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Abstract
The Gini index is well-known for a single measure of inequality. The purpose of this
article is to explore a matrix structure of the Gini index in a setting of multiple source
income. Using matrices, we analyze the decomposition of the Gini index by income
source andderive an explicit formula for the factors in termsof the associated percentile
levels based on aggregated data reporting. Each factor is shown to be the sums of the
two split off parts of the income within a percentile bracket. Both have unequalizing
and equalizing contribution to the total inequality, respectively. We use R code and
apply the methodology to several data sets including a sample of European aggregated
income reporting in 2014 for illustration. A byproduct from the Gini decomposition
provides a matrix approach to the decomposition of the associated Lorenz curve in
terms of the density distribution matrix and a Toeplitz matrix.

Keywords Gini index · Lorenz curve · Share density · Decomposition factors ·
Income distributions · Matrices · Toeplitz

1 Introduction

There is a long history of the statistical study of income. Consequently, there exists
a large body of research articles devoted to the decomposition analysis of inequality
trends by income source as well as by population subgroup [see Heshmati (2004),
Vernizzi et al. (2010), Mussini (2013), Lerman and Yitzhaki (1985)]. One of the recent
papers of Mussini (2013) gives a summary of the historical account (1967–2013) on
existing decomposition techniques, including what is known as a matrix approach to
income inequality. In general, a measure of income inequality often attracts attention
from researchers and policymakers. Much of the attention is focused on the (widening
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or narrowing) contribution to income inequality from different part of the income
composition and different subgroups of the population.

Upon a brief review of various existing decomposition methods for their advan-
tages and disadvantages, a recent existing technique reports a matrix approach to the
measure of an inequality by income source and by subgroup. This research work,
Mussini (2013), is based on the so-called pairwise difference criterion of the inequal-
ity and the use ofG-matrix previously appeared in the paper (Silber 1989). Also, some
known classical decomposition methods were previously established by computing
the covariance between incomes and their ranks. For further details, we refer a reader
to the literature by Pyatt (1980). Amongst various limitations in empirical studies, it
appears that none of the existing techniques works naturally well or is immediately
targeted for aggregated data form, in which economic data are almost always reported.
One reason is that the underlying idea of the cited papers strictly relies on the pairwise
difference criterion, which is essentially built on the framework of a single income
vector. Furthermore, the decomposition methods are mostly developed based on exist-
ing techniques which are not directly applicable for aggregated datasets. Often, they
are suitable for a single income vector reporting within a typical application setting
(Vernizzi et al. 2010; Mussini 2013). Another reason concerns the interpretability,
as we notice that the role of G-matrix from the cited papers seems less intuitively
descriptive in terms of reducing or increasing the inequality. Therefore, a new method
is attempted in order to fulfill an interpretable matrix approach to the Gini index
decomposition for a general aggregated dataset.

Working directly with aggregated datasets to achieve the decomposition of inequal-
ity is the main motivation for this paper. We do this by developing and implementing a
straightforward algorithm, using R package. We further hope the overall contribution
of this article may be useful in areas of broad income research as well as in areas of
applied and pure mathematics.

In this paper, we begin with any aggregated dataset and present a new approach
to the inequality decomposition. We shall only be concerned with the methodology
for the decomposition by income source and suggest that it works equally well with
that by population subgroup. The result of this article does not rely on any sophisti-
cated statistical calculation such as the aforementioned covariance, nor is it built on
any existing decomposition technique. We will utilize elementary matrix algebra to
express the decomposition, which is algebraically simple, captures all decomposition
components, and facilitates its interpretation.

To keep this article self-contained, we now give a brief review of the Gini index
and a Lorenz curve, which originally appeared in Lorenz (1905). The Gini index is a
summary statistic of the Lorenz curve and a measure of inequality in a population. A
Lorenz curve is essentially the representation of income inequality. It is defined based
on the function L(p) that outputs the fraction of the resources owned by the poorest
fraction p of the population. For instance, that L(0.4) = 0.1 means that the poorest
40% of the population owns 10% of the resources. Equivalently, that also means that
the top 60% occupy 90% of the resources. Here the reader must be reminded that a
general resource shall be concretely interpreted in the context of income for this paper.

The basic theory of characterizing a Lorenz curve demonstrates the two simple
facts: (a) L(p) is derivable from a set of economic data distribution, with the extreme
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(a) (b)

Fig. 1 a The deviation of L(p) from the perfect equitable distribution. b The income splitting figure for
factor Φk for the income bracket [p j−1, p j ]

cases L(0) = 0 and L(1) = 1; (b) L(p) is nondecreasing and a convex function,
whose precise definition may be found in a standard text by Rudin (1987). We will
use these facts throughout this paper.

To measure how evenly the income is distributed, the Gini index of a particular
Lorenz curve is calculated based on the single quantity that measures how much it is
deviated from a perfectly equitable distribution by the Lorenz curve L(p) = p, as is
shown in Fig. 1a. Using the area enclosed between the two curves to measure such
deviation, it is readily seen that the Gini index, G, of a Lorenz curve in question can
be defined by the integral

G = 2
∫ 1

0
(p − L(p)) dp,

where the number two is the scaling factor for the range 0 ≤ G ≤ 1. The Gini index
can also be used for the measure of health inequality, consumption or some other
welfare indicator, etc. For illustrations, we refer the reader to papers by Farris (2010)
and Lai et al. (2008).

The subsequent part of the paper is organized as follows. The main result is encap-
sulated in (Matrix Representation of Gini Decomposition) Theorem 1 in the following
Sect. 2. This section also gives another form of the main result by (Matrix Repre-
sentation of Factor) Corollary 1 and their with rigorous proofs supported by (Gini
Decomposition) Lemma 1.

Various parts of the decomposition formula are interpreted by virtue of Lemma 1 in
Sect. 3. Then, we illustrate using R code to perform the decomposition with real data
from the US 2007 family and European countries 2014 income households reporting
in Sect. 4. Next, by examining various forms of our main result, we derive a matrix
representation of a Lorenz curve as well as its decomposition formula in Sect. 5. We
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finally, in Sect. 6, conclude the paper with some remarks and questions which may be
viable for future problems.

2 Decomposition of the Gini index

In order to decompose the Gini index by income source, we assume that there are n
observations in the sample and each observation hasm components. Let xik be the kth
component of the i th observation in the sample, where i = 1, 2, . . . , n, k = 1, . . . ,m.
Since we are mainly concerned with income inequality in this paper, that xik is tac-
tically referred to the kth component (due to income source k) of the average of all
individuals’ income that falls in the associated i th income bracket, andm indicates the
total sources of income. The corresponding frequency to each i th income observation
is denoted as hi , each of whichmay be interpreted as the number of individuals (house-
holds) that belong to the associated income group. For mathematical convenience, we
suppose such aggregated data distribution is reported or formatted as the matrix-like
tabulation

x11 x12 . . . x1m h1
x21 x22 . . . x2m h2
...

... · · · ...
...

xn1 xn2 . . . xnm hn

(1)

Throughout the paper, we make a general assumption for each row-sum

m∑
k=1

xik <

m∑
k=1

x jk whenever i < j . (2)

That is, the observations are sorted by the total incomeof the i th household in ascending
order.

To simply state the main result of the paper, we introduce two pieces of notation.
First, N denotes the total households and let p j be the percentile associated with the
j th household group given by

N =
n∑

i=1

hi , p j = 1

N

j∑
i=1

hi , 1 ≤ j ≤ n. (3)

All values of p j are in the unit interval [0, 1] right endpoint included, i.e., pn = 1. To
include the left endpoint, we purposely define p0 = 0. Second, for the total income
(all sources combined) earned by the entire households in the population, we denote

T =
n∑

i=1

(
m∑

k=1

xik

)
hi . (4)
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The purpose of these notations will be simply made clear later in the proof of the main
result. Although all notation favors the interpretation of family income, the method
and discussion should apply equally well to other situations.

Finally, themain result contained in the following theoremalso employs the notation
used in the matrix theory by Zhang (1999).

diag(λ1, λ2, . . . , λn) =

⎛
⎜⎜⎜⎝

λ1 0
λ2

. . .

0 λn

⎞
⎟⎟⎟⎠

Similarly, diag(v) generates a diagonal matrix with vector v on the diagonal. Equiva-
lently, if v has m components, then

diag(v) = diag ((v)1, (v)2, . . . , (v)m) .

2.1 Statements of themain result

Theorem 1 (Matrix Representation of Gini Decomposition) Let

X =

⎛
⎜⎜⎜⎝

x11 x12 . . . x1m
x21 x22 . . . x2m
...

... · · · ...

xn1 xn2 . . . xnm

⎞
⎟⎟⎟⎠ , h =

⎛
⎜⎜⎜⎝

h1
h2
...

hn

⎞
⎟⎟⎟⎠

be the representation for the income-household aggregated data reporting in the form
(1) and ranked accordingly as (2), and let {p j } j=1,2,...,n, and T be defined, in turn,
by formula (3) and (4). Then, the Gini index for X associated with h is given by
G = ηᵀ�, where η = T−1Xᵀh and

� = diag
(
(Xᵀh)−1

1 , (Xᵀh)−1
2 , . . . , (Xᵀh)−1

m

)
Xᵀ diag

(
Tp − 1n

)
h

respectively, where 1n = (

n-tuple︷ ︸︸ ︷
1, 1, . . . , 1)ᵀ is a vector of n entries all one, T is an n × n

Toeplitz matrix given by

T =

⎛
⎜⎜⎜⎜⎝

1 0
1 1

. . .
. . . 1

0
. . . 1 1

⎞
⎟⎟⎟⎟⎠

n×n

and p =

⎛
⎜⎜⎜⎝

p1
p2
...

pn

⎞
⎟⎟⎟⎠ .

Here the matrix transposition Xᵀ can be interpreted as the income distribution
matrix since its action on the household vector produces a vector of the total income
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components. We call and� the income distribution vector and the income centraliza-
tion index vector, respectively. The interpretations of their components will be given
in Sect. 3, which is mainly devoted to a detailed discussion about the principle result
that supports the above theorem by the following key lemma.

Lemma 1 (Gini Decomposition) The Gini index for ranked aggregated data (1) is
given by G = ∑m

k=1 Φk and

Φk = 1

T

n∑
j=1

x jkh j
(
p j + p j−1 − 1

)
, (5)

where the percentile level for each associated group {p j } j=0,1,2,...,n, with p0 = 0,
and the total combined income T , are given by (3) and (4), respectively.

To see other significant and interpretable forms of the Gini decomposition as an
immediate consequence from the theorem and lemma above,we additionally introduce
the following pieces of notation.

P+ = diag (0, p1, . . . , pn−1) and P− = diag (p1 − 1, p2 − 1, . . . , pn − 1)

We also need the factor index vector � = (Φk)k=1,...,m . In addition to previ-
ously formed definitions, we will use all components of the mean income vector
x = (xk)k=1,2,...,m , which is defined by xk = Tk/N , where

Tk =
n∑

i=1

xikhi (6)

(T = T1 + T2 + · · · + Tm). Lastly, we define the household distribution vector as

hN = N−1h. (7)

These notations shall easily help us simplify and interpret the expression of the Gini
decomposition in the following corollary.

Corollary 1 (Matrix Representation of Factors) The matrix form of (5) can be written
� = �+ + �− where

�+ = T−1XᵀP+h and �− = T−1XᵀP−h. (8)

That is, � = T−1Xᵀ(P+ + P−)h. Furthermore, the income distribution vector and
the centralization index vector are = (Tk/T )k=1,2,...,m and

� = diag
(
x−1
1 , x−1

2 , . . . , x−1
m

)
Xᵀ(P+ + P−)hN , (9)

respectively for the Gini index G = ηᵀ�.
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We call the matrix sum P+ + P− the percentile income splitting matrix acting on
a household vector or a household distribution vector as shown from relation (8) and
(9). This results in separating the factor vector � into two parts �± for widening and
narrowing effect respectively on the measure of the total inequality.

We remark that hN and η are examples of a distribution vector as its components
add up to 1 in the theory of applied linear algebra (Bretscher 2013). It is interesting
to see how they appear in the decomposition of the Gini index.

2.2 Proof of themain result

As we mentioned earlier, a Lorenz curve is derivable from a set of income data.
The proof of our main result is based on constructing the Lorenz curve L(p).

The domain of L is the range of percentile variable p, which can be interpreted
as a random variable P equipped with the probability density function L ′(p). The
probability connection between the Gini index and the expected value P has been
established by Farris (2010), which can be delivered by the following proposition.

Proposition 1 Let G be the Gini index of the Lorenz curve L(p) and let s(p) =
L ′(p) (almost everywhere) be the probability density function (pdf) for the continuous
percentile random variable. Then the expected value of this random variable

P =
∫ 1

0
p s(p) dp

is related by
G = 2P − 1. (10)

It is evident that formula (10) gives another approach to the Gini index once the
pdf, s(p), is established. This is what we need for the proof the Gini decomposition
Lemma 1 in the sequel. Using this connection, we define the kth income share density
function on the interval of i th percentile

s jk(p) = x jk
T /N

χ(p j−1, p j ](p) (11)

using the percentile variable p and the characteristic function of any subset E of real
numbers

χE (p) =
{
1 if p ∈ E
0 if p /∈ E

.

This tells us what share of the whole is owned by the portion of the population from
the k-source of income that falls in the percentile range (p j−1, p j ].

We now start the proofs of Lemma 1, Theorem 1 and Corollary 1.

Proof (Gini Decomposition: Lemma 1) By establishing the function correspondence
from {p0, p1, . . . , pn} to the fraction of the total income earned by each poorest

123



2142 B. Shao

fraction p j , imposing L(p0) = 0, the Lorenz curve at these values can be calculated
as follows.

L(p j ) = 1

T

m∑
k=1

j∑
i=1

xikhi , for j = 1, 2, . . . , n (12)

To maintain the convexity of L , the easiest way to extend the correspondence from
each interior of percentile range [p j−1, p j ] to a suitable fraction of the total is by linear
interpolation, assuming that L ′(p) is piecewise constant on each percentile range. (In
economic terms, the assumption says that share density, which will be defined and
made clear in the sequel, is piecewise fixed in each income bracket).

The convexity of this function can be made clear once the double sum in formula
(12) is expressed in terms of p. Noting that the number of households at percentile pi
can be written as

hi = (pi − pi−1)N (13)

from relation (3), we now reexpress L function (12) as follows.

L(p j ) =
m∑

k=1

j∑
i=1

xik
T /N

(pi − pi−1) (14)

Quantity T /N is a weighted row-average of xik in hi and can be labelled as the average
income owned throughout the population. The total density function on (0, 1], using
(11), can be defined as

s(p) =
m∑

k=1

n∑
i=1

sik(p).

The i-summation can be viewed as the kth component of s(p) with respect to the
income source. Thus the inner sum of L(p j ) from (14) is precisely a Riemann sum of
this component over [0, p j ] and thus, we have

L(p j ) =
m∑

k=1

∫ p j

0

n∑
i=1

sik(p) dp.

Switching the (easily justified) order of k-summation and integration, we obtain the
integral representation of (14).

L(p j ) =
∫ p j

0
s(p) dp (15)

The geometric significance of such representation is that the convexity of function
L(p) is immediately established by the standard criteria of midpoint convexity, Rudin
(1987), due to the nondecreasing nature of s(p), which is guaranteed byour assumption
(2). Another analytic significance of (15) is that s(p) = L ′(p) almost everywhere,
which we will need in what follows.
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We are now in the position to apply Proposition 1, which gives an alternative way of
computing theGini index. Our computation rests on finding P . It follows, by switching
the order of summations and integration associated with relation (10), that

P =
∫ 1

0
p

(
m∑

k=1

n∑
i=1

sik(p)

)
dp

=
m∑

k=1

n∑
i=1

∫ 1

0

xik
T /N

χ(pi−1, pi ](p) p dp

=
m∑

k=1

n∑
i=1

xik
T /N

∫ pi

pi−1

p dp

=
m∑

k=1

n∑
i=1

xik
T

pi + pi−1

2
hi .

The last equality follows from the use of relation (13). Inserting this into (10) and
make use of the definition of T , we obtain the following Gini index formula.

G =
m∑

k=1

(
1

T

n∑
i=1

xik(pi + pi−1) hi

)
− 1

=
m∑

k=1

(
1

T

n∑
i=1

xikhi (pi + pi−1 − 1)

)
(16)

The parenthesized expression from the last equality is precisely Φk for the Gini index
decomposition. This completes the proof of Lemma 1. ��

To prove Theorem 1, some standard notations about matrices are employed. For a
matrix A with entries ai j , we write

A = (ai j ) or (A)i j = ai j .

Similarly for a column vector v with entries vk , we write

v = (vk) or (v)k = vk .

The proof of the various matrix forms of our main result is as follows.

Proof (Matrix Representation of Gini Decomposition: Theorem 1) First, we notice
that for k = 1, . . . ,m, the k-component of T defined by (6) can be written as

Tk = (
Xᵀh

)
k
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(T = T1+T2+· · ·+Tm). Also, it is straightforwardly verifiable that the corresponding
entries of vector ((pi+ pi−1−1)hi ) and the diagonalmatrix diag(Tp − 1n)h are equal.
Simply put.

(pi + pi−1 − 1)hi = (
diag(Tp − 1n)h

)
i

Using these relations, it follows from Lemma 1 that

G =
m∑

k=1

Tk
T

n∑
i=1

xik
Tk

(pi + pi−1 − 1)hi

=
m∑

k=1

Tk
T

n∑
i=1

(
diag(T−1

1 , T−1
2 , . . . , T−1

m )Xᵀ
)
ki

(
diag(Tp − 1n)h

)
i

=
m∑

k=1

(
T−1Xᵀh

)
k

(
diag(T−1

1 , T−1
2 , . . . , T−1

m )Xᵀ(diag(Tp − 1n)h
)
k

=
(
T−1Xᵀh

)ᵀ
diag(T−1

1 , T−1
2 , . . . , T−1

m )Xᵀdiag(Tp − 1n)h

as desired. This completes the proof of Theorem 1. ��
We now prove the corollary to conclude this section.

Proof (Matrix Representation of Factors: Corollary 1) First, we observe the relation.

(
p j + p j−1 − 1

)
h j = p j−1h j + (p j − 1)h j

= (P+h) j + (P−h) j

It follow from Lemma 1 that formula (5) can be written as follows.

Φk = 1

T

n∑
j=1

x jk(P+h) j + x jk(P−h) j

= (T−1XᵀP+h)k + (T−1XᵀP−h)k

= (�+)k + (�−)k

That is required for � = �+ + �−. Next, the following is easily checked.

diag(Tp − 1n) = P+ + P−

It follows from Theorem 1 and relation (7) that

� = N diag
(
(Xᵀh)−1

1 , (Xᵀh)−1
2 , . . . , (Xᵀh)−1

m

)
Xᵀ (P+ + P−) hN

= diag
(
(N−1Xᵀh)

−1
1 , (N−1Xᵀh)

−1
2 , . . . , (N−1Xᵀh)

−1
m

)
Xᵀ (P+ + P−) hN

= diag
(
x−1
1 , x−1

2 , . . . , x−1
m

)
Xᵀ (P+ + P−) hN ,
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as desired. Finally, it follows from the definition (6) that Tk = (Xᵀh)k . Hence ηk =
Tk/T by Theorem 1, which is required for the proof of Corollary 1. ��

3 Some consequences of themain result

It is worthy noting formula (5) of Lemma 1 as a fundamental result of this paper, for
which several interpretations may be made. We shall call Φk the kth decomposition
factor of the Gini index. It involves the quantity p j + p j−1 − 1, whose role can
be realized as a balancing act between equalizing and unequalizing effect from the
j th income bracket towards the total inequality. More precisely, each summand of
Φk indicates the total x jkh j in j th income bracket from income source k relative
to the total income T makes two contributions to the total inequality: one being of
positive determined by the fraction from the bottom p j−1 income class, and the other
being of negative determined by the fraction from the upper (1 − p j ) income class.
Symbolically, the two parts and the kth factor are denoted as follows and diagramed
in Fig. 1b.

F+
jk = x jkh j p j−1

T
, F−

jk = − x jkh j (1 − p j )

T

Φk =
n∑
j=1

(
F+
jk + F−

jk

)
(17)

So, formula (17) succinctly indicates that decomposition factor Φk is the sum of
the net contribution from F+

jk and F−
jk over each income bracket from source k in the

total income T . It may, therefore, be labelled as the absolute contribution factor from
income source k to overall inequality. It provides an unequalizing effect if Φk > 0
and equalizing effect if Φk < 0. A large value of Φk suggests that it is an important
source of the total inequality by the Gini index.

To get a glimpse of various structural perspectives for the total inequality, we
now give some consequences of Gini decomposition, noting that relation (5) can be
rewritten as

Φk = Tk
T

n∑
j=1

x jkh j

Tk

(
p j + p j−1 − 1

)
. (18)

Quantity Tk/T is the share of the kth income in the total income. The summation
part in (18), comparing with a single income case of Lemma 1, may be regarded as a
generalized Gini index. In fact, it reduces to the usual (local) Gini index if the k-source
income reporting happens to be ordered in accordance with the general assumption
(2) for the totals of income brackets. The sign of this summation also indicates a
widening or narrowing effect on the total inequality. We call this summation the factor
centralization ratio (index) of the kth income component Θk .

In view of formula (18), the upshot is that theGini index can be termed as aweighted
average of factor centralization ratios of all income components, equipped with the
weights being the share of all income components in the total income. In symbols, it

123



2146 B. Shao

can be represented below.

G =
m∑

k=1

ηkΘk (19)

Interestingly, a slightly different form of (18) may be expressed as

Φk = Tk
T

n∑
j=1

x jkh j

Tk

(
2p j − h j

N
− 1

)
, (20)

where the positive contribution of the kth factor to the Gini index is determined by
the fraction (p j − h j/N ), which gives the deviation of the percentile level from the
proportion of the associated household size in the population total. Furthermore, the
advantage of such expression of Φk is that the factor centralization ratio of the kth
income component, the summation in (20), can be written as

2

Tk

⎧⎨
⎩

n∑
j=1

x jkh j p j −
n∑
j=1

x jkh j
1

2

(
h j

N
+ 1

)⎫⎬
⎭ .

The quantity in the braces resembles a covariance between {x jkh j } and {p j } modulo
n. When data is disaggregated N = n, h j = 1 and p j = j/n, the kth decomposition
factor by formula (20) is reduced to the following

Φk = 2

T /n
covariance({x jk}, { j/n})

since

1

2

(
1

n
+ 1

)
= 1

n

n∑
j=1

j

n
.

When the correlation between income from source k and its income level, { j/n}, is
positive or negative, the kth component of the factor has unequalizing or equalizing
influence on the total inequality accordingly. It is also evident that this can be written
as

Φk = 2

T
covariance({x jk}, rank{x jk})

where rank{x jk} yields the rank for j from 1 to n. Given that rank function is imple-
mented, this may be computationally practical without assumption (2). In particular,
rank{x jk} = { j} when {x jk} is already ordered or with assumption (2). Likewise, the
correlation can be termed between {x jk} and { j} as above for the equalization analysis.
One can analyze the scatter diagrams over four quadrants determined by j = (n+1)/2
and the kth component of the mean income xk section by section (as k = 1, 2, . . . ,m)
for the effect of Φk on total inequality.
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Finally,wemention thatΦk can be termed in terms of income share density function.
It follows from formula (11) that

Φk = 2 covariance({s jk}, { j/n})

with which we can express the Gini index for disaggregated data in terms of the
covariance between the income levels and the local share density functions.

G = 2 covariance

({
m∑

k=1

s jk

}
,

{
j

n

})

As above, an alternative way of equalization analysis on Φk can be done section by
section using the scatter diagram between {s jk} and { j/n}.

Notably, the parallelism between this formula and the definition of the Gini index
by the appearance of the scaling factor 2 appeals to a sense of mathematical elegance.

4 Numerical illustration

Aswe have deduced all matrix formulas fromGini Decomposition lemma, it is enough
to demonstrate the use of formula (5).We point out that the matrix formula either from
Theorem 1 or Corollary 1 can be straightforwardly implemented to simply obtain all
components of the Gini decomposition when appropriate mathematical software (say
Matlab) is available. However, we will give numerical examples for computing and
contrasting the factorsΦk usingLemma1, inwhich formula (5) can be easily translated
into an algorithm and implemented using readily accessible R-package.

Even though a use of Matlab is not presented here for the Gini decomposition and
is left for the reader to explore, we actually use Matlab to confirm our results obtained
by running the R-code, whose listing is provided as a standalone function in Fig. 5.

To squeeze the most out of the factors, we additionally define and compute the
k-source proportion factor by

φk = Φk

G
, (21)

which will be a part of the Gini decomposition reporting. In fact, 0 ≤ φk ≤ 1 and
that φk closer to 1 (or 0) indicates that the influence of k-source of income on the total
inequality is stronger (or weaker).

4.1 Example (single source of income)

Our first example uses the algorithm for the extreme case (m = 1 and hi > 1: an
aggregated income reporting from a single source of income). In this case G = Φ1 or
φ1 = 1 and the Gini index is only what we need to compute for the following dataset.

Table 1 is a partial display of real data from the IRS (2017) government website.
Using theR-code (in Fig. 5), we obtain the Gini indexG = 0.4425 for the U.S. family
income distribution from all races in 2017.
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Table 1 U.S. family income from all races in 2017

Characteristic h j : number of households (in thousands) x j : mean income (dollars)

Under $2500 1782 225

$2500–$4999 397 3767

$5000–$7499 561 6102

$7500–$9999 689 8803

$10,000–$12,499 1034 11,138

$12,500–$14,999 848 13,711

.

.

.
.
.
.

.

.

.

$200,000–$249,999 3610 220,867

$250,000 and above 4743 396,650

The point of this illustration is to show how the Gini index can be conveniently
obtained when the data is reported aggregately even from a single income source.
In this case, the reduced form of formula (5) can also be favorable for entering into
spreadsheet with Excel technology, which we purposely use to check the correctness
for this essential boundary case of our R-code.

4.2 Example (multiple sources of income)

We now calculate another boundary case (hi = 1 and m > 1) for disag-
gregated multiple sources of income reporting, which often appears especially
when individuals are reported as countries or states. We download the data from
online publication of European income components of households for 36 coun-
tries (EUR Data 2014). Table 2 contains a partial listing of the dataset, for
which the Gini index is computed to be G = 0.3658. All factors with rele-
vant components are in turn outputted by the algorithm and recorded in Table 3.
In particular, we see the income component pension has the largest inequality
(with a generalized Gini index Θ2 = 03903), but the total pension is of only
28.62% in the total income. All income components have widening effect on
the total inequality in various magnitudes, since all associated factors are posi-
tive.

As we mentioned, the factor centralization ratio Θk may be regarded as a gen-
eralized factor Gini index. It may become the local (factor) Gini index if the factor
income happens to be ranked by xik ≤ x jk whenever i < j for a particular k (source
of income). But this is not guaranteed since the total inequality is based on the total
income (and the income brackets, if hi > 1). None appears to be a local Gini index
for this dataset, since no income component is ranked in accordance with the gross
income.
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Table 2 European family income components of households in 2014 (in EUR)

Country Gross Work Pension Benefits Other∑
k xik xi1 xi2 xi3 xi4

Romania 10,129 6022 3018 528 561

Bulgaria 12,468 7473 2725 1094 1176

FYR of Macedonia 13,445 7652 3308 1166 1319

Serbia 13,629 7508 3263 1804 1054

Montenegro 17,721 11,029 3737 1248 1706

Hungary 18,752 10,743 5358 1712 938

Lithuania 18,767 11,658 3790 1673 1646

Latvia 19,453 13,206 4199 1336 713

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Norway 140,878 82,209 39,042 15,115 4511

Luxembourg 149,953 78,323 52,158 14,409 5063

Switzerland 159,147 100,087 43,268 10,624 5167

Table 3 Decomposition results:
income share ηk , factor
centralization ratio Θk , absolute
factor Φk , and proportional
factor φk for the dataset Table 2

Work Pension Benefits Other

ηk 0.5808 0.2862 0.0907 0.0423

Θk 0.3628 0.3903 0.3704 0.2311

Φk 0.2107 0.1117 0.0336 0.0098

φk 0.5761 0.3053 0.0919 0.0267

4.3 Example (aggregatedmultiple sources of income)

As of this writing, we have not yet found a suitable source of real data reported exactly
in the form (1) with hi > 1 and m > