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Nitric oxide (NO) is a short-lived, diatomic, lipophilic gas that
plays an integral role in defending against pathogens. Among
its many functions are involvement in immune cell signaling
and in the biochemical reactions by which immune cells
defend against bacteria, fungi, viruses and parasites. NO
signaling directs a broad spectrum of processes, including the
differentiation, proliferation, and apoptosis of immune cells.
When secreted by activated immune cells, NO diffuses across
cellular membranes and exacts nitrosative and oxidative
damage on invading pathogens. These observations led to
the development of NO delivery systems that can harness the
antimicrobial properties of this evanescent gas. The innate
microbicidal properties of NO, as well as the antimicrobial
activity of the various NO delivery systems, are reviewed.

Introduction

Nitric oxide (NO) is an endogenously produced molecule critical
in defending against infection.1 Depending on its concentration,
NO exerts antimicrobial effects in two ways. At low concentra-
tions, NO acts as a signaling molecule that promotes the growth
and activity of immune cells.2 At high concentrations, such as
during the respiratory burst of a neutrophil, NO covalently binds
DNA, proteins and lipids, thereby inhibiting or killing target
pathogens. Considering that NO is an integral and highly
conserved part of the host immune response, it is not surprising
that few bacteria are able to escape the antimicrobial effect
of NO.3-5

Exogenous NO delivery systems capitalize on NO’s immuno-
regulatory and antimicrobial properties to treat infectious disease.
Multiple NO delivery systems have been developed, each
attempting to provide NO in a safe, effective and convenient
manner. Available technologies range from simple gaseous NO
(gNO) stored in a tank6 to complex (NO molecules packed
within nanoparticles7). Although only a small subset of NO

delivery systems have been evaluated for antimicrobial efficacy,
those that have been evaluated are bacteriostatic or bactericidal.
The success of NO delivery systems in treating laboratory models
of infection spurs continued development of this promising
technology.

This article summarizes the immunoregulatory actions of
NO as they pertain to the mammalian immune system. The
biochemistry underlying the antimicrobial actions of NO is
also covered. Finally, the mechanism of delivery, antimicrobial
activity and strengths and limitations of the various NO delivery
systems are reviewed in depth.

The Role of Nitric Oxide in Immunity

NO production is a key feature of immune cells. NO is
principally synthesized by one of three NO synthase (NOS)
enzymes: neuronal NOS (nNOS), inducible NOS (iNOS) and
endothelial NOS (eNOS). The isoforms differ in respect to
regulation, amplitude and duration of NO production, as well as
cellular and tissue distribution.8 Both eNOS and nNOS act
as constitutively expressed proteins, and their expression is not
limited to endothelial cells or neurons.9 In fact, NO is produced
from both nNOS and eNOS during infection and autoimmu-
nity.10-12 Cell types that contain eNOS and nNOS generate low
fluxes of NO for short periods of time. NO at these low
concentrations (, 1 mM) acts as an intracellular signal, activating
or inhibiting different proteins.13,14 The third isoform, iNOS,
which was originally described in activated macrophages,
predominantly functions as a component of the innate immune
system. Cytokines and microbial products, often acting synergis-
tically, stimulate iNOS expression.8 iNOS or eNOS are expressed
in dendritic cells, natural killer (NK) cells, mast cells, monocytes,
macrophages, microglia, Kupffer cells, eosinophils and neutro-
phils, as well as other cells involved in immune reactions.9

Unlike nNOS and eNOS, which are tightly regulated and
dependent on calcium entry into the cell, iNOS produces high
amounts of NO when induced. When NO is produced at high
concentrations (. 1 mM), it is able to perform nitrosation,
nitration, and oxidation reactions. iNOS is regulated at multiple
levels ranging from its transcription, to its synthesis, stability,
activity and degradation.12 Relative to nNOS or eNOS, iNOS is
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less susceptible to feedback inhibition by NO.9,15 This allows
iNOS to continually produce NO as a means of defense against
microbes when activated. The use of exogenous NO for
antimicrobial therapy is similar to action of iNOS in that both
are designed to produce high amounts of NO for longer periods of
time, to fight microbes.

