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Abstract

Background: Caveolin-1 (Cav-1), the major component of caveolae, is a 21–24 kDa integral membrane protein that interacts
with a number of signaling molecules. By acting as a scaffolding protein, Cav-1 plays crucial roles in the regulation of various
physiologic and patho-physiologic processes including oncogenic transformation and tumorigenesis, and tumor invasion
and metastasis.

Methodology/Principal Findings: In the present study we sought to explore the role of Cav-1 in response to DNA damage and
the mechanism involved. We found that the level of Cav-1 was up-regulated rapidly in cells treated with ionizing radiation. The
up-regulation of Cav-1 following DNA damage occurred only in cells expressing endogenous Cav-1, and was associated with the
activation of DNA damage response pathways. Furthermore, we demonstrated that the expression of Cav-1 protected cells
against DNA damage through modulating the activities of both the homologous recombination (HR) and non-homologous end
joining (NHEJ) repair systems, as evidenced by the inhibitory effects of the Cav-1-targeted siRNA on cell survival, HR frequency,
phosphorylation of DNA-dependent protein kinase (DNA-PK), and nuclear translocation of epidermal growth factor receptor
(EGFR) following DNA damage, and by the stimulatory effect of the forced expression of Cav-1 on NHEJ frequency.

Conclusion/Significance: Our results indicate that Cav-1 may play a critical role in sensing genotoxic stress and in
orchestrating the response of cells to DNA damage through regulating the important molecules involved in maintaining
genomic integrity.
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Introduction

Caveolin-1 (Cav-1), a major structural protein of caveolae, is

involved in many physiologic and patho-physiologic processes

such as cardiovascular diseases, neurological disorders, and

cancers. Although accumulating evidence indicate that expression

of Cav-1 is altered in a stage-dependent manner during

progression of various types of cancers [1,2,3,4], the precise roles

of Cav-1 in cancer development, progression, and treatment

remain to be fully defined. Based on its location at chromosome 7

(7q31.1), which is frequently deleted in human malignancies [5],

Cav-1 is believed to be a tumor suppressor. Indeed, Cav-1 was

found to be down-regulated in many types of cancers including

breast cancer [6], colon cancer [7], lung cancer [8,9,10], ovarian

cancer [11,12], sarcomas [13], and thyroid cancer [14]. Forced

expression of Cav-1 inhibits tumor growth and induces apoptosis

of tumor cells [15,16]. Additionally, a mutation in Cav-1 at codon

132 (P132L) was found in 16% of the primary human breast

cancer cases [17], and interbreeding Cav12/2 mice with

MMTVPyMT mice (mouse mammary tumor virus-Polyoma

middle T antigen) accelerated onset of mammary tumors in their

offspring [18].

On the other hand, up-regulation of Cav-1 has been observed in

highly metastatic human cancers, and is associated with poor

clinical prognosis [10,19,20,21,22,23,24,25,26,27,28,29,30] and

with resistance to therapy [31,32]. These observations indicate

that re-expression of Cav-1 at advanced stages of cancer may play

a pro-survival role that protects tumor cells against various stresses

such as micro-environmental and therapeutic stress. Recently, it

was demonstrated that expression of Cav-1 promotes survival of

cancer cells following treatment with ionizing radiation (IR)

[33,34], further supporting Cav-1 as a stress protector in
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malignant cells. The protective effect of Cav-1 on IR-treated cells

also suggests that this signaling-modulating molecule may play an

important role in repair of damaged DNA. The main DNA

damage caused by IR is double strand break (DSB), which can be

repaired by two major pathways: homologous recombination (HR)

and non-homologous end joining (NHEJ). HR pathway can

accurately repair DSB via exchange of genetic material between

two similar or identical strands of DNA; NHEJ is a repairing

process in which the break ends are directly ligated without the

need for a homologous template and thus is error-prone. As

damage of DNA not only causes neoplasm but is also utilized in

therapeutic interventions such as radiotherapy and chemotherapy,

and as Cav-1 is differentially expressed during tumor progression,

understanding the role of Cav-1 in DNA DSB repair and the

underlying mechanism(s) may help further decipher the signaling

pathways involved in tumor initiation and progression, and help

develop new approaches to the prevention and treatment of

cancers. We report here that the up-regulation of Cav-1 protein in

response to DNA damage plays an important role in activating

DNA repair signaling cascade and in promoting repair of DSB

through both HR and NHEJ, thus contributing to maintenance of

genomic integrity.

Results

Genotoxic stress induces a transcriptionally independent
up-regulation of Cav-1

Expression of Cav-1 was reported to be elevated in cells exposed

to IR [33,34]. As shown in Fig. 1A, treatment with IR stimulated

the expression of Cav-1 protein in MDA-MB-468 cells. The DNA

damage-induced Cav-1 up-regulation also occurred in other cell

lines (both tumor cells and non-tumor cells) expressing endogenous

Cav-1 such as NCI/ADR-RES, T98G and MCF-10A, but not in

cell lines (MCF-7 and PC-3) that do not express endogenous Cav-1

(Fig. 1B), and did not appear to result from altered transcription of

the Cav-1 gene, because IR did not affect the level of Cav-1

mRNA in MDA-MB-468 and A549 cells with or without silencing

of Cav-1, as determined by qRT-PCR (Fig. 2). With the use of

these cell lines containing different status of p53, it appeared that

IR – induced alteration of Cav-1 was independent of p53 status.

