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Abstract
Energy production in the United States for domestic use and export is predicted to rise 27%

by 2040. We quantify projected energy sprawl (new land required for energy production) in

the United States through 2040. Over 200,000 km2 of additional land area will be directly

impacted by energy development. When spacing requirements are included, over 800,000

km2 of additional land area will be affected by energy development, an area greater than the

size of Texas. This pace of development in the United States is more than double the his-

toric rate of urban and residential development, which has been the greatest driver of con-

version in the United States since 1970, and is higher than projections for future land use

change from residential development or agriculture. New technology now places 1.3 million

km2 that had not previously experienced oil and gas development at risk of development for

unconventional oil and gas. Renewable energy production can be sustained indefinitely on

the same land base, while extractive energy must continually drill and mine new areas to

sustain production. We calculated the number of years required for fossil energy production

to expand to cover the same area as renewables, if both were to produce the same amount

of energy each year. The land required for coal production would grow to equal or exceed

that of wind, solar and geothermal energy within 2–31 years. In contrast, it would take hun-

dreds of years for oil production to have the same energy sprawl as biofuels. Meeting

energy demands while conserving nature will require increased energy conservation, in

addition to distributed renewable energy and appropriate siting and mitigation.

Introduction
By 2040, energy produced in the U.S. for domestic use and export is predicted to rise 27% to
support both domestic and international demand [1]. The challenge of meeting energy
demands while minimizing damaging climate change is widely recognized [2,3], but there is an
additional challenge that also warrants attention–the land use implications of growing energy
demand. The growing land use footprint of energy development, termed ‘energy sprawl,’ will
likely cause significant habitat loss and fragmentation with associated impacts to biodiversity
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and ecosystem services [4–7]. However, the land use implications of future energy develop-
ment are not well understood.

Here we use Energy Information Administration (EIA) analyses to estimate land area that
will be newly required for energy production in the United States through 2040 [1]. Ours is the
first analysis to take into account the ongoing and projected unconventional oil and gas devel-
opment made possible by recent technological advances (i.e., hydraulic fracturing and direc-
tional drilling) [8–10]. This is important because by 2040, unconventional gas production in
the United States is expected to double and will account for nearly 85% of all US natural gas
production [1].

We also introduce a new concept, the “time to land use equivalency,” for renewable versus
extractive (fossil fuel and nuclear) energy sources. Renewable energy can use the same land
year after year [11,12], but extractive energy depletes local resources and, to sustain production,
must continually drill and mine new areas [13–15]. Consequently, to produce an equal amount
of energy, land requirements for fossil fuel and nuclear energy sources will, given enough time,
equal and then exceed the land requirements for renewables. We calculate the number of years
required to hit this land use equivalency threshold.

Methods
We investigated the land use implications of EIA’s four different energy production scenarios
from 2012 to 2040 (Table 1): 1) Reference, 2) Low Renewable Technology Cost, 3) High Oil
and Gas Resources, and 4) Greenhouse Gas Tax. These scenarios represent a diverse range of
plausible energy futures, and are evaluated in place of a single prediction, which would be
highly uncertain given the dynamic nature of energy markets. The Reference scenario assumes
“business as usual,” that is, that current policies continue to be implemented. The Low Renew-
able Technology Cost scenario assumes lower cost (20% below the Reference scenario assump-
tions) for new non-hydropower renewable electricity. Further, this scenario takes into account
the Renewable Fuels Standard from the Energy Independence and Security Act (EISA) of 2007,
which mandates the use of 36 billion gallons of renewable fuel by 2022 (the Reference case

Table 1. Proportion of cumulative energy produced from 2012 to 2040 in the United States for four scenarios.

Energy Product Energy Source Reference Low cost renewable High resource GHG Tax

Electricity Nuclear 12.4% 12.4% 11.6% 13.5%

Coal 32.9% 32.5% 27.0% 29.2%

Natural Gas Shale Gas 22.9% 22.7% 27.1% 23.5%

Tight Gas 11.8% 11.8% 14.3% 12.3%

Coalbed Methane 3.1% 3.1% 2.7% 3.3%

Renewables Conventional 9.2% 9.2% 10.6% 9.7%

Wind 2.6% 3.0% 2.3% 3.1%

Geothermal 0.5% 0.5% 0.4% 0.6%

Solar Photovoltaic 0.3% 0.5% 0.2% 0.5%

Hydropower 4.1% 4.2% 3.9% 4.4%

Solar Thermal 0.038% 0.038% 0.036% 0.040%

Biomass 0.004% 0.011% 0.001% 0.005%

Total Kwhrs 204,917 204,806 216,603 195,351

Liquid Fuel Oil Tight Oil 47% 46% 62% 47%

Conventional 45% 44% 33% 45%

Biofuels 9% 10% 5% 9%

Total Kwhrs 28,597 29,180 42,851 28,570

doi:10.1371/journal.pone.0162269.t001

Energy Sprawl in the United States

PLOS ONE | DOI:10.1371/journal.pone.0162269 September 8, 2016 2 / 16



assumes that EPA continues to largely waive requirements for cellulosic and advanced biofu-
els). The High Oil and Gas Resources scenario forecasts greater production of technologically
recoverable oil and natural gas resources in the US, such that production nearly doubles by
2040. The Greenhouse Gas Tax scenario assumes that Greenhouse Gases (GHG) are taxed at a
rate of $10 per metric ton of CO2 equivalent, which discourages coal production and encour-
ages less GHG-intensive energy sources.

Under each scenario, we calculated the amount of ‘new land area’ that would be required to
meet future energy demands. New land area is defined as land area not currently used for
energy production. These estimates account not only for the increasing rate of energy produc-
tion, but also for the new development required to maintain production in the face of depletion
of existing mines and wells.

Because the EIA specifies forecasts for a wide range of energy production categories (e.g.,
imports vs exports, onshore vs offshore, conventional vs various unconventional technologies,
and utility vs end-user), we were able to constrain our analysis to the on-shore, domestic
energy production relevant to land use impacts within the United States. Specifically, we con-
sidered energy produced in the United States, including energy exported out of the United
States. Imported energy and offshore energy production were omitted from the analysis. Fur-
thermore, the relatively small percentage (<10%) of end-use generation of electricity (firms or
individuals that generate energy for their own consumption, also known as distributed energy,
i.e., roof top solar [www.eia.gov]) was excluded because it generally occurs within the existing
built environment and does not require development of new lands. Our analysis does not
extend to the source materials used to construct energy infrastructure, whose mining and
extraction would have an additional footprint, but which are sourced globally and so extend
beyond the bounds of this analysis [16].

For each type of energy production, we compiled land requirements based on published lit-
erature, permitting agencies, aerial imagery, and other public sources (e.g., [16–22], S1 Table).
When sufficient data were available (> 10 estimates), the median value was used as a ‘represen-
tative’ value. To account for multiple uncertainties stemming from variability among producers
and states, we provide a high and low estimate of energy sprawl with each scenario by using the
25th and 75th quantiles to estimate low and high impacts, respectively. When insufficient data
were available after an extensive literature search, we selected values from the limited available
resources to characterize representative, low, and high land use impacts.

We estimated land area requirements in two ways, one based on the direct footprint and
one based on total area required. The direct footprint included, for example, the area cleared
for reservoirs of hydroelectric dams, well pads, mines, associated roads, pipelines, and wastewa-
ter storage. The total area required is often greater than the directly impacted area and accounts
for any spacing requirements. For example, wind turbines are commonly spaced 4 rotor diame-
ter widths apart from side to side and 10 rotor widths apart from front to back, to minimize
turbulence that affects energy production [23]. Thus, only about 3% of a wind development is
directly impacted by turbines, roads and operations facilities, but the total area required
includes the land in between the turbines [5,24]. Similarly, there are technical and regulatory
limitations on how closely oil and gas wells can be spaced together, and the total area required
for development includes the land between the wells [25,26]. Given the fragmenting effects of
turbines and oil and gas wells on animal movement, reproduction and survival, there are
known ecological impacts on the entirety of this ‘total area required’ [7,20,27,28]. Indeed, our
estimate of the total area required is likely a conservative indicator of the area experiencing eco-
logical impacts, which can extend beyond the project boundary of any particular energy devel-
opment [13,29]. Hereafter, we refer to the total area required as the landscape impact, since it
conservatively characterizes the impact to landscapes.

Energy Sprawl in the United States
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Renewable Electricity
The energy production from wind, solar, hydroelectric, geothermal and bioelectricity is pre-
dicted to increase through 2040. The new land required for renewable energy depends on the
projected maximum annual production rather than cumulative production, so we compared
2040 with 2011 for each renewable energy sector to calculate the amount of new annual energy
production and associated new land use.