Biochemistry of NO

NO is a lipophilic and hydrophilic natural gas, with a small
Stokes radius that allows it to cross membranes readily.1 NO is a
radical gas, and is therefore unstable in an oxygen environment.
Reactions of NO with oxygen or superoxide spontaneously
produce reactive nitrogen and oxygen intermediates that lead to
the formation of a variety of antimicrobial species. The formation
of these intermediates becomes biologically significant when the
concentration of NO is greater than 1 mM. At these concentra-
tions, reactive nitrogen oxide species (RNOS) causes oxidative and
nitrosative damage by altering DNA, inhibiting enzyme function,
and inducing lipid peroxidation, which account for the majority
of NO’s antimicrobial properties.13

NO derivative molecules such as peroxynitrite (OONO-),
S-nitrosothiols (RSNO), nitrogen dioxide (NO2), dinitrogen
trioxide and dinitrosyl-iron complexes are generated.16 Other
NO-related species may be formed within target microbes if
oxygen radicals are also present. Each of these species is distinct
and has its own molecular stability and reactivity. Peroxynitrite,
which has greater cytotoxic potential than NO or O2

- alone is an
example of the synergy between ROS and RNOS interactions.1,17

Like NO, peroxynitrite is also capable of passing through cell
membranes; however its greater reactivity with lipids and proteins
may limit its ability to diffuse into target cells relative to NO.
Nitrogen dioxide can be formed from the autoxidation of NO, or
by the oxidation of NO2

- by myeloperoxidase and H2O2. Potent
nitrosating agents can arise from the auto-oxidation of NON with
thiols and nonheme iron.1,17,18 Reactive nitrogen intermediates
can also react with proteins through heme groups, iron sulfur
clusters, phenol or aromatic amino acid residues or amines.19,20

Inherent Antimicrobial Properties of NO

Chemical alteration of DNA by RNOS is one of the main
mechanisms of NO mediated antimicrobial action. NO damages
DNA by three mechanisms: direct reaction of RNOS with DNA
structure, inhibition of DNA repair and increased generation of
alkylating agents and hydrogen peroxide, which are genotoxic.
NO itself does not chemically alter DNA, but rather damage is
caused by RNOS formed from the autoxidation of NO.21

N-nitrosating intermediates (N2O3 has been proposed) deaminate
cytosine, adenine and guanine. Peroxynitrite and NO2

N in
particular induce DNA strand breaks, abasic sites and other
DNA alterations.1,22 NO related DNA damage has also been
shown in intact bacteria.21,23

NO inhibits DNA repair enzymes associated with the repair of
alkylation to DNA.24,25 DNA alkyl transferases have cysteine
residues whose -SH group reacts with NO to form S-NO adducts.

These adducts inhibit the transfer of the alkyl group from guanine
to the protein. RNOS are capable of reacting with and modifying
proteins at cysteine, methionine, tyrosine, phenylalanine and
tryptophan residues.18-20

NO-associated lipid damage has been demonstrated with
peroxynitrite and nitrogen dioxide. Peroxynitrite has been
shown to mediate lipid peroxidation of liposomes.1,26 Lipid
peroxidation has been shown to contribute to the antimicrobial
activities of NO.27

The cytotoxic actions of NO are enhanced by the production
of acid, glutathione, and reactive oxygen species (ROS) by
macrophages.8 S-nitrosylation (addition of NO+ to sulfhydryl
groups) of thiols is an important mechanism for NO mediated
toxicity against microbes. S-nitrosothiols (RSNO), N2O3 and
dinitrosyl-thiol-iron complexes are potent nitrosylators. GSNO
can be actively taken up and processed by microbial systems
which typically function to import glutathione and other short
peptides.28 Modification of thiols can alter protein function,
and the alteration of surface thiols has been implicated in
S-nitrosothiol mediated inhibition of Bacillus cereus spores.29

NO readily reacts with proteins that contain heme moieties.
These include guanylate cyclase, cytochrome P450 and NOS. At
low concentrations, NO binds reversibly to the Fe(II) moiety in
the guanylate cyclase, ultimately resulting in activation of the
protein. At high concentrations, RNOS irreversibly binds to heme
proteins, resulting in heme removal from the protein. The release
of iron from metalloenzymes causes bacterial iron depletion.1,13

NON has been shown to reduce Fe(III) complexes, allowing for the
enhancement of Fe(II) catalyzed formation of hydroxyl radicals.30