Expression of Cav-1 is associated with DNA damage
response pathways

To further define the roles Cav-1 in DNA damage response, we

examined the effects of Cav-1 on signaling pathways that

Figure 1. Treatment with IR stimulates the expression of Cav-1 protein. (A) MDA-MB-468 cells were irradiated (5 Gy) for the indicated period
of time, and then the treated cells were collected for Western blot analysis of Cav-1. b-actin was used as a loading control. Expression of Cav-1 and b-
actin were quantified using imageJ software, and Cav-1 level was normalized to that of b-actin. The normalized Cav-1 at the zero time point was
arbitrarily set as 1. Bar represent mean 6 S.D. of three separate experiments. (B) MCF-7, NCI/ADR-RES, PC-3, T98G and MCF-10A cells were treated or
untreated with 5 Gy ionizing radiation, and Cav-1 expression was analyzed by Western blot. Results shown are the representative of three identical
experiments.
doi:10.1371/journal.pone.0012055.g001
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participate in DNA repair. siRNAs were utilized to inhibit Cav-1

expression. To avoid ‘‘off-target’’ effects of siRNA, we used two

Cav-1-targeted siRNA sequences that both knocked down Cav-1

expression (Fig. 3A). We found that IR - induced accumulation of

single-strand DNA (ssDNA) was increased in the cells transfected

with the Cav-1-targeted siRNA, as compared to the cells

transfected with a non - targeting RNA (Fig. 3B). The levels of

c-H2AX, the phosphorylated form of H2AX (at Ser139) associated

with DSB, were also significantly higher in MDA-MB-468 cells

with silencing of Cav-1 expression than in cells treated with a non-

targeting RNA following IR (Fig. 3C), another evidence for

defective DNA repair caused by loss of Cav-1. These observations

suggest that Cav-1 defect may impair DNA damage repair.

Furthermore, we investigated whether suppression of Cav-1

resulted in impairment of DNA damage signaling. As shown in

Fig. 4A, the activity of ATM, a kinase that is activated by DNA

damage signals and phosphorylates a series of downstream targets

such as CHK2, was lower in the cells with silencing of Cav-1 than

that in the control cells following IR, as demonstrated by

decreased levels of the phospho-ATM (Ser1981) and phospho-

CHK2 (Thr68). Treatment of cells with inhibitors (okadaic acid

and calyculin A) of PP2A, a phosphatase that decreases ATM

phosphorylation, augmented the IR-induced phosphorylation of

ATM (Fig. 4B), indicating the involvement of PP2A in the

regulation of ATM activity in response to DNA damage.

Moreover, our co-immunoprecipitation experiments demonstrat-

ed an increased physical association between Cav-1 with PP2A

following IR (Fig. 4C). These results suggest that in response to

DNA damage, Cav-1 plays an essential role in activating the

ATM-initiated repair pathway by sequestering and inhibiting the

function of PP2A. Also, using immunofluorescent microscopy we

observed that knockdown of Cav-1 by siRNA reduced both the

spontaneous and IR-induced foci formation of BRCA1, a DNA

repair protein whose expression is controlled by Cav-1 (Fig. 5).

The reduction of BRCA1 foci did not appear to be a consequence

of changes in cell cycle, as the silencing of Cav-1 had no effect on

cell cycle distribution (Fig. 6). These observations provide

additional evidence that depletion of Cav-1 weakens the ability

of cells to repair damaged DNA.

Expression of Cav-1 is required for HR repair of damaged
DNA

To begin to explore the mechanism by which Cav-1 regulates

DNA repair, we first tested whether silencing of Cav-1 expression

by siRNA altered the frequency of HR, one of the major pathways

involved in DSB repair. We used HT1080 cell line and an HR

reporter system developed by Brenneman et al [35]. HT1080 cell

line carries a single integrated copy of a puro direct repeat HR

substrate. One of the puro repeats is driven by the PGK promoter,

but is inactive due to the insertion of an I-SceI recognition site; the

second allele codes the wild-type protein, but lacks a promoter

(Fig. 7). Introduction of an I-SceI expression vector into HT1080

cells creates DSBs at the I-SceI site, and only repair of these DSBs

by HR can produce a functional puro that confers puromycin

resistance. Fig. 8A demonstrates that similar to other Cav-1-

expressing cell lines, HT1080 cells showed an increased expression

of Cav-1 following IR. To determine the effect of Cav-1 on HR,

HT1080 cells were transfected with an I-SceI expression vector,

selected with puromycin, and then treated with a Cav-1 siRNA or

non-targeting RNA. In HT1080 cells, the silencing effect of Cav-1

siRNA could last until day 6 after transfection (Fig. 8B), which is

within the timeframe required assaying HR. Fig. 8C shows that

there was an equal level of I-SceI expression in Cav-1 knockdown

and control cells, but the Cav-1 knockdown cells had significantly

lower level of HR after I-SceI expression.

