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Pleiotrophin (PTN) is a secreted growth factor, and also a cytokine, associated with
the extracellular matrix, which has recently starting to attract attention as a significant
neuromodulator with multiple neuronal functions during development. PTN is expressed
in several tissues, where its signals are generally related with cell proliferation, growth,
and differentiation by acting through different receptors. In Central Nervous System (CNS),
PTN exerts post-developmental neurotrophic and -protective effects, and additionally has
been involved in neurodegenerative diseases and neural disorders. Studies in Drosophila
shed light on some aspects of the different levels of regulatory control of PTN invertebrate
homologs. Specifically in hippocampus, recent evidence from PTN Knock-out (KO) mice
involves PTN functioning in learning and memory. In this paper, we summarize, discuss,
and contrast the most recent advances and results that lead to proposing a PTN as a
neuromodulatory molecule in the CNS, particularly in hippocampus.

Keywords: pleiotrophin, neuromodulation, hippocampus, neuropeptide, miple

INTRODUCTION
Pleiotrophin (PTN) is a secreted cell signaling cytokine that acts
as growth factor associated with the extracellular matrix, which
has recently started to come to the fore as a significant neuro-
modulator with multiple neuronal functions. PTN is an 18-KDa
protein and has 168 amino acids. It was discovered practically
simultaneously by several laboratories nearly 25 years ago; thus,
it initially received several names as follows: HBGF-8 (Heparin-
binding growth factor; Milner et al., 1989); HB-GAM (Heparin-
binding growth-associated molecule; Rauvala, 1989; Merenmies
and Rauvala, 1990); HBNF (Heparin-binding neutrophil factor;
Kovesdi et al., 1990); OSF-1 (Osteoblast-specific factor 1; Tezuka
et al., 1990), and HARP (Heparin affinity regulatory peptide;
Courty et al., 1991).

PTN shares high homology (>50%) with another pep-
tide, denominated Midkine (MK); both are highly conserved
throughout evolution and are found in species ranging from
Drosophila to humans (Kadomatsu and Muramatsu, 2004). This
means that although both have many functions in common
and participate in similar functions, they also possess more
particular, specific, and non-redundant functions. It is evident
when both are simultaneously knocked out in mice, they display
severe abnormality phenotypes. However, when independently
knocked out, PTN−/− and MDK−/− mice are far from being

completely normal and exhibit moderate but different abnormal-
ities (Muramatsu et al., 2006; Zou et al., 2006; Gramage and
Herradón, 2010; Himburg et al., 2012; Vicente-Rodríguez et al.,
2013), which denotes that although both peptides could present
overlapping or similar functions, they are also clearly involved in
different roles.

PTN COULD SIGNAL THROUGH A MULTI-RECEPTOR
COMPLEX
PTN signals are generally related with cell proliferation, growth
and differentiation, but PTN has also has been involved in
other functions by acting through different receptors (Figure 1).
Mainly, PTN can bind and signal via Receptor protein tyrosine
phosphatase ζ (RPTPζ), EC = 3.1.3.48 (Maeda et al., 1996, 1999;
Meng et al., 2000), which is a transmembrane chondroitin sulfate
proteoglycan present in two isoforms (shorter and full-length),
which in turn also binds with various cell adhesion molecules
(NrCAM, L1/Ng-CAM, contactin, N-CAM, and TAG1), growth
factors (PTN, MK, and fibroblast growth factor (FGF-2), and
extracellular matrix molecules (amphoterin, tenascin-C, and
tenascin-R) (reviewed in Maeda et al., 2010). Under certain
circumstances, PTN can act via Anaplastic Lymphoma Kinase
(ALK) receptor (Stoica et al., 2001, 2002; Powers et al., 2002),
although some evidences suggest that the action of PTN on ALK
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FIGURE 1 | Receptors and signaling pathways possibly involved
in PTN signaling. All or some of these membrane receptors could
function as a multi-molecular complex coordinated to transduce the
PTN signal into the cell by different signaling pathways.
RPTPζ—Receptor protein tyrosine phosphatase ζ, EC = 3.1.3.48);
ALK—Anaplastic Lymphoma Kinase; LRP—Low-density lipoprotein
receptor-related protein; ERK1/2—Extracellular-Signal-Regulated Kinase;
AKT—Serine/Threonine-specific protein kinase; STAT5—Signal