The footprint of hydroelectric power was determined by calculating the median land area
inundated with water above 47 hydroelectric dams randomly selected from the National
Hydrography Dataset (NHD; [30]). The area for each dam was then scaled by annual energy
production to estimate the footprint required per unit energy produced [31]. For wind energy,
we relied upon a comprehensive study of land impacts for 161 wind projects throughout the
US [32].

For each renewable energy source, we estimated an average capacity factor, which specifies
the percentage of energy produced compared to a facility operating continuously at full capac-
ity (http://energy.gov/eere; S1 and S2 Appendices). For example, modern land-based wind tur-
bines commonly have a 2.5 MW capacity, but only produce this amount of energy when the
wind is blowing fast enough, which averages out to 33% of the time. Land use impacts depend
on installed capacity, so we used capacity factors to determine how much installed capacity
would be needed to generate the energy production predicted by EIA scenarios.

Biofuels
Biofuels include ethanol, biodiesel, and other liquid fuels made from biomass. The EIA esti-
mates biofuel production from four categories of feedstock: 1) corn, 2) soybean, 3) sugarcane,
and 4) other biomass. As with renewable electricity, maximum production volumes between
2012 and 2040 were compared with production in 2011 to determine the amount of additional
land that will be required for each type of biofuel. For corn and soybean, we estimated crop
yields using USDA projected long-term trends (extrapolated to 2040) [33,34]. We assumed
that the “other biomass” category was supplied by dedicated energy crops such as switchgrass
(Panicum virgatum), Miscanthus (Miscanthus giganteus) and short rotation woody crops
[35,36]. Since these feedstocks are not currently being used for commercial biofuel production
in the US [1], we used literature values for yields to estimate their spatial impacts (S2 Table).

Biofuels made from corn and soybean produce co-products that are fed to livestock, displac-
ing the need for other livestock feed, and reducing the amount of additional land required to
produce biofuels [37]. We allocated land use to biofuels versus co-products based on energy
content [38]. Note that our methodology tracks the direct land-use needs of biofuel production,
and does not consider indirect effects on land-use via agricultural commodity markets. For
example, if a soybean field in the U.S. is switched to corn to make ethanol, then soybean pro-
duction may expand elsewhere either domestically or internationally. Modeling land use effects
as mediated by global agricultural trade is beyond the scope of this paper, but is an active area
of research [39].

Mined Energy Sources
For energy sources associated with mining (coal and nuclear), we used EIA’s cumulative pro-
duction from 2012 to 2040 to estimate land use impacts. For each energy source, we estimated
the areal impact of mining and plant operations [6]. For nuclear energy, we also estimated the
areal impact of waste storage.

For coal, EIA estimates domestic production in three geographic regions (Appalachia, Inte-
rior, and West). We assumed that the current proportion of coal mined on the surface versus
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underground in each region is maintained through 2040 [1]. Area impacted due to surface
mining activities varies by region [1]. Specifically, the footprint of coal mining is larger in the
West’s open pit mines (~ 515 ha/million short tons) than it is in Appalachian’s mountaintop
removal mines (~212 ha/million short tons). In contrast, there was little geographic variation
in land use impacts for underground coal mining, allowing us to use a single nationwide
estimate.

Drilled Energy Resources
For energy sources associated with drilling, we used EIA’s cumulative production from 2012 to
2040 to estimate land use impacts. Drilled resources include both oil (conventional and tight
oil) and natural gas (conventional, shale gas, tight gas, and coalbed methane). For each energy
type, we estimated the number of wells drilled through 2040 and the amount of area required
per well and multiplied these numbers to estimate total land use. For each scenario, EIA esti-
mates the total number of wells drilled each year, but does not specify how many of these wells
are attributable to each type of production. To address this, we developed an approach that is
internally consistent with EIA’s scenarios in terms of the total number of wells, while still
allowing us to quantify the land use associated with each energy type. To meet these two
requirements, we produced our own estimates of the number of new wells that would be
required to meet EIA’s projected production for each energy type, and used the proportion of
wells from our estimates for each energy type to apportion EIA’s total well numbers.