Expression of Cav-1 promotes NHEJ in response to DNA
damage

NHEJ is another major pathway for mammalian cells to repair

DSB [36]. As shown above in Fig. 6, silencing of Cav-1 reduced

the foci formation of BRCA1. As BRCA1 is a protein know to be

involved in DSB signal transduction and may regulate both HR

and NHEJ, we next wanted to know if Cav-1 is involved in the

regulation of this important DNA repair pathway. The phosphor-

ylation of DNA-PK, one of the necessary components of the NHEJ

pathway, was used as a read-out of this repair system. We found

that although exposure of MDA-MB-468 cells to IR markedly

induced DNA-PK phosphorylation at Ser2056, suppression of Cav-

1 expression by siRNA effectively inhibited the IR- stimulated

Figure 2. IR has no effect on expression of Cav-1 mRNA. MDA-MB-468 and A549 cells were transfected with a non-targeting RNA or siRNA
against Cav-1. Twenty-four hours later, cells were treated with 5 Gy radiation for the indicated period of time. To determine Cav-1 mRNA, total RNAs
were extracted from the cells and quantitative real-time RT-PCR was performed. Cav-1 mRNA level was normalized to b-actin mRNA. The Cav-1 mRNA
level of the cells treated with the non-targeting RNA and without IR treatment was arbitrarily set as 1. Results shown are the representative of three
similar experiments; each bar represents mean 6 SD of quadruplicate determinations.
doi:10.1371/journal.pone.0012055.g002
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phosphorylation of this critical DSB repair factor (Fig. 9A),

suggesting that Cav-1 is involved in controlling the activity of the

NHEJ pathway. The results of the NHEJ assay, which measures

overall frequency of NHEJ [37], demonstrated that introduction of

Cav-1 into HEK293 cells (Fig. 9B, left panel) significantly

increased the NHEJ frequency as compared to the transfection

with a control empty vector (a 40% increase was observed) (Fig. 9B,

right panel). To further analyze how Cav-1 regulates the

phosphorylation of DNA-PK, we examined the effect of Cav-1

on IR-induced nuclear translocation of EGFR, which is known to

interact with DNA-PK and promote its phosphorylation [38]. To

further examine the localization of Cav-1 and EGFR in response

to IR treatment, we immunostained the cells with Cav-1 (in green)

and EGFR (in red) before and after IR treatment. As shown in

Fig. 9C, Cav-1 and EGFR were located on plasma membrane

before IR treatment, but co-translocations of Cav-1 and EGFR in

the nuclei were observed 1 h following IR, as visualized by

confocal microscopy. By contrast, the nuclear co-translocation of

these two proteins was barely seen in the cells with silencing of

Cav-1 (Fig. 9C). The similar intensity of Cav-1 staining in the cells

transfected with a Cav-1 siRNA or a non-targeting RNA was likely

due to the high affinity of the Cav-1 antibody and the high

sensitivity of the immunofluorescence detection method. Physical

association between Cav-1 and EGFR also increased following IR

(Fig. 9D). These results suggest that Cav-1 can control NHEJ

through modulating the activity of DNA-PK via Cav-1-mediated

nuclear translocation of EGFR.

Silencing of Cav-1 expression increases sensitivity of
cancer cells to genotoxic stresses

To assess the functional significance of the up-regulation of Cav-

1 in response to DNA damage, we examined the effect of silencing

of Cav-1 expression on survival of the cells treated with IR, using a

colony formation assay. Fig. 10 shows that IR caused a

significantly more killing in the cells with loss of Cav-1 than in

the control cells, further supporting a role of Cav-1 in protecting

cells against genotoxic stress.