transducer and activator of transcription 5; Ras—Rat sarcoma small
GTP-ase; PI3K—Phosphatidylinositol-4,5-bisphosphate 3-kinase;
mTOR—Mechanistic target of Rapamycin (serine/threonine kinase);
MEKK—mitogen-activated protein Kinase/ERK kinase kinase 3;
Jnk—c-Jun N-terminal kinase; Src—Sarcoma tyrosin kinase;
Rho—Ras homology small GTPase; PKCα—Protein kinase C alpha;
Rac1—Ras related small GTPase. N-syndecan structure from
www.ebi.ac.uk

could occur through its previous interaction with RPTPζ (Perez-
Pinera et al., 2007). Additionally, PTN; (1) promote neurite
outgrowth via N-syndecan receptor (Raulo et al., 1994) or via
Neuroglycan-C (NGC; Nakanishi et al., 2010), (2) interact with
integrin αυβ3 (alpha nu beta 3) receptor, which is a mechano-
sensitive cell membrane receptor, for cell adhesion (Mikelis et al.,
2009), and (3) interact with Low-density lipoprotein (LDL)
Receptor-related protein (LRP; Kadomatsu and Muramatsu,
2004). Additionally, two different species of PTN, PTN15 and
PTN18, have been described (Lu et al., 2005), but their differential
interaction or their affinities to different receptors has not yet
been established, which adds another level of complexity to their
physiological functioning.

It has been recently proposed that PTN signaling may function
through a multi-receptor complex (Xu et al., 2014), combining
the previously mentioned receptors, and most probably other
adaptor proteins, which interact under certain circumstances
inside particular cell membrane microdomains, probably also
associated with lipids in raft configuration, which could explain
the variety of functions in different tissues, in terms of the

combinatorial analysis of the elements present at each time and
place. Then, PTN action over previously mentioned receptors
could in turn signal through different signal pathways (Figure 1).
Increasing our knowledge of the intricate molecular mechanisms
involved would clarify the receptor complexes and signaling
pathways implicated, as well as advance the discovery of other
molecules involved, which in turn will lead us to fully explain its
variety of functions.

DIFFERENTIAL EXPRESSION OF PTN RECEPTORS DURING
DEVELOPMENT AND IN ADULT COULD INDICATE ITS
DISSIMILAR PARTICIPATION IN DIFFERENT FUNCTIONS
Although during early development PTN expression is widely
distributed in Central Nervous System (CNS; Li et al., 1990),
expression of PTN in adult brain appears to be constitutive
and apparently limited to only a few cell types in brain cortex,
hippocampus, cerebellum and olfactory bulb (Wanaka et al.,
1993; Lauri et al., 1996; Basille-Dugay et al., 2013), as well
as in some striatal interneurons (Taravini et al., 2005). At these
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locations, the differential expression of its receptors could exist,
which might partially explain its diverse actions. RPTPζ is
expressed in glial cells as well as neurons. In hippocampal cells,
it is located at the postsynaptic membrane of pyramidal neurons
in adult (Hayashi et al., 2005), and its expression is modulated
by spatial learning (Robles et al., 2003); therefore, it is involved
in learning and long-term memory. Additionally, it is highly
expressed following injury in areas of axonal sprouting and glial
scarring (Snyder et al., 1996), and its expression is induced in
inner molecular-layer astrocytes of the dentate gyrus of the scle-
rotic hippocampus in patients with epilepsy (Perosa et al., 2002).
Also, it is involved in regulating dendritogenesis and synaptogen-
esis of hippocampal neurons in vitro (Asai et al., 2009). Therefore,
PTN signaling through RPTPζ could be involved in modulation of
hippocampal plasticity during learning and also during recovery
after a lesion or in neuropathological situations, by modulating
dendritogenesis and synaptogenesis. RPTP-ζ/β might be impli-
cated in plastic rearrangements of nigrostriatal connections, such
as sprouting of dopaminergic terminals or postsynaptic changes
triggered by L-DOPA treatment in a model of Parkinson disease
(Ferrario et al., 2008).

