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Emergency departments often encounter many severe MDSCs expand after sepsis because of the upregulation of

illnesses.[1-3] Sepsis, amajor cause of death in the emergency specific colony-stimulating factors (CSFs).[13,14] Despite

room, is a syndrome involving physiologic, pathologic, and
biochemical abnormalities, induced by a life-threatening
infection.[4] Sepsis directly or indirectly impairs the function
of virtually all types of immune cells,[5,6] and initiates a
complex immune response that varies over time, which
results in profound immunosuppression, including meta-
bolic failure, epigenetic reprogramming, and myeloid-
derived suppressor cells.[7,8]

Granulocytes and monocytes, collectively called myeloid
cells, are differentiated descendants of the common
myeloid progenitors derived from the hematopoietic stem
cells in the bone marrow.[9] Proper orchestration of
myeloid progenitor cell differentiation is of vital signifi-
cance to human health.[10] Some researchers have shown
that patients who survive early sepsis, but remain
dependent on intensive care, develop immunosuppression,
which is evidenced by reduced expression of human
leukocyte antigen-DR isotype (HLA-DR) on myeloid
cells.[11] HLA-DR is a marker of mature myeloid cells. It
has been reported that an immature myeloid cell
population with immunosuppressive function is generated
after sepsis; this population is now recognized as myeloid-
derived suppressor cells (MDSCs).

MDSCs can be delineated into two types: polymorphonu-
clear-MDSCs (PMN-MDSCs), which are phenotypically
and morphologically similar to neutrophils, and monocyt-
ic-MDSCs (M-MDSCs), phenotypically and morphologi-
cally similar to monocytes. Nevertheless, MDSCs have
different genomic and biochemical profiles and functional
activity.[12]Figure 1 provides a schematic illustration of
myeloid progenitor cell differentiation.
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the fact that cells of myeloid lineage play vital roles in the
body, much is still unknown about the dynamics of their
differentiation.

Although it is difficult to differentiate MDSCs from
neutrophils and monocytes phenotypically and morpho-
logically, researchers have made extensive progress.
Human neutrophils can be isolated in the high-density
Ficoll-Hypaque gradient fraction, whereas PMN-MDSCs
can be isolated in the low-density fraction. Monocytes and
M-MDSCs can be separated based on the expression of
HLA-DR.However, inmice, such distinction is muchmore
challenging.[15] Human PMN-MDSCs have a unique
genomic profile, distinguishing them from neutrophils in
the same patient, which led researchers to identify the
expression of lectin-type oxidized low-density lipoprotein
receptor-1 on the two cell types.[16] Mouse MDSCs are
also characterized by specific proteome[17] and tran-
scriptome profiles in case of malignancy.[18] These
outcomes help better identify mature myeloid cells and
MDSCs; however, it is still unknown how sepsis induces
myeloid progenitor cells into MDSCs.

Recently, a study made novel predictions about myeloid
cell differentiation by mathematical analysis of numerous
experimental observations of myeloid progenitor cell
differentiation in response to varying dosages of three
types of CSFs, namely, granulocyte-CSF (G-CSF), macro-
phage-CSF (M-CSF), and granulocyte/macrophage-CSF
(GM-CSF). According to the findings of that study, G-CSF,
M-CSF, andGM-CSFmay all favor the development ofM-
MDSCs under different combinations and concentra-
tions.[19] This research provided new insight about the
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prediction of cell dynamic processes, in addition to
available data about sepsis. However, the model still has

predict the differentiation of myeloid branch after sepsis,
provided we construct a relevant model.

Figure 1: Myeloid branch of hematopoiesis after sepsis. Hematopoietic stem cells (HSC) can give rise to the common myeloid progenitors (CMP). CMPs can give rise to all myeloid cells.
Granulocyte-monocyte progenitor (GMP) cells differentiate into monocyte progenitors (MPs) or granulocyte progenitors (GP). MPs and GPs differentiate into monocytic-myeloid-derived
suppressor cells (M-MDSCs) and polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSC) after sepsis.
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limitations and potential sources of inaccuracy. Owing to
advances in high-throughput technologies, a deluge of
biologic and medical data has been obtained in recent
decades, including data related to medical images, biologic
sequences, and protein structures.[20,21] Learning from
these data facilitates the understanding of human health
and disease. Deep learning allows computational models
that are composed of multiple processing layers to learn
different representations of data with multiple levels of
abstraction, and shows great promise in extracting features
and learning patterns from complex data.[22] The term
“deep” is derived from the numerous hidden layers in the
Artificial Neural Network structure.

Deep learningmethods have attained success in a variety of
computer vision tasks such as object recognition, localiza-
tion, and segmentation in images like computed tomogra-
phy images, magnetic resonance images, histopathology
images, etc.[23] Recently, researchers have identified
hematopoietic lineage by using deep learning. They
collected images of moving single cells and cell divisions
by long-term high-throughput time-lapse microscopy for
the construction of cellular genealogies. Additionally,
quantification of molecular lineage markers was made
possible by fluorescent imaging. Then, a convolutional
neural network was developed for automatically extract-
ing shape-based features with a recurrent neural network
architecture, modeling the dynamics of the cells, and
predicting lineage choice in the differentiation of primary
hematopoietic progenitors.[24] This impressive research
points out a newway of using deep learning to observe and

1

Moreover, deep learning plays an important role in
genomic sequencing and gene expression analyses. To
decode the mechanism of alternative splicing, a genetically
and epigenetically regulated pre-mRNA processing meth-
od to increase transcriptome and proteome diversity, Xu
et al[25] integrated multi-omics data (e.g., genomics,
epigenomics, and transcriptomics) of human embryonic
stem cells (hESCs), with a newly implemented deep neural
network, DeepCode, to decipher an extended splicing
code for ESC fate decision. With the advantages of
epigenetic features, DeepCode significantly improves the
performance of predicting splicing patterns during hESC
differentiation. They also found a novel candidate
mechanism linking histone modifications to hESC fate
decision by DeepCode.[25] Such innovative research
methods can be applied to predict the myeloid progenitor
cell fate after sepsis, provided the multi-omics data of the
cell affected by sepsis are available.

In the era of big data, transformation of biomedical big
data into valuable knowledge has been one of the most
important challenges. Deep learning, a branch of machine
learning, has recently emerged based on big data. This
popular technique has been widely used in clinical
medicine for diagnosing diseases and predicting prognosis
through labeled literal and image data. However, this is
inadequate. Precision medicine requires biomedical data
such as those from genomic sequencing and other -omics
methods. Combination of electronic health records and
biomedical data presents an inevitable tendency to
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charting personalized treatment plans, especially for
diseases with time-dependent pathologic process, such as

7. Venet F,Monneret G. Advances in the understanding and treatment of
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sepsis. However, the complexity of data asks for more
advancement in the processing method. Deep learning will
be the most ideal computing technique to study clinical and
molecular data; to predict the exact diagnosis, from both
macro and micro aspects; and help physicians treat
effectively and individually.

With the aid of deep learning and detection methods (e.g.,
high-throughput imaging and sequencing), the scientific
community is looking forward to elucidating the post-
sepsis fate of myeloid progenitor cells, and to making
precision medicine a reality to subsequently improve the
prognosis of patients with sepsis.
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