Discussion

Loss of the putative tumor suppressor, Cav-1, is believed to be

one of the causes for development of several types of cancers, but

evidence also show that overexpression or re-expression of Cav-1

in advanced stages of the disease may contribute to tumor

Figure 3. Silencing of Cav-1 expression by siRNA increases the IR-induced accumulation of ssDNA and c-H2AX. (A) MDA-MB-468 cells
were transfected with a non-targeting RNA (NT) or either Cav-1-targeted siRNA sequence 1 or sequence 2. At the indicated time following
transfection, the cells were collected for Western blot analysis of Cav-1. b-actin was used as a loading control. (B) MDA-MB-468 cells were transfected
with a Cav-1 siRNA or a non-targeting RNA, followed by IR (5 Gy). The cells were collected at the indicated time points and fixed for
immunofluorescent detection of ssDNA. The signals of ssDNA and total DNA were quantified using imageJ software, and ssDNA signal was
normalized to total DNA signal at each time point. The results shown were mean6S.E. of five similar experiments. * p,0.05; ** p,0.01. (C) MDA-MB-
468 cells were transfected with a Cav-1-targeted siRNA or a non-targeting control (NT). Forty-eight hours later, the transfected cells were irradiated (5
Gy) for the indicated period of time followed by Western blot analysis of c-H2AX. Levels of c-H2AX and H2AX were quantified using imageJ software.
c-H2AX/H2AX ratios of untreated samples (zero time) were arbitrarily set at 100 as controls, and the treated samples were normalized to the controls.
Results shown are the representative of three similar experiments; each point represents mean 6 SD of triplicate determinations. * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0012055.g003
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progression. Yet, how loss of Cav-1 facilitates tumorigenesis and

how re-induction of Cav-1 promotes tumor progression remain an

open question. It has been reported that expression of Cav-1

favors cancer cell proliferation by regulating survival pathways

such as Rac, Erk and PtdIns 3-kinase [39] and inhibits

detachment-induced apoptosis (anoikis) either through suppressing

p53 activation [40] or up-regulating the transcription of the IGF-I

receptor gene [41]. We previously demonstrated that Cav-1-

regulated calcium homeostasis plays a role in growth and survival

of breast cancer cells [42]. In the present study, we sought to

determine the functional significance of Cav-1 up-regulation

caused by treatments with DNA damaging agents, a phenomenon

that was also observed by others [33,34,43]. Our study reveals a

new function of Cav-1 as a possible sensor and mediator in the

DNA damage response/repair process. We show that expression

of Cav-1 can be rapidly up-regulated by DNA damaging agents

such as IR (Fig. 1), and that the up-regulation of Cav-1 protein

plays a critical role in activating the DNA repair signaling cascade,

since depletion of Cav-1 expression by siRNA impairs the cells’

ability to repair DNA, as evidenced by increased accumulation of

g-H2AX (Fig. 3C) and ssDNA (Fig. 3B), reduced phosphorylation

of ATM at Ser1981 and CHK2 at Thr68 (Fig. 4A), and decreased

formation of BRCA1 foci (Fig. 5). Moreover, our study reveals for

the first time that Cav-1 is able to regulate both HR and NHEJ

pathways, two major mechanisms responsible for repair of DNA

DSB. This conclusion is supported by use of two assays specific for

detecting HR and NHEJ. In the current study, the repair of DSBs

induced by the I-SceI endonuclease is monitored using artificial

chromosome-integrated reporters, namely HT1080-1885 for HR

pathway (Fig. 8) and EJ5-GFP for NHEJ pathway (Fig. 9). Each

individual reporter is designed such that repair of I-SceI-induced

DSBs by a specific pathway restores a puromycin resistance or a

GFP expression cassette. In each of the reporter-containing cell

lines, the activation of the reporter is confirmed to be dependent

upon expression of I-SceI. The restoration of puromycin resistance

in HT1080-1885 can only be achieved by HR repair of I-SceI

induced DSB using downstream homologue as template. For EJ5-

GFP cells, a promoter is separated from a GFP coding cassette by

a puro gene that is flanked by two I-SceI sites in the same

orientation. Once the puro gene is excised by NHEJ repair of the

two I-SceI-induced DSBs, the promoter is joined to the rest of the

expression cassette, leading to restoration of the GFP+ gene.

Figure 4. Cav-1-mediated inhibition of PP2A is responsible for the IR-induced accumulation of phospho-ATM. (A) MDA-MB-468 cells
were transfected with a Cav-1 siRNA or a non-targeting RNA, followed by IR (5Gy) for the indicated period of time. The treated cells were collected for
Western blot analysis of phospho-ATM, total ATM, phospho-CHK2, and tubulin. (B) MDA-MB-468 cells were irradiated (5Gy) for the indicated period of
time in the absence or presence of the PP2A inhibitors, okadaic acid or calyculin A. The treated cells were collected for Western blot analysis of
phospho-ATM and total ATM. Tubulin was used as a loading control. In order to show changes of phosphor-ATM, the results of two exposures were
included. LT: 1 min exposure; ST: 10 sec exposure. (C) MDA-MB-468 cells were irradiated (5 Gy) for the indicated period of time, followed by
immunoprecipitation and immunoblotting with the indicated antibodies. The results shown are the representative of three similar experiments.
doi:10.1371/journal.pone.0012055.g004
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We demonstrated that IR induced the expression of Cav-1

(Fig. 1), a phenomenon previously reported by others [33,34,43],

(Fig. 1), but we also found that the increased expression of Cav-1

protein by IR does not appear to result from activation of Cav-1

transcription, as the mRNA level of Cav-1 was not affected by the

treatments (Fig. 2). The exact mechanism in which Cav-1

increased after DNA damage remains to be elucidated. Our

observation on the roles of Cav-1 in activating DNA repair

signaling (Fig. 3, 4, and 5) may explain the pro-survival function of

Cav-1 in IR-treated cells, as shown by us (Fig. 10) and others

[33,43,44]. Notably, we found that Cav-1 could be up-regulated

within 30 min following IR treatment (Fig. 1), earlier than the

24 h shown by Cordes et al [33], suggesting that Cav-1 may act as

a sensor and early mediator in response to DNA damage.