Likewise, ALK receptor is expressed in adult mammalian hip-
pocampus and has also been implicated in neurogenesis, memory,
and learning (Weiss et al., 2012). In addition, it has been involved
in basal hippocampal progenitor proliferation and its deficiency
induces alterations in behavioral tests (Bilsland et al., 2008).
Although MK has been postulated to be the ligand for ALK recep-
tor, at least in controlling sympathetic neurogenesis (Reiff et al.,
2011), PTN also appears to be able to interact with this receptor
(Stoica et al., 2001), although this remains controversial (Mathivet
et al., 2007), and it appears that PTN performs its action on ALK
thought its previous interaction with RPTPζ (Perez-Pinera et al.,
2007).

It is clear that overlapping of PTN and MK activities can
occur in some cases, but certainly not under all circumstances, as
mistakenly suggested by Xu et al. (see Figure 3 in Xu et al., 2014).
Although both peptides exhibit similar actions under certain
physiological conditions, at least in the CNS, each also exerts
diverse effects and performs different actions, depending on the
cerebral region, as mentioned later.

STUDIES IN DROSOPHILA ENLIGHTEN SOME ASPECTS OF
THE DIFFERENT LEVELS OF REGULATORY CONTROL OF PTN
EXPRESSION AND FUNCTION IN THEIR INVERTEBRATE
HOMOLOGS
Drosophila homologs to MK and PTN are Miple1 and Miple2,
with 20 and 24% identical to human MK and human PTN,
respectively (Englund et al., 2006). However, they cannot be
assigned as respective homologs, but only as members of the
same family. Respective genes are arranged in tandem, suggesting
that they have arisen as a result of a gene duplication event at
some point of evolution. However, these secreted proteins are
expressed in restricted, non-overlapping patterns, with Miple1
mainly expressed in the developing embryonic nervous system,
while miple2 is strongly expressed in the developing gut endo-
derm (Englund et al., 2006). Therefore, had they been generated

by gene duplication, they were clearly submitted to different
selective pressure expression regulation, and consequently diverge
in their expression pattern, and most probably in functioning.
Thus, it will be relevant to elucidate, in useful model such as
Drosophila, the molecular interactions of these peptides during
complex developmental processes.

The messenger RNA (mRNA) 3′-Untranslated region (UTR)
binding protein HOW (Held out wing) is able to post-
translationally repress miple, downregulating its mRNA levels
in mesoderm in order to enable proper mesoderm spreading
during early embryogenesis in Drosophila (Toledano-Katchalski
et al., 2007). This suggests that a similar mechanism could
drive some regulatory action over PTN and MK expression in
vertebrates.

Another point of regulation corresponds to the interaction of
miple, as a signaling peptide, with other proteins. For example,
by affecting the affinity of HTL ligands to the HTL receptor
(Heartless, a Drosophila FGF receptor), thereby modulating the
strength of HTL-dependent signaling (Toledano-Katchalski et al.,
2007). Thus, it is feasible that PTN could interact with other
peptides being a key modulator in the binding process to different
complexes of receptors.

Interestingly, the combined expression pattern of Miple1 and
Miple2 complements the expression pattern of the Drosophila
ALK homolog (DAlk; Lorén et al., 2001, 2003). However, its
ligand has been identified as a different peptide, namely Jelly
belly (Jeb), which play roles in neuromuscular junction growth
and function, early mesoderm development, and also in axon
targeting of photoreceptors (Weiss et al., 2001; Englund et al.,
2003; Lee et al., 2003; Bazigou et al., 2007; Rohrbough and
Broadie, 2010). It is relevant to mention that Drosophila Jeb is
not able to activate mouse ALK (Yang et al., 2007), and Jeb
homologs in vertebrates have not yet been described. However,
it is noteworthy that secreted Jeb contains a LDL receptor class A
domain that contains 6 disulphide-bound cysteines (Bieri et al.,
1995), and could constitute a binding site for LDL and calcium
(Yamamoto et al., 1984). Given that LRP is a LDL receptor-related
protein involved in PTN action in vertebrates (Kadomatsu and
Muramatsu, 2004), it would be possible that Jeb signaling could
be related with miple signaling and their vertebrate counterpart is
unveiled to date.

