical and clinical.
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Figure 3. Overview of the trVAE. The encoder part of the neural net processes input data plus information about the condition (smiling, cell type, etc.)
and generates a compressed latent layer. The decoder uses this latent layer together with information about the condition to produce an output. During
training, the condition fed to the encoder and the decoder are the same, while during prediction, the decoder receives the new condition for which an
output should be generated. In contrast to a standard conditional VAE, an additional constraint is imposed on the first layer of the decoder for further
regularization, the details of which we omitted here. While two input nodes are needed for the condition if an unary (‘one-hot’) encoding is used, the
number of nodes in the other parts of the neural nets is far larger than shown here, for any realistic application. The diagram is redrawn from [30].

Figure 4. Overview of MultiPLIER framework. (A) PLIER [38], on which
MultiPLIER is based, can analyze tissue-specific expression data and
extract LVs by matrix factorization, resulting in matrices B and Z. PLIER
then aligns the LVs with curated pathway gene sets in a downstream
analysis. (B) To analyze data irrespective of tissue, MultiPLIER trains
on a large collection of uniformly processed data in the form of the
recount2 compendium [39], which contains around 370 000 samples. The
resulting LVs can then be used to interpret a new dataset, by projecting
the new gene expression data onto the latent space, to identify pathway-
annotated LVs also featured in that new dataset. Diagram is based on
[15].

We assigned all transfer learning methods reviewed to
one of the three fundamental kinds of transfer learning,
that is, inductive, transductive or unsupervised. For these

three kinds of transfer learning, we found a variety of
application areas, as follows. Transfer from species to
species is important because animals are usually short-
lived and allow experiments under controlled conditions
that are not possible in humans. The more closely
related the species is to humans, the more likely the
transfer is expected to succeed, given an appropriate
transfer learning approach. ‘Found in Translation’ [19]
is specifically designed to transfer results from mouse
to human for 28 disease models. Similarly, the semi-
supervised method of [9] also transfers between mice
and humans, where the authors focus on inflammatory
diseases (other diseases were not investigated). In both
cases, gene/protein homology information is needed. A
second relevant area of transfer is from one omics to
another, specifically from transcriptomics to proteomics,
as shown in this review. With modern NGS techniques,
transcriptomics data can easily be measured, but one
would like to infer information about the proteome
since proteins are the biomechanical machines that
eventually perform most tasks in the cell. TransComp-
R [20] is such a tool that in addition also transfers
information between species (mouse and human). In -
vitro studies are also used to approximate the human
in vivo situation. Thus, in vitro to in vivo transfer is
another important area for transfer learning. AITL [12]
is one such example, which transfers knowledge from
the in vitro to the in vivo situation (and from quantitative
output to a binary output). Not surprisingly, the tasks
are different because the biology is not the same in cells
versus humans, and inductive learning must be done.
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Finally, it is very helpful to transfer knowledge from
tissue to tissue. In humans, it is often not possible to
obtain a sample from the affected tissue (e.g. brain or
pancreas), but a blood sample can be collected easily
and non-invasively. Moreover, the flow of blood connects
most tissues of the body in one way or another, so
we can expect to find traces of many organ-specific
processes in the blood. Also, in cancer, for example,
disease-specific nucleic acids can be traced and mon-
itored in blood samples. Using the blood transcriptome
as a proxy for disease processes in other organs opens
the way for a personalized medicine approach that
is complementary to genetics-based approaches. For
transfer learning from tissue to tissue, trVAE may be
employed.

For molecular data, some structuring of the shared
denominators may enhance the success rates of trans-
fer learning. For one, deep neural-net-based learning is
essentially a black-box approach frequently employed
in transfer learning. However, structuring neural nets
based on hierarchical knowledge (such as the gene ontol-
ogy, GO) gained momentum and acceptance [42, 43],
and ontologies may be a key to structure the space of
shared denominators yielding not just better accuracy
in predictor performance, but also better interpretability
of the prediction/classification process. Here, knowledge
about master regulators and (signaling) pathways may
be encoded by gene/protein interaction and regulation
subnetworks, which may enable an even better structur-
ing than the GO hierarchy, and in fact, the development
of the GO is heading in a similar direction, towards
investigating GO-Causal-Activity-Models [44].

It is important to assess the generalization ability of
predictors derived by transfer learning, that is, their accu-
rate performance on unseen datasets. Extensive vali-
dation on samples processed with different platforms
is also important. For human studies, validating on an
unseen cohort allows estimating generalization capac-
ity by comparison to the original prediction error [45].
Also, the comparison to the results of other state-of-
the-art approaches is useful for judging the accuracy
of a transfer method. Another useful consideration is
the correlation of the shared denominators with bio-
logical knowledge. Not addressed by any of the meth-
ods, but a highly relevant complementary aspect, is the
use of explainability methods [46] to understand and
consecutively improve transfer learning methods and
results.

In this review, we provided a sample of available
prediction tools and algorithms for transfer learning
in biomedicine; yet, there are a large number of
approaches and software packages. It is quite challenging
to adequately compare all these tools in a coherent and
fair way, but we hope to have provided a starting point.
Moreover, we hope that Table 1, Figure 1 and the text
may be of help to anyone facing a learning task that may
profit from transfer learning.

Key Points

• Transfer learning in biomedicine is gaining momentum,
reflecting the scarcity of human data (target domain)
compared to animal and in vitro data (source domain).

• Shared denominators (e.g. latent variables) enable the
accurate transfer of predictors from the source to the
target domain.

• Examples of unsupervised, supervised inductive and
supervised transductive transfer learning are described
and tabulated.

• A basis is provided to guide the user regarding the selec-
tion of the type of transfer learning most appropriate for
a new task.
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Glossary
In vivo: a process or experiment that occurs in a living
organism, e.g. clinical intervention trials.

Ex vivo: a process or experiment that occurs outside
a living organism but with minimal changes, e.g. exper-
iments on tissue samples recently taken from a living
subject.

In vitro: a process or experiment that occurs outside
a living organism, isolating the sample from its typical
biological context, e.g. cell culture experiments using
established cell lines.

Phenotype: the observable characteristics of an organ-
ism.

Biomarker: a measurable biological feature that can be
used to effectively predict another (often more complex)
biological feature of interest.

Transcription factor: a DNA-binding protein involved
in the regulation of the rate of transcription of a gene or
a set of genes.
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