In this study we have begun to elucidate the mechanisms by

which Cav-1 regulates DNA repair. We demonstrated that Cav-1

participates in both HR and NHEJ repair pathways. The effect of

Cav-1 on HR was demonstrated by the experiments showing that

silencing of Cav-1 expression decreased HR frequency (Fig. 8).

The role of Cav-1 in HR might be related to, at least in part, its

effect on the accumulation of BRCA1 foci in nuclei after DNA

damage (Fig. 5), which was verified by cell cycle analysis showing

that knockdown of Cav-1 did not alter cell cycle distribution, a

factor known to affect the foci formation of BRCA1 protein [45].

Reciprocal regulation of the expression of Cav-1 and BRCA1 has

been reported [46,47], but whether this is associated with the Cav-

1-mediated BRCA1 nuclear accumulation remains to be clarified.

The role of Cav-1 in NHEJ was supported by our observation that

suppression of Cav-1 by siRNA dramatically inhibited the IR-

activated phosphorylation (Ser2056) of DNA-PK (Fig. 9A), one of

the key executers in the NHEJ system, and by the GFP-based

chromosomal reporter assay showing that the frequency of NHEJ

was significantly higher in HEK293 cells transfected with a Cav-1

expression vector than in the cells transfected with a control vector

(Fig. 9B). The mechanism of these effects might involve the Cav-1-

mediated nuclear translocation of EGFR, an activator of DNA-PK

[43], as Cav-1-targeted siRNA also inhibited the co-translocation

of Cav-1 and EGFR following IR treatment (Fig. 9C and D).

Therefore, it is likely that the signaling – modulating molecule,

Cav-1, may facilitate DNA repair via multiple pathways. How

precisely Cav-1 regulates HR and NHEJ and whether Cav-1 is

involved in other DNA repair pathways remain to be studied.

Figure 5. Silencing of Cav-1 expression decreases the IR-induced formation of BRCA1 foci. MDA-MB-468 cells were transfected with a
Cav-1 siRNA or a non-targeting RNA. Forty-eight hours later, the cells were irradiated (5 Gy), and fixed for immunostaining with a BRCA1 antibody.
BRCA1 foci were shown in green. DAPI was used for nucleus staining.
doi:10.1371/journal.pone.0012055.g005
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Our results may provide a possible explanation for the differential

expression of Cav-1 at various stages of tumor progression. As

genome instability triggered by endogenous or exogenous DNA

damaging agents is one of the main causes of cancer, loss or deficiency

of Cav-1 at early stages of cancer development may cause a defect in

DNA damage response leading to genomic alteration and oncogenic

transformation. However, re-expression of Cav-1 at later stages of

cancer may provide a protective mechanism for cancer cells to

survive various harsh conditions such as DNA damage. In fact, the

protective effects of Cav-1 against mechanical shearing damage,

hypoxia, and nutrient depletion, the stresses that are considered the

causes for death of tumor cells during their migration and metastasis,

have been reported recently [48,49,50,51,52]. Thus, re-expression of

Cav-1 at advanced stages of cancer may provide a survival

mechanism for tumor cells, and targeting Cav-1 may represent a

new stratagem for cancer treatment.

Figure 6. The effect of silencing of Cav-1 expression on cell cycle distribution. MDA-MB-468 cells with or without silencing of Cav-1 were
fixed for cell cycle analysis by FACS at the indicated time following IR treatment. The results shown are the representative of three similar
experiments; each bar represents the mean6S.D. of triplicate determinations.
doi:10.1371/journal.pone.0012055.g006

Figure 7. The schematic illustration of HR reporter assay.
doi:10.1371/journal.pone.0012055.g007
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Taken together, our study reveals a novel function for Cav-1 in

repairing DNA, which involves both HR and NHEJ, and suggests

that Cav-1 may play a critical role in orchestrating the response of

cells to DNA damage and in mediating DNA repair.

Materials and Methods

Cell culture
MDA-MB-468 (human breast cancer cell), MCF-7 (human

breast cancer cell), MCF-10A (human mammary epithelial cell),

PC-3 (human prostate cancer cell) and T98G (human glioma cell)

lines were purchased from American Type Culture Collection

(Rockville, MD). NCI/ADR-RES line (ovarian cancer cell line)

(previously named MCF-7/AdrR) was provided by Dr. Kenneth

Cowan of the Eppley Institute for Research in Cancer (Omaha,

NE). HT1080 (human fibrosarcoma cell) line was obtained from

Dr. Mark Brenneman (Rutgers University, Piscataway, NJ). MCF-

7, PC-3 and NCI/ADR-RES cell lines were maintained in RPMI

1640 medium (Invitrogen Life Technologies, Gaithersburg, MD);