Gastric NO also plays a role in host defense. Enteropathogens
are capable of surviving for long periods of time in acid alone, but
the combination of acid and nitrite is bactericidal.31,32 The role of
acidified nitrate is also relevant to combating common cutaneous
pathogens. Nitric oxide can be generated from sweat nitrates in
the acidic environment of the skin surface, and this is thought to
protect against potential invasion by pathogens.33,34

Interestingly, while NO can boost the antimicrobial function of
the respiratory burst, it can also protect host cells from oxidative
injury. NON antagonizes oxidant membrane injury by terminating
lipid peroxidation reactions.26 Though NO can protect against
hydrogen peroxide mediated cytotoxicity in mammalian cells, it
dramatically potentiates the cytotoxicity of hydrogen peroxide in
E. coli.35 Prokaryotes are more sensitive to NO/H2O2 treatment
because bacteria depend on iron sulfur clusters to a greater extent
than mammalian cells. The subsequent degradation of these
proteins by NO or RNOS allows the released Fe to bind DNA.
This free iron is then capable of catalyzing the formation of highly
reactive free radicals that damage membranes and DNA.13,36

As microbial resistance to antibiotic therapy is a growing threat
to our ability to combat infection, it is important to determine if
there are any mechanisms that would confer resistance of NO to
bacteria. To date the ability of bacteria to develop resistance
to exogenous NO treatments has yet to be demonstrated. In a
recent study, the potential for Staphylococcus aureus, methicillin-
resistant S. aureus (MRSA), Staphylococcus epidermidis, E. coli and
Pseudomonas aeruginosa to develop NO resistance was evaluated
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using spontaneous and serial passage mutagenesis assays.5 No
significant increase in MIC for any of the bacterial species was
observed. The lack of bacterial resistance is attributed to the
multiple mechanisms of NO generated bacterial toxicity.5,6,37-40

The versatility of NO allows it to quickly penetrate microbial cell
membranes, where various nitrosative and oxidative reactions can
proceed, as discussed above. In order for microbial resistance
to occur, multiple bacterial mutations would have to evolve
concurrently. There are properties that can confer some
protection from NO to bacteria. Several studies show that
bacterial exposure to NON leads to increased expression of
bacterial enzymes that have evolved to detoxify this radical.
Flavohemaglobin analogs are known to be protective in cells that
are exposed to NON, including S. aureus and S. Typhimurium.41,42

The induction of lactate dehydrogenase (LDH) by NON observed
in methicillin-sensitive (MSSA) and methicillin-resistant S. aureus
protects the bacteria from physiologic concentrations of NO. NO
induced LDH allows S. aureus to maintain redox homeostasis
during nitrosative stress.43 These mechanisms are specific for
allowing microbes to survive host defenses. However, these
compensatory mechanisms are not capable of protecting patho-
gens from the high levels of NO exposure seen with the use of
NO donor drugs. These drugs are microbicidal for a wide array
of pathogens, including S. aureus.38-40,44,45 The inherent broad
spectrum antimicrobial activity of NO make it a worthy target for
development and clinical use.

Nitric Oxide Delivery Platforms

In order to harness the potential benefits of NO as an
antimicrobial agent, this evanescent gas needs to be delivered to
target cells at precise concentrations for significant periods of time
in a convenient and non-toxic manner. Only a handful of NO
delivery platforms have been evaluated for their antimicrobial
properties. The NO delivery platforms evaluated include: gaseous
NO from a tank, NO generation from a probiotic patch, NO
released or donated from a pro-drug, and release and generation
from nanoparticles.

Gaseous NO. The antimicrobial properties of NO were
initially investigated by exposing pathogens to gaseous NO
(gNO). Simple application of gNO was effective against bacteria,
fungi, mycobacteria, parasites and viruses.46 In order to deliver
gNO to an infected tissue a specialized chamber is required. The
chamber allows for controlled delivery of NO and prevents
oxygen species from reacting with the NO to produce toxic NO2.
Continuous exposure to 80 ppm gNO in the controlled chamber
inhibited growth of P. aeruginosa and S. aureus.47 When levels are
raised to 160 ppm, gNO is bactericidal. Interestingly, intermittent
exposure for 30 min every four hours is also effective, but requires
twice the concentration of gNO to be bactericidal.48 At 200 ppm,
gaseous NO reduced S. aureus burden in a rabbit wound model
but was not cytotoxic to human fibroblast, keratinocyte,
endothelial, monocyte and macrophage cells in culture.48,49

Although effective, the delivery device is cumbersome as it
includes pressure regulators, heaters, humidifiers and multiple
tanks of gas. Furthermore, in order to achieve the reported results,

three 8 h treatment sessions were required. Gaseous NO is already
approved for the treatment of pulmonary hypertension of the
newborn where it has proven to be a safe and cost-effective
alternative to extracorporeal membrane oxygenation.50 Clinical
experience with gNO shows that it is a viable option for the
hospital setting where patients are immobile and there is access to
specialized equipment, but it is too costly (at $125 per hour of
treatment) and impractical for other settings.51

NO probiotic patch. A probiotic patch that releases gNO has
also been developed.52 In this system, immobilized Lactobacilli
convert glucose into lactic acid. The lactic acid reacts with nitrite
salt (Fig. 1A) to produce gNO that then diffuses through the
mesh lining of the patch to reach the target tissue. The production
of lactic acid by bacteria limits the rate at which NO is formed
and allows for continued production of variable levels of NO for
over a 24 h period.53 Because the rate of NO production is
dependent on the activity of the lactobacilli, there is patch to
patch variability in peak gNO production. Some patches produce
in excess of 400 ppm gNO while others do not surpass
150 ppm.53 Despite the variability in NO production, in vitro
tests have shown the patch to be cidal against E. coli, S. aureus,
P. aeruginosa, MRSA, T. mentagrophytes, T. rubrum and have
demonstrated some activity against A. baumannii.52 In vivo results
were less favorable—in an S. aureus-infected open wound model
the patch reduced bacterial burden, but this impact did not reach
statistical significance.53 The probiotic patch may be a viable
alternative to gNO from a tank as it is capable of producing
similar concentrations of gNO, but at this time the patch requires
additional modifications to achieve consistent release rates.

Acidified nitrite. Acidified nitrite creams also produce NO
through the reaction of nitrite with an acid. Unlike the probiotic
patch that relies on lactic acid, acidified nitrite creams use ascorbic
acid to reduce nitrite to NO. These two part cream preparations
are easy to transport and use but must be mixed together

Figure 1. Chemical structure of sodium nitrite (A), diazeniumdiolate
bound to an amine group (B) and S-Nitrosothiols group (C).
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immediately before being applied. Another advantage of the
cream is it penetrates the skin and produces NO within the
follicular ostia.54 The potency of the cream can be regulated by
varying the concentration of nitrite and ascorbic acid. The
standard preparation produces a quick burst of NO (12 ppm) that
drops rapidly over one hour.54 Comparatively weak to gNO
delivery devices, daily treatment with acidified nitrite cream is still
effective against tinea pedis,55 molluscum contagiosum,56 myco-
bacterium ulcerans57 and MRSA abscesses58 in human trials. The
low levels of NO may still be effective because of the cream’s
ability to penetrate the skin as well as to stimulate the host
immune system.54 Leishmania in culture is also sensitive to
acidified nitrite, but when applied to human subjects, only 28%
showed clinical improvement.59 Although effective against a
variety of cutaneous infections, the use of acidified nitrite cream is
limited by skin irritation. When applied to normal skin, the
resulting erythema and inflammation are equivalent to that of
psoriasis.54 Given the variety of non-irritating antimicrobial
treatments available, the irritating effects of acidified nitrite are
likely to be a barrier to use of the drug.

Organic nitrates and sodium nitroprusside. NO donor drugs
are the largest and most well understood of the NO delivery
systems. Sodium nitroprusside and organic nitrates (nitroglycerin
and isosorbide mononitrate) are not used as antibiotics, but are
commonly used as blood pressure lowering medications to
treat cardiovascular disease. Sodium nitroprusside spontaneously
releases NO, but gives off carbon monoxide as a byproduct.
Organic nitrates only release NO in tissues expressing the enzyme
mitochondrial aldehyde dehydrogenase 2, but this enzyme is
irreversibly inactivated with use and causes tachyphylaxis (also
known as nitrite/nitrate tolerance).60 These drugs have limited
antibacterial and biofilm disrupting properties61,62 and are
unlikely to be used as antibacterial agents given their potent
cardiovascular effects.