To produce our estimates of well numbers, we used average annual production values and
an average well abandonment rate to calculate the number of new wells required to achieve
projected production levels each year. For both conventional and unconventional sources, well
abandonment rates were assumed to be the inverse of well lifetime [40,41]. For unconventional
wells, average annual production was calculated as projected production during entire well life-
time, divided by well lifetime in years. Projected production was an average of EIA estimates
across all unconventional plays (similar oil and gas accumulations sharing geologic and geo-
graphic properties), weighted by the recoverable resource in each play. EIA did not estimate
total production during entire well lifetime for conventional wells. To calculate average annual
production for conventional wells, we divided the total annual production by the number of
producing wells for each year between 1995 and 2005 (before the proliferation of unconven-
tional wells). We used our estimated well numbers to apportion EIA’s total well projections
among energy types.

We calculated the direct footprint and landscape impacts for each well type. The direct foot-
print included the well pad (including wastewater holding ponds and staging areas for hydro-
logical fracturing equipment) and roads and pipelines. For the landscape impact of
unconventional drilling, we used a weighted average of EIA’s well spacing values (wells/
miles2), which are estimated for each play. To estimate spacing requirements for conventional
oil and gas, we used spacing rules codified in state policy that require no more than one well
for every 16 acres [42–44].

Land use efficiency
For each energy sector, we derive an empirical estimate of the amount of land required to pro-
duce a given amount of energy in a given year, termed land use efficiency. This is expressed as
the square kilometers required for each TWhr produced (km2/TWhr). For wind and drilled
resources, we measure landscape impact in addition to the direct footprint, which includes
spacing requirements.

Energy Sprawl in the United States

PLOS ONE | DOI:10.1371/journal.pone.0162269 September 8, 2016 5 / 16



Time to land use equivalency
Because renewable energy production can re-use the same land footprint every year and extrac-
tive energy sources must expand as wells and mines are depleted, a direct comparison of land
use requirements can only be made over a particular time horizon with a specified annual
energy production schedule. Because renewable energy sources have lower energy density than
extractive sources, they generally require much more land to produce energy, when measured
over a single year. However, because renewables can re-use the same land, their cumulative
energy production can increase every year without any increase in their cumulative land foot-
print. In contrast, extractive energy sources must expand their footprint to acquire additional
resources as wells dry up and mines are depleted. Consequently, for a fixed amount of annual
energy production, we can calculate the number of years it would take for extractive energy
production to achieve the same land footprint as renewable energy for an equivalent of cumu-
lative energy production (Fig 1). This approach complements alternative life-cycle assessment
approaches that apply to fixed time horizons or assume particular temporal discounting rates,
both of which can be contentious [45].

Fig 1. Schematic explaining time to land use equivalency for renewable and extractive energy sources. The cumulative land required to
produce 1 TWhr/year is shown for three energy sources. Renewable energy sources can reuse the same land every year, such that there is no
increase in cumulative land required. In contrast, the land required to acquire extractive energy sources expands every year. Point (A) shows the
time to land use equivalency between wind and shale natural gas (25 years) and point (B) shows the time to land use equivalency between wind
and conventional gas (44 years). Both examples are calculated for landscape impacts.

doi:10.1371/journal.pone.0162269.g001
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Results

Recent Energy Sprawl
Between 2007 and 2011, the United States increased its energy production by 15% [1]. Over
82,000 km2 were directly impacted by new energy infrastructure, an area nearly the size of
Maine (Fig 2 top row). The landscape impacts were nearly double, at 161,000 km2, due to the
spacing requirements of wells and wind turbines.

Considering the direct footprint, biofuels accounted for two thirds of the energy sprawl
(67%; 55,390 km2), despite comprising only 6% of total energy production. The remaining
sources of the direct footprint from energy sprawl were 22% from coal, 7% from oil and natural
gas, 3% from other renewables, and<1% from nuclear. Landscape impacts were led by oil and
gas with 43% of the energy sprawl. This was followed by 34% from biofuels, 11% from coal, 9%
from wind, 2% from other renewables, and< 1% from nuclear.

Future Energy Sprawl
Based on EIA’s scenarios, energy sprawl in the United States will directly impact an additional
179,637 to 241,580 km2 by 2040 (Fig 2). Depending on our choice of an energy future, there is
a roughly 62,000 km2 difference in the amount of land we would need to set aside. Regardless
of the scenario, approximately half the direct footprint through 2040 will be associated with
coal mining (43–52% of the total direct footprint). The western region (Arizona, Colorado,
Montana, North Dakota, New Mexico, South Dakota, Utah, and Wyoming) will experience the
greatest impacts from coal mining (41,776 to 112,512 km2).