MDA-MB-468 and HT1080 cell lines in Dulbecco’s modified

Eagle’s medium (Invitrogen Life Technologies); T98G in Ham’s F-

10/DMEM (10:1) medium (Invitrogen Life Technologies); and

MCF-10A in DMEM/F12 (Invitrogen Life Technologies) supple-

mented with 5% donor horse serum, 20 ng/ml epidermal growth

factor, 10 mg/ml insulin, 0.5 mg/ml hydrocortisone and 100 ng/

ml cholera toxin (Sigma, St. Louis, MO). All the culture media

contained 100 units/ml penicillin and 100 mg/ml streptomycin

(Invitrogen Life Technologies, Gaithersburg, MD); all the cell lines

were cultured and grown in a 5% CO2 - humidified incubator at

37uC.

siRNA transfection
Cells in exponential phase of growth were plated in 60-mm cell

culture plates at 16106 cells/plate and incubated for overnight,

and then transfected with 100 nM of Cav-1 siRNA or a non-target

RNA (Dharmacon, Inc, Lafayette, CO) using Lipofectamine 2000

and OPTI-MEM I reduced serum medium (Invitrogen Life

Technologies, Gaithersburg, MD), according to the manufactur-

er’s protocol. Silencing effects of siRNA were examined by

Western blot and real-time RT-PCR.

Western blot analysis
Cells were washed twice with PBS containing a Protease

Inhibitor Cocktail (Pierce Biotechnology Inc., Rockford, IL) and

lysed with CelLyticTM MT Cell Lysis Reagent (Sigma-Aldrich, St.

Louis, MO). Lysates were transferred to 1.5-ml eppendorf tubes

Figure 8. Silencing of Cav-1 expression reduces the DSB repair by HR. (A) HT-1080 cells were irradiated (5 Gy) for the indicated period of
time, and then cell lysates were prepared for Western blot analysis of Cav-1 and c-H2AX. b-actin was used as a loading control. (B) To determine the
turnover of the silencing effect of Cav-1 siRNA in HT-1080 cells, we performed Western blot of analysis of Cav-1 at the indicated time after siRNA
transfection. (C) HT-1080 cells were transfected with a non-targeting RNA or Cav-1 siRNA. Twenty-four hours after transfection, the cells were
transfected with an HA tagged I-SceI endonuclease expressing vector (HA-I-SceI) or empty vector (HA) by electroporation, followed by Western blot
analysis of Cav-1 and HA-I-SceI (upper panels), and by puromycin screening for HR frequency (lower panels). HR frequency was calculated as follows:
the average numbers of colonies/dish were divided by the plating efficiency of transfection and divided by 85,000 (the total number of cells plated).
The results shown are the representative of three similar experiments; each bar represents the mean6S.D. of triplicate determinations.
doi:10.1371/journal.pone.0012055.g008
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and clarified by centrifugation at 16,0006g for 25 min at 4uC.

Equal amounts of cell lysates (25 mg proteins) were resolved by

SDS-PAGE, and then transferred to nitrocellulose. The mem-

branes were incubated in 5% nonfat milk in TBST (Tris-buffered

saline plus 0.1% Tween 20) at room temperature for 1 h, followed

by immunoblotting with the respective antibodies. Detection of

proteins by enzymed-linked chemiluminescence was performed

according to the manufacturer’s protocol (ECL; Pierce Biotech-

nology Inc., Rockford, IL). Quantification of protein bands was

performed using the ImageJ software (http://rsb.info.nih.gov/ij).

The antibodies used and dilution ratio were: mouse anti-b-actin

(AC-74), anti-tubulin (DM1A) antibodies (1:5000; Sigma-Aldrich,

St. Louis, MO); mouse anti-BRCA1(AB-1) antibody (1:500;

Calbiochem, La Jolla, CA); mouse anti-Cav-1 (Z034) (1:2000;

Zymed Laboratories, San Francisco, CA, USA); rabbit anti-EGFR

(1:1000; Cat. No. SC-03, Santa Cruz Biotech, Santa Cruz, CA);

rabbit anti-H2AX (ab2893), anti-DNA PKcs (ab32566) and anti-

DNA PKcs (phospho S2056) (ab18192) antibodies (1:2000, 1:1000

and 1:500; Abcam, Cambridge, UK); mouse anti-H2AX (phospho

S139) (JBW301) antibody (1:2000; Upstate, Chicago, IL); mouse

anti-PP2A-C (1D6) antibody (1:1000; Chemicon International,

Chandlers Ford, UK); rabbit anti-ATM (D2E2), anti-ATM

(phospho S1981) (10H11.E12)and anti-CHK2 (phospho T68)

(C13C1) (1:2000, 1:1000 and 1:500; Cell Signaling Technology,

Beverly, MA).