Diazeniumdiolate (NONOates). Diazeniumdiolates, also
known as NONOates, consists of a diolate group [-N(O-)n = O]
bound to a nucleophile adduct (Fig. 1B).63 Frequently, the
nitrogen of an amine group is used as the nucleophile. A
diolate group can be added to nitrogen by exposing the base
compound to gNO in the absence of oxygen. The simplicity
of diazeniumdiolate synthesis has allowed for a variety of
NONOates to be created. In the same way that NO molecules
are added to the base compound, NONOates spontaneously
release up to two molecules of NO. The rate of release is
dependent on the stability of bond between the nucleophile and
the diazeniumdiolate.63 Side groups joined to the nucleophile
can alter the rate of NO release from seconds to hours or even
prevent release of NO until the side group is enzymatically
cleaved.64,65 Not all NONOates are clinically useful because
the parent compound may become toxic when the diazenium-
diolate group is converted to a reactive N-nitroso group.66 For
example, O(2)-vinyl 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate
(V-PYRRO/NO) is an NONOate that is activated by hepatic
cells. The N-nitroso byproduct of V-PYRRO/NO metabolism is
the potent hepatocarcinogen N-nitrosopyrrolidine.67 Clearly,
toxic or carcinogenic NONOates should not be used to treat

infections when many effective and non-toxic alternatives exist.
Two major strategies have been adopted in an effort to mitigate
toxicity: using an established drug or a ubiquitous molecule
already present in cells as the parent molecule or incorporating
the parent compound into a large, insoluble structure.

Although there is a large number of NONOates being
investigated for use as vasodilators or as chemotherapeutics, only
a few have been evaluated for their antimicrobial activity.
Diethylenetriamine, a ubiquitous polyamine found in both
eukaryotic and prokaryotic cells,68 can be used to make the
NONOate DETA-NO. DETA-NO is effective against gram
negative and gram positive bacteria.69,70 Furthermore DETA-NO
inhibits candidal growth and acts synergistically with azole
antifungals.71 In an effort to further reduce the potential toxicity
of the diazeniumdioate, a hybrid of ketoconazole diazeniumdioate
was synthesized and shown to be more potent than ketoconazole
alone.72 NONOates, especially those based on established
medications, are a promising source of NO releasing antimicro-
bials and would benefit from further study.

In order to reduce the risk of the toxic metabolites, several
groups have created NONOates bound to large immobile struc-
tures and nanoparticles.73-77 Sol-gel based coatings which integrate
N-(6-aminohexyl) aminopropyltrimethoxysilane (AHAP3) can be
loaded with diazeniumdiolates.78 When the NO molecules are
subsequently released, the metabolites remain bound to the sol-gel
coating. However, even with the application of a surface coating,
the toxic N-nitroso groups are still cytotoxic to adjacent fibroblast
cells at antimicrobial concentrations (40%).78 Atomic force
microscopy of E. coli and P. aeruginosa exposed to NONOate
coatings showed disorganized adhesion and increased surface
roughness similar to the changes caused by amoxicillin.27 These
findings suggest that NONOate coatings are as effective in
perturbing cell wall structure as a traditional antibiotic that targets
cell wall synthesis. In in vitro studies of silicone,73 steel74 and
polypropylene implants,75 NONOate coatings decreased bacterial
adhesion of S. aureus, E. coli and P. aeruginosa. The results of the
two available in vivo studies are mixed. In the first study,
NONOate-coated silicone implants decreased the rate of infection
by 82%.73 The second study found an increased number of
bacteria surrounding the NONOate coated polypropylene
implants, but the coating on the polypropylene implant only
released 1/6 as much NO as the coating used in the first study.75

Clearly, proper NO dosing is critical to the antimicrobial activity
of NO delivery systems. A NO releasing wound dressing made
from nanofibers has also been developed. The dressing inhibited
S. aureus growth in vitro and, in a small human case series,
accelerated healing of cutaneous leishmaniasis ulcers.79 The major
limitation of NONOate coatings are the cytotoxicity and the
limited number of NO molecules that can be released by the
coating in comparison to the lifetime of the device. Nonetheless,
the initial release of NO during the first 24 h after implantation is
sufficient to decrease the rate of infection, making the currently
available coatings clinically valuable.73

S-nitrosothiols. S-nitrosothiols are molecules that contain NO
bound to a thiol (sulfhydryl) group (R-SH; Fig. 1C). NO is
released when the bond between the two is cleaved. Although this

274 Virulence Volume 3 Issue 3



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

process occurs in the physiologic environment, it does not occur
spontaneously. Three mechanisms of release have been identified:
copper ion-mediated decomposition, direct reaction with ascor-
bate and homolytic cleavage by 550–600 nm wavelength
light.80-82 Additionally, S-nitrosothiols can transfer bound NO
to other thiol groups through a process called transnitrosylation.83

Multiple modes of action may give S-nitrosothiols unique
properties compared with gNO and other NO donors. A
disadvantage of S-nitrosothiols is that target pathogens have
clearance mechanisms that rapidly degrade the active form of the
drug.84 S-nitrosoglutathione and S-nitroso-N-acetylcysteine are
bactericidal against common Gram-negative and Gram-positive
pathogens.85,86 GSNO is bactericidal at concentrations safe to
human cells—about twice the concentration of GSNO in human
serum.87,88 S-nitrosothiols like GSNO, SNAC and S-nitroso-N-
acetyl-DL-penicillamine (SNAP) have antimicrobial activity
against parasites including Leishmania species,89 T. cruzi,90

P. falciparum91 and A. castellanii92 in vitro. Cystine residues
found in proteins can also be S-nitrosylated. This technique
has led to S-nitrosylation of albumin which is effective against
S. Typhimurium in vitro.93 Human studies of S-nitrosothilos are
limited to case reports and one small study of 16 patients with
cutaneous leishmaniasis. All patients treated with SNAP had
complete healing of their ulcers while those treated with vehicle
alone showed no clinical improvement after one month.94 The
utility of S-nitrosothiols is limited because thiols spontaneously
form disulfide bonds in the presence of water and heat. Thus most
S-nitrosothiols must be kept refrigerated as dry powder until they
are mixed and administered.

Zeolites. Zeolites are nanoporous materials composed of a
metal-organic framework. Their large surface area and metallic
components allow zeolites to bind large amounts of NO relative
to their size. Although stable when dry, when exposed to moisture
the water molecules force NO from the zeolite.95 The rate of NO
release can be adjusted by altering the composition of the metal-
organic framework. Although NO releasing zeolites are a recent
discovery, they were shown to have antibacterial properties against
P. aeruginosa, MRSA, C. difficile,96 E. coli and B. subtilis.97 For the
zeolites examined, NO release is rapid (peaking after 10 min) and
short lived (complete release after 1 h). Fast releasing zeolites
could be used as disinfectants or as a coating for medical devices.
Further work may lead to slow releasing zeolites more suitable for
treating infections.

Nanoparticle Platforms

Nanoparticle platforms have unique properties conferred upon
them by their small size. In regards to NO delivery, the design
of the nanoparticle can influence release rates and sites of
delivery.7,98-100 Furthermore, certain nanoparticles have intrinsic
antimicrobial activity or can deliver multiple drugs simulta-
neously. Because these platforms are versatile and customizable,
they are an optimal system for delivering NO.

Silica-based nanoparticles can be fashioned from the same
materials used to make NONOate implant coatings.99,100 One
technique developed by Carpenter, Slomberg, Rao and

Schoenfisch99 replaces the steel surface of an implant with a
silica-based AHAP doped sol-gel. These NONOate covered
nanoparticles are effective against P. aeruginosa in vitro. As the size
of the particles shrinks, more nanoparticles are able to associate
with the surface of the pathogen and the antimicrobial activity
rises. Remarkably, the toxicity to human fibroblast in culture did
not increase with the smaller-sized particles. In a different study,
a NONOate coated silica nanoparticles synthesized without
micelles were more effective than a small molecule NONOate in
killing P. aeruginosa. The same nanoparticles were bactericidal
when applied to P. aeruginosa, E. coli, S. aureus, S. epidermidis
and C. albicans biofilms.100 At concentrations sufficient to kill
over 99% of the bacteria in a biofilm, the nitric oxide releasing
nanoparticles were no more toxic to fibroblasts than the
antiseptics povidone iodine and chlorhexidine.

In reviewing the various platforms and their shortcomings, a
platform that does not rely on NO-donating chemicals or external
reducing agents to generate and release NO would be ideal.
Recently, a sol-gel based NO releasing nanoparticle (NO-np) was
described that can generate NO through the thermal reduction of
nitrite and release it in a slow, sustained manner.7 The core of the
nanoparticle is composed of a tetramethoxysilane derived silica
network augmented with polyethylene glycol (PEG), chitosan
and a glass forming disaccharide (Fig. 2). During synthesis, nitrite
is encapsulated within the composite matrix of the nanoparticle
and then reduced to NO. Production of NO from nitrite is
accomplished by a thermal reduction process requiring the long
range transport of electrons from the sugar glass throughout the
composites extensive hydrogen bonding network.7,101,102 Chitosan
is a positively charged natural polymer that contributes to the
structure of the nanoparticle but also has antimicrobial properties
of its own.103 After the sol-gel is lyophilized it spontaneously
breaks into nanoparticles. The final product is shelf stable at room
temperature until it is exposed to moisture. The dry nanoparticles
are 10 nm in diameter and form aggregates approximately 130 nm
across.7 Once exposed to water, the nanoparticles expand and
steadily release NO over 24 h. The rate and total NO released
can be modified by changing the amount of nitrite or the
molecular weight and the concentration of PEG incorporated
into the molecule. The nanoparticle platform shows minimal
toxicity to human fibroblasts in culture,7 applied topically in
various murine models, or when administered intravenously in a
hamster model.104 NO-np has clinical potential because it is an
inexpensive, simple to synthesize, shelf stable and nontoxic
method for the sustained delivery of NO.

In culture, both Gram-positive (MRSA, S. pyogenes and
E. faecalis) and Gram-negative (E. coli, K. pneumoniae and
P. aeruginosa) bacteria are killed by NO-np doses corresponding
to 1.25–5 mM NO.105 Bacteriostatic concentration of NO-np
inhibited growth for 12 to 24 h dependent on bacterial species.
When NO-np was co-administered with glutathione (GSH),
GSNO was generated from the nitrosylation of GSH. This
combination treatment even more potently inhibited the growth
of MRSA, E. coli, P. aeruginosa and K. pneumonia in culture.106 In
murine models, topically applied NO nanoparticles were also
effective in decreasing bacterial burden in MRSA-infected wounds
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by 99.9%,107 MRSA-infected dermal abscesses by 81%108 and
A. baumannii-infected wounds by approximately 90%.109 In a
MRSA intramuscular abscess model, topical and intralesional
NO-np were superior to vancomycin. While vancomycin
decreased wound burden by 94%, topical NO-np and intra-
lesional NO-np reduced bacterial burden by 98% and 99%,
respectively.110 NO-np is also effective against fungal infections
caused by C. albicans (Nacherla et. al, in press) and
T. metagrophytes (unpublished findings). An additional benefit
of NO-np is their proven ability to accelerate wound healing
through recruitment of macrophages, upregulation of collagen
gene expression, and acceleration of neoangiogenesis as compared
with wounds treated with an empty nanoparticle.111

While other NO delivery systems are bulky, expensive, toxic or
unstable, NO-np is a potent and locally acting antimicrobial that
is low cost, shelf stable and easy to apply. The combination of
broad spectrum antimicrobial activity and the ability to accelerate
healing makes NO-np an ideal candidate for treating contami-
nated wounds. Future work with NO-np is directed at further
characterizing its antimicrobial properties in animal models of
infection and eventually in human trials.

Conclusion

NO is an important cellular signaling molecule and potent
antimicrobial. Its role in physiologic function as well as its
potential as a therapeutic agent won it the title of Molecule of the
Year in 1992. Over the ensuing 20 years, a plethora of delivery
systems have been developed to harness NO for clinical use. Only
a few of the available systems have been assessed for their efficacy
as an antimicrobial. However, the NO delivery systems assessed
thus far exhibit a broad spectrum of antimicrobial activity in vitro
and in vivo. The limited work in humans shows that topically
delivered NO is clinically useful and no more toxic than currently
available antimicrobials. Presently, research into the use of NO as
an antimicrobial is focused on characterizing and optimizing
delivery systems using in vitro and animal studies. In the future,
studies need to investigate the safety, efficacy and feasibility of use
in humans.
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