Based on all previous cited evidences, and given the complexity
of the molecular interactions in which PTN is clearly involved, it
will be necessary to widely divulge approaches for disclosing its
functioning. In this respect, one of the most useful approaches
could be analysis by microarrays of the gene profile expression in
PTN-defective Knock-out (KO) mice. Recently, in our laboratory,
we performed these experiments and established the differential
gene expression in the hippocampus of PTN KO mice (In prepa-
ration).

DIFFERENTIAL EFFECTS OF PTN VS. MDK INDICATE IT AS A
NEUROMODULATORY PEPTIDE IN CNS, PARTICULARLY IN
HIPPOCAMPUS
PTN and MK have been shown to induce and stimulate neu-
ronal differentiation (Jung et al., 2004; Ishikawa et al., 2009;
Luo et al., 2012). More specifically, PTN has been involved in
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lineage-specific differentiation of glial progenitor cells, axonal
outgrowth, synaptic plasticity, and angiogenesis (Mitsiadis et al.,
1995; Kadomatsu and Muramatsu, 2004). PTN participates in
axon regeneration after injury, being highly expressed by reactive
astrocytes (Iseki et al., 2002) as a source of trophic support
for neurons in brain (Dugas et al., 2008) and rescuing nigral
dopaminergic neurons from degeneration (Hida et al., 2007;
Moses et al., 2008). However, its precise molecular mechanisms
remain unknown.

In addition to these widely recognized roles of PTN, function-
ally, PTN−/− mice exhibited a delayed response to nociceptive
stimulus in the tail-flick test (Gramage and Herradón, 2010), and
clonidine-induced analgesia was significantly enhanced (Vicente-
Rodríguez et al., 2013) when compared with MK−/− and
Wild-type (WT+/+) mice. These evidences strongly suggest that
endogenous PTN modulates nociceptive transmission at the
spinal level.

In addition, PTN has been involved in neurodegenerative
disorders and in response to chronic drug consumption. PTN
is upregulated in cortex and caudate-putamen after injection of
a cannabinol (Mailleux et al., 1994), and in nucleus accumbens
after acute administration of amphetamine (Le Grevès, 2005);
in addition, it is also highly upregulated in substantia nigra of
patients with Parkinson disease (Marchionini et al., 2007) and
treatment with L-Dopa increases PTN levels in striatum (Ferrario
et al., 2004). Thus, it has been involved, as is MK (Prediger et al.,
2011), in regulation of the survival and function of dopaminergic
neurons (Jung et al., 2004). Taken together, this evidence supports
the hypothesis that PTN is upregulated in neurodegenerative and
addictive disorders in order to induce trophic or neuroprotective
effects on dopaminergic neurons (Herradón and Pérez-García,
2014).

After PTN expression was described in hippocampus (Bloch
et al., 1992; Vanderwinden et al., 1992; Wanaka et al., 1993), it was
suggested that it plays a role in injury-induced response (Takeda
et al., 1995; Poulsen et al., 2000) and activity-dependent plasticity
(Lauri et al., 1996; Rauvala and Peng, 1997) in rat hippocam-
pus, by affecting early, synapse-specific stages of LTP production
(Lauri et al., 1998). Later, it was demonstrated, in PTN-deficient
mice, that hippocampal slices exhibit a lowered threshold for
induction of LTP (Amet et al., 2001) and that LTP was attenuated
in mice overexpressing PTN (Pavlov et al., 2002), possibly by
enhancing GABAergic inhibition in CA1 (Pavlov et al., 2006) and
affecting recognition memory (del Olmo et al., 2009). Together,
these evidences indicate that PTN could act as inducible signal
to inhibit LTP in the hippocampus. Therefore, taken collectively,
these evidences add a new role to the previous functions referred
for PTN, thus functioning as a neuromodulatory factor in the
hippocampus (Table 1). However, molecular evidence continues
to be incomplete regarding the complex signaling system involved
in PTN modulation.

To complete a whole view and to fully understand the mod-
ulatory role of PTN in CNS, and particularly in hippocampus,
it is necessary first to establish which elements of the molecular
machinery are present, and second, which are the ways in which
they interact with each other. In this respect, immunohistochem-
ical analyses reveal that RPTPζ and its substrate, GIT1/Cat-1, are

Table 1 | PTN functions.

Classical functions REFs

Growth factor
Cell growth, cell proliferation, Maeda et al. (1996, 1999); Meng

et al. (2000)cell differentiation
Cell adhesion
Functions as Neuromodulatory
molecule in CNS
Neurogenesis and neural
migration and differentiation

Axonal outgrowth Mitsiadis et al. (1995); Kadomatsu
and Muramatsu (2004)

Dendritogenesis and Asai et al. (2009)
synaptogenesis

Learning and long-term memory
Modulating LTP by Lauri et al. (1996); Rauvala and Peng

(1997)activity-dependent plasticity
Neuritogenesis and Bao et al. (2005); Raulo et al. (2005);

Nakanishi et al. (2006)neurite extension
Dendritogenesis and Asai et al. (2009)
synaptogenesis

Modulates nociceptive transmission
Neuroprotective effects

Injury-induced response Takeda et al. (1995); Poulsen et al.
(2000)

Regeneration after injury Iseki et al. (2002)
Involved in neurodegenerative Mailleux et al. (1994)
disorders
Response to chronic Mailleux et al. (1994)
drug consumption

PTN, Pleiotrophin; CNS, Central nervous system.

co-localized in the processes of pyramidal cells in hippocampus
and neocortex in rat brain, and PTN increases tyrosine phos-
phorylation of GIT1/Cat-1 in neuroblastoma B103 cells (Kawachi
et al., 2001). Also, PSD-95/SAP90 family proteins, along with
RPTPζ, are distributed in the dendrites of pyramidal neurons of
hippocampus and neocortex (Kawachi et al., 1999). Additionally,
it has been demonstrated that P190 RhoGAP activity, regulated
by PTN/RPTPζ pathway, is involved in hippocampus-dependent
memory formation through the downstream Rho/Rock pathway,
which plays an important role in cell migration, axonal growth,
and synaptic plasticity (Tamura et al., 2006). Another receptor
involved in PTN signaling is N-syndecan receptor (Raulo et al.,
1994), which due to deficiency in hippocampus exhibits enhanced
LTP and altered hippocampus-dependent memory (Kaksonen
et al., 2002). Moreover, this KO mouse is not responsive to
PTN.

On the other hand, PTN regulates neurite extension and
plasticity in pig hippocampal neurons in vitro, signaling through
chondroitin sulfate/dermatan sulfate hybrid chains (Bao et al.,
2005; Raulo et al., 2005); this action could involve chondroitin
sulfate E as a binding partner, co-receptor, or genuine recep-
tor for PTN (Deepa et al., 2002), but it is also reasonable to
speculate that this could involve NGC, a brain-specific chon-
droitin sulfate proteoglycan involved in neuritogenesis (Nakanishi
et al., 2006) and which interacts with PTN (Nakanishi et al.,
2010).
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CONCLUDING REMARKS
Therefore, the different actions of PTN as a neuromodulatory
peptide (Table 1) could vary during development depending
on the signaling pathways that it mainly activates. During early
brain development, PTN implication in regulating neurogenesis
and neural migration and differentiation, regulating axonal out-
growth, dendritogenesis, and synaptogenesis, could principally
involve signaling through PTN/RPTPζ, and also through integrin
αυ β3, possibly acting coordinately. Later, in adult, the partic-
ipation of PTN in learning and long-term memory, by modu-
lating LTP by activity-dependent plasticity memory process in
hippocampus, can again be principally mediated by its signaling
through PTN/RPTPζ, possibly in combination with its signaling
through N-syndecan pathway. Finally, its neuroprotective effects
constitute a relevant role, suggesting that PTN signaling path-
ways are involved in neurodegenerative disorders, as well as in
response to injuries and chronic drug consumption. Those sig-
naling pathways may be functioning through a multi-molecular
complex of receptors, combining previously mentioned receptors
and other adaptor proteins, which interact inside membrane
microdomains in raft configuration, which could explain each of
these functions.

We are sure that a lot of molecules involved in PTN signaling
pathways remain unknown to date. It is necessary to perform
more integral studies, such as the use of proteomics and genomics
approaches, as well as studies in vivo (employing PTN-KO) and
in vitro (by mean of experiments with small interfering RNA
[siRNA]), which will undoubtedly elucidate the complete molec-
ular mechanisms involved.
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