Quantitative real-time RT-PCR
Total RNAs from cells were extracted with TriZol Reagent

(Invitrogen Life Technologies, Gaithersburg, MD) following the

manufacturer’s instruction. First strand cDNA synthesis and

amplification were performed using Omniscript RT Kit (QIA-

GEN Valencia, CA). The following human CAV1 primers were

used: forward: 59-CAC ATC TGG GCA GTT GTA CC-39;

reverse: 59-CAC AGA CGG TGT GGA CGT AG-39 [53]. The

b-actin primers, designed by our laboratory [54], were as follows:

forward: 59-GCC AAC ACA GTG CTG TCT GG-39; reverse 59-

GCT CAG GAG GAG CAA TGA TCT TG-39. SYBR Green

quantitative PCR amplifications were performed on the Strata-

gene 3005P Real-TimePCR system. Reactions were carried out in

a 25-ml volume containing 12.5 ml of 2 SYBR Green PCR Master

Figure 9. Expression of Cav-1 expression contributes to the activity of the NHEJ repair pathways. (A) MDA-MB-468 cells with or without
silencing of Cav-1 were irradiated (5 Gy) for the indicated periods of time, and then subjected to Western blot analysis of phosphor-DNA-PKcs and
total DNA-PKcs. (B) Left panel: HEK 293 cells containing a GFP-based chromosomal reporter, EJ5-GFP, were transfected with a caveolin-1 expression
vector or a control empty vector. Thirty-six hours later, the cells were transfected with an HA tagged I-SceI endonuclease expression vector or an
empty vector. Expressions of Cav-1 and HA-I-SceI were determined by Western blot. Right panel: Seventy-two hours following transfection with the
HA-I-I-SceI plasmid, percentage of EGFP expressing cells, which represents the frequency of NHEJ, were determined by flow cytometry. The results
shown are the mean 6 S.E. from three identical experiments. (C) MDA-MB-468 cells with or without silencing of Cav-1were irradiated (5 Gy) for the
indicated periods of time, and then fixed for immunostaining with Cav-1 and EGFR antibodies. Cav-1 staining was shown in green and EGFR staining
in red. DAPI was used for nucleus staining. (D) MDA-MB-468 cells were irradiated (5 Gy) for the indicated periods of time. At the end of IR, cells lysates
were prepared and subjected to immunoprecipitation and immunoblotting with either Cav-1 or EGFR antibodies as indicated. The light chain and
heavy chains were used as loading controls.
doi:10.1371/journal.pone.0012055.g009
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Mix (Bio-Rad). The thermal profile for the real-time PCR was

95uC for 3 min followed by 40 cycles of 95uC for 20 s, 59uC for

30 s, and 70uC for 30 s. The DCt data were collected

automatically. The average DCt of each group was calculated by

the following formula: DCt = average CAV1 gene Ct-average of

HK (housekeeping) gene’ Ct. DDCt was calculated by DDCt =DCt

of non-target control group - DCt of the siRNA transfection group.

The fold-change for CAV1 expression level was calculated using

22DDCt.

Immunofluorescence
Cells were cultured on glass slides and stained as described

previously [55]. Briefly, cells were treated with 5 Gy of IR, and

then fixed in PBS containing 4% paraformaldehyde (EMD

Chemicals, Merck Corporation, San Diego, CA) at room

temperature for 20 min. Fixed cells were rinsed with PBS and

with 25 mM NH4Cl in PBS for 10 min to quench free aldehyde

groups. The cells were permeabilized by incubation in freshly-

prepared 0.1% Triton X-100/PBS for 15 min. The cells were pre-

incubated for 1 h in PBS containing 3% bovine serum albumin

(BSA) and incubated for 2 h in diluted antibodies in PBS

containing 3% BSA. Following washing three times, the cells

were incubated for 1 h in diluted flourescence–labeled secondary

antibodies. After washing with PBS, immuno-stained cells were

examined with a Zeiss LSM 510 Meta laser scanning confocal

microscope or ApoTome Microscope (Carl Zeiss Ltd, Germany).

Primay antibodies and dilution ratio were: rabbit anti-Cav-1

antibody (1:1000; ab2910, Abcam, Cambridge, UK); mouse anti-

BRCA1 antibody (1:50; Calbiochem, La Jolla, CA); sheep anti-

EGFR (1E4) antibody (1:400; Upstate, Chicago, IL); mouse anti-

PP2A-C antibody (1:100; Chemicon International, Chandlers

Ford, UK); mouse anti-H2AX (phospho S139) antibody (1:2000;

Upstate, Chicago, IL). All secondary antibodies were purchased

from Molecular Probes (Eugene, OR) and used at a dilution of

1:500.