Oil and natural gas will contribute 25–33% of the direct footprint from energy sprawl
(57,737 to 64,309 km2) but comprise a dominant 73–83% of the landscape impacts (690,911 to
589,882 km2). Until recently, the majority of natural gas production was from conventional
gas. However, between 2007 and 2011, approximately 70% of natural gas production was from
unconventional sources and this is predicted to increase to 85% by 2040. This rapid expansion

Fig 2. New land area impacted from energy development in the United States between 2007 and 2011 (top bars) and between 2012 and 2040 under
four EIA scenarios. The left panel shows the direct footprint and the right panel shows landscape impacts, as defined in the text.

doi:10.1371/journal.pone.0162269.g002
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of unconventional gas will have a landscape impact of 238,961 km2, in our reference scenario.
The unconventional gas revolution is significantly expanding the geographies that will be
impacted by natural gas development. Approximately 1.3 million km2 that had never experi-
enced conventional oil and gas drilling are now at risk of being drilled for unconventional oil
and gas (Fig 3).

Land-Use Efficiency
Land use efficiency varies greatly across energy production types, from 0.13 km2/TWhr for
nuclear to 809 km2/TWhr for biomass (Table 2). Among fossil fuels, surface coal has the great-
est direct energy sprawl (8.2 km2/TWhr). The relative efficiency of conventional and uncon-
ventional natural gas depends on whether the direct or the landscape energy sprawl is
considered. The direct footprints of unconventional oil and natural gas production are smaller
than their conventional counterparts (24% smaller for oil and 57% smaller for gas). But the
landscape impact of unconventional oil and natural gas are bigger than their conventional
counterparts (96% bigger for oil and 95% bigger for gas).

Fig 3. Areas at risk of development from unconventional oil and gas drilling that had previously not experienced conventional oil and gas drilling.
We included EIA’s shale and tight oil and gas plays, but removed areas of existing conventional oil and gas development, based on historical oil and gas
exploration and production wells drilled between 1900 and 2006 in the United States [73]. We identified and removed the 666,009 km2 that have or had well
activities in the past.

doi:10.1371/journal.pone.0162269.g003
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Per unit energy, renewable energy generally has a greater direct footprint than extractive
energy. Wind infrastructure is the most land-use efficient (1.3 km2/TWhr) form of renewable
energy, when considering direct footprint. However, when landscape impact is considered,
wind becomes one of the least land-use efficient sources of electricity (126.9 km2/TWhr), sec-
ond only to biomass (809.7 km2/TWhr) and biofuels (>200 km2/TWhr). Photovoltaic solar
technology is slightly more efficient (15.0 km2/TWhr) than thermal solar technology (19.3
km2/TWhr).

Time to Land Use Equivalency
The time to land use equivalency differed between electricity (Table 3) and liquid fuels
(Table 4). The time to land use equivalency was generally less than 40 years for electricity pro-
duction from renewables other than biomass (with the exception of the landscape impact of
wind compared to conventional gas and underground coal). In contrast, when considering
renewable liquid fuels, biofuels have land use impacts that would require hundreds of years for
petroleum-based fuels to equal.

Benefits of Energy Conservation
Our results indicate the importance of energy conservation to curtail energy sprawl. We find
that every 1% of energy conservation would save roughly 2,000 km2 from being directly
impacted with energy infrastructure by 2040 (Table 5). When the landscape impact of electric-
ity is considered, over 8,000 km2 of impact could be avoided for every 1% conserved.

Table 2. Range of land use efficiency for each energy source.

Land-use Efficiency (km2/TWhr)

Energy Product Energy Source Area of Direct footprint (lower-upper
estimates)

Landscape-level Impact*

Electricity Nuclear 0.13 (0.02–0.24) 0.13

Natural Gas Shale Gas 0.19 (0.12–0.48) 5.08

Tight Gas 0.24 (0.13–0.89) 4.01

Coalbed Methane 0.63 (0.28–0.81) 8.11

Conventional 0.95 (0.82–0.951) 2.86

Coal Underground 0.64 (0.24–1.51) 0.64

Surface 8.19 (4.69–16.42) 8.19

Renewables Wind 1.31 (0.34–1.37) 126.92

Geothermal 5.14 (2.14–10.96) 5.14

Solar Photovoltaic 15.01 (12.30–16.97) 15.01

Hydropower 16.86 (6.45–86.95) 16.86

Solar Thermal 19.25 (12.97–27.98) 19.25

Biomass 809.74 (557.93–1254.028) 809.74

Liquid Fuel Oil Tight Oil 0.38 (0.23–0.88) 8.19

Conventional 0.56 (0.48–0.66) 2.86

Biofuel Corn 236.59 (192.69–259.00) 236.59

Sugarcane 274.49 (229.24–342.05) 274.49

Soybean 295.91 (235.54–313.33) 295.91

Cellulose 565.39 (125.67–826.49) 565.39

* Energy sources without spacing requirement have the same value for direct and landscape-level impacts.

doi:10.1371/journal.pone.0162269.t002
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Discussion
To meet growing energy demands in the United States, roughly 200,000 km2 of the country
will be directly impacted by energy development by 2040. Furthermore, when we include spac-
ing requirements, over 800,000 km2 of landscapes will be impacted by energy development.
This gives an average rate of direct land use change of 6,900 km2 yr-1. By comparison, between

Table 3. Years to land use equivalency in electricity sector.

Direct Footprint

Extractives

Natural Gas Coal

Renewables Nuclear Conventional Shale Gas Tight Gas Coalbed Methane Underground Surface

Wind 9.9 1.4 6.9 5.5 2.1 2.1 0.2

Geothermal 39.0 5.4 26.9 21.7 8.1 8.1 0.6

Solar Photovoltaic 114.0 15.8 78.5 63.5 23.7 23.6 1.8

Hydropower 128.0 17.7 88.2 71.3 26.6 26.5 2.1

Solar Thermal 146.1 20.2 100.7 81.4 30.4 30.2 2.4

Biomass 6149.0 850.8 4235.9 3423.2 1280.1 1272.5 98.9

Landscape impact

Extractives

Natural Gas Coal

Renewables Nuclear Conventional Shale Gas Tight Gas Coalbed Methane Underground Surface

Geothermal 39.0 1.8 1.0 1.3 0.6 8.1 0.6

Solar Photovoltaic 114.0 5.2 3.0 3.7 1.9 23.6 1.8

Hydropower 128.0 5.9 3.3 4.2 2.1 26.5 2.1

Solar Thermal 146.1 6.7 3.8 4.8 2.4 30.2 2.4

Wind (Total area) 963.8 44.3 25.0 31.7 15.7 199.5 15.5

Biomass 6149.0 282.9 159.5 202.1 99.9 1272.5 98.9

The years to land use equivalency is the number of years of energy production for which the listed renewable and extractive energy sources have the same

land use impact.

doi:10.1371/journal.pone.0162269.t003

Table 4. Years to land use equivalency in liquid fuel sector.

Direct Footprint

Extractives

Renewables Conventional Oil Tight Oil

Corn 420.7 628.1

Sugar Cane 488.1 728.7

Soybean 526.2 785.6

Cellulose 1005.3 1501.0

Landscape Impact

Extractives

Renewables Conventional Oil Tight Oil

Corn 82.7 28.9

Sugar Cane 95.9 33.5

Soybean 103.4 36.1

Cellulose 197.5 69.1

The years to land use equivalency is the number of years of energy production for which the listed renewable

and extractive energy sources have the same land use impact.

doi:10.1371/journal.pone.0162269.t004
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1973 and 2000, developed areas in the United Sates (residential, urban, commercial) increased
at a rate of 2,900 km2 yr-1 [46]. Looking forward, across multiple scenarios, maximum rates of
land use change in the United States through 2051 were projected as 5,600 km2 yr-1 for crop-
land and 5,900 km2 yr-1 for developed areas [47]. In total, energy sprawl is causing land use
change at rates higher than other major drivers, making it the largest driver of land use change
in the United States. These results highlight the need for policies that safeguard biodiversity
and ecosystem services against the cumulative impacts of energy development.

What do our results suggest about which sources of energy are desirable from a land use
perspective? We conclude that all forms of energy production can have significant land use
impacts, and that simply dictating particular forms of energy production is inadequate: safe-
guards related to siting, mitigation, and energy conservation and efficiency will be required.

Renewables have the advantage of being able to reuse the same land every year, which can
compensate for the generally lower land use efficiency of renewable energy. For renewable elec-
tricity, the time to land use equivalency was generally several decades or shorter. Thus, over the
likely lifetime of an energy development project, renewables are comparable to conventional
energy from a land use perspective.

The notable exception is biofuels. When produced from dedicated energy crops, the land
use efficiency of biofuels is so low that it would take hundreds of years of oil production to
have an equivalent land use impact. Over two thirds of recent direct energy sprawl– 55,000
km2 from 2007–2011 –was due to biofuels expansion. This was spurred by the Energy Indepen-
dence and Security Act of 2007, which mandated 136 billion liters [36 billion gallons] of biofu-
els by 2022 [1,48]. To meet the 2022 biofuel mandate with dedicated energy crops would
require an additional 59,500 km2 of land for biofuels. In total, between 2007 and 2040, biofuels
could impact an area larger than Virginia. This extensive direct footprint from energy sprawl is
not compatible with habitat conservation goals. Our results suggest that fuel cell and electric
vehicles powered by wind, solar, or nuclear would not only have lower greenhouse gas emis-
sions [49], but also lower land use impact than biofuels.

At present, the cost and benefit of nuclear energy is being vigorously debated (i.e., [50,51–
53]), We find that nuclear energy has, in addition to low greenhouse gas emissions [49,54], a
small land use footprint. This suggests that technological solutions to issues hindering the
expansion of nuclear power (including nuclear waste disposal, proliferation, and power plant
failures) could yield land conservation benefits.

Unconventional oil and gas development is similar to conventional development from a land
use perspective, but has allowed dramatic expansion of energy production into areas previously
unsuitable for drilling [7,13]. Compared to conventional oil and gas, unconventional oil and gas
have lower direct footprints because more wells can be drilled on each pad, but a higher landscape
impact because the amount of energy extracted across each square km is lower. However, current
estimates of the direct footprint are sensitive to assumptions about the productivity of each well,
and there is debate as to how quickly production from unconventional wells will decline [8,13,55].

Table 5. Avoided km2 of energy sprawl from 1% energy conservation.

Type of conservation Reference Low Cost Renewables High Resource GHG Tax

Electricity direct footprint 1,569 1,735 1,329 1,480

Liquid fuel direct footprint 503 696 475 487

Total direct footprint 2,072 2,431 1,804 1,967

Electricity landscape impact 5,770 6,472 6,100 6,400

Liquid fuel landscape impact 2,444 1,609 2,201 1,451

Total landscape impact 8,214 8,081 8,301 7,851

doi:10.1371/journal.pone.0162269.t005
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Because new technology makes previously unsuitable resources economically recoverable,
unconventional development has opened up over 1.3 million km2 to potential development
(Fig 3), and we expect up to 520,518 km2 of this landscape to be impacted by unconventional
oil and gas development. The expansion of drilling into communities where it was previously
unknown has resulted in a wide range of public concerns and regulatory responses [56–58].
This highlights the importance of ensuring that all forms of energy development avoid areas
that are most sensitive to habitat loss and fragmentation, reuse existing rights of way and ade-
quately fund compensatory offsite mitigation [59,60].

There are a variety of approaches to energy production that avoid and minimize energy
sprawl. End-use production holds promise for reducing energy sprawl. Solar panels on build-
ings and other efforts to incorporate energy production into the built environment increase
energy production without requiring the conversion of natural areas [61,62]. Similarly, energy
production with large spacing requirements, such as wind energy and oil and gas production,
can often be co-located with cropland such that no additional natural areas are impacted [63].
Infilling natural gas wells instead of extending into new areas could significantly reduction
land disturbance and fragmentation [7]. Biofuels made from agricultural residues or wastes
could substantially reduce land use impacts [64].

Energy conservation can help avoid energy sprawl. Efficiency standards for vehicles, appliances,
and buildings can reduce overall emissions [65–67], especially when combined with policies that
promote conservation [68]. Roughly 4% or 10,000 km2 of landscape impact would be avoided with
every 1 mpg increase in the average fuel efficiency of the U.S. vehicle fleet [69]. Simple household
electricity savings, such as switching to compact fluorescent bulbs, would save roughly 2.5% of
total US electricity use, avoiding over 14,000 km2 of impact from energy sprawl by 2040 [70,71].

Even with substantial increases in end use generation and energy conservation, large areas
will still be required for new energy development. Improved siting and mitigation practices are
needed to avoid and compensate for impacts, taking into account the cumulative landscape
impacts of projected energy development [59,60,72]. To meet energy demands while conserv-
ing nature will require the full suite of actions discussed here: conservation and efficiency in
addition to distributed renewable energy and appropriate siting and mitigation.
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