Immunoprecipitation
Cells were washed with PBS, collected, and lysed with RIPA

buffer (150 mM NaCl, 1% NP-40, 0.5% deoxycholate, 0.1% SDS,

50 mM Tris pH 8.0) containing Protease Inhibitor Cocktail

(Pierce Biotechnology Inc., Rockford, IL). The lysates were

sonicated and centrifuged at 16,0006g for 25 min at 4uC. The

supernatant was pre-cleared with protein A/G agarose (1:25

dilution), and immunoprecipitation was carried out using the

respective antibodies. The immuno-complexes were washed four

times with RIPA buffer, and proteins were eluted with 2X SDS

sample buffer by boiling for 5 min. Ten ml precipitated proteins

were resolved on SDS–PAGE and subjected to Western blot

analysis using the respective antibodies.

Immunofluorescent detection of ssDNA
Detection of ssDNA was carried out as reported [56]. Briefly,

cells were grown on cover slips for overnight, and then incubated

in medium containing 30 mmol/l BrdU (Bromodeoxyuridien,

Sigma) for 24 h in the dark. To visualize ssDNA, the cells were

fixed with methanol at 220uC for 10 min and then incubated in

blocking solution (2% bovine serum albumin in PBS) at room

temperature for 30 min, followed by incubation with an anti-BrdU

Figure 10. Silencing of Cav-1 expression sensitizes cells to IR and bleomycin. MDA-MB-468 cells with or without silencing of Cav-1 were
treated with varying doses of c-radiation, and colony formation assay was performed to compare cell survival. Results shown are the representative of
three similar experiments; each point represents mean 6 SD of quadruplicate determinations of the experiment.
doi:10.1371/journal.pone.0012055.g010
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antibody (Becton Dickinson, Franklin Lakes, NJ, USA). The cells

were washed four times with PBS and then incubated with

rhodamine red-X- conjugated goat anti-mouse IgG (Jackson

ImmunoResearch Laboratories, Inc.) for 30 min at room

temperature in the dark. The cells were counterstained with

DAPI in blue for total DNA. Fluorescent images were taken using

Carl Zeiss fluorescent microscope (Axiovert-200M) equipped with

a Carl Zeiss digital camera (AxioCam MRC). The nuclear areas

were selected using the ImageJ v1.37 software (http://rsb.info.nih.

gov/ij/) and fluorescent signals from ssDNA and total DNA were

integrated. The ratio of ssDNA signal intensity to total DNA

represents the relative level of ssDNA in the nucleus. For each

experiment, at least 30 cells were analyzed. Data were reported as

mean 6 SE from five independent experiments. Statistical

significance of fluorescent signal intensity and ratio of signal

intensity in cells with or without silencing of Cav-1 were analyzed

by two-tailed t-test.

HR assay
Human HT1080 cells were transfected with either a Cav-1

siRNA or a non-targeting RNA. Two days after transfection, cells

were trypsinized and resuspended in gene pulser electroporation

buffer. Four mg of an I-SceI expression vector pCMV(3_NLS) HA-

I-SceI or an empty vector were introduced into 3.56105 cells by

electroporation. The cells were then seeded at 85,000 cells/100-

mm culture dish for puromycin selection. The seeded cell cultures

were re-fed with fresh medium containing 1 mg/ml puromycin on

day 2 following electroporation, and the puromycin - containing

medium was changed on days 6, 10, 12, and 14 days. At the end of

selection, cells were fixed and stained, and colonies with 50 or

more cells were counted.

NHEJ frequency assay
The frequency of total NHEJ was determined using a GFP-

based chromosomal reporter, EJ5-GFP, as previously described by

Bennardo et al. [37]. Briefly, the transformed human embryonic

kidney HEK293 cells containing a GFP-based chromosomal

reporter, EJ5-GFP, were transfected with a caveolin-1 expression

vector or a control empty vector. Thirty-six hours later, the cells

were transfected with an HA tagged I-SceI endonuclease

expression vector or a control empty vector. Seventy-two hours

following transfection with the HA-I-I-SceI plasmid, percentage of

EGFP expressing cells, which represents the frequency of NHEJ,

were determined by flow cytometry.

Analysis of cell cycle distribution
Cells were trypsinized, washed, and fixed with 80% ethanol for

1 hour. Following treatment of cells with RNase and propidium

iodide (Sigma, St. Louis, MO), cell cycle distribution (5,000 cells)

was analyzed by fluorescence activated cell sorting (FACS) using a

flow cytometer (Coulter Cytomics FC, Beckman Coulter, Miami,

FL).

Colony formation assay
The numbers of cells to be plated for each IR dose and drug

concentration were determined by a pilot experiment in order to

yield 50–150 surviving colonies/100-mm plate. For IR tests, cells

were plated and incubated for 18 h at 37uC, and then were

irradiated with a Cs-137 c-irradiator (Nordion Inc., Canada). Two

weeks after IR treatment, colonies were fixed with methanol and

stained with 1% crystal violet. To calculate the survival fraction,

number of colonies was normalized to the number of cells plated.

For drug tests, cells in 60 - mm plates were treated with bleomycin

(EMD Chemicals, Merck Corporation, San Diego, CA) for 2 h,

and then the drug was washed off with drug-free medium. The

survival fractions were calculated as described above.

Statistical analysis
Student’s t-test was used to determine the degree of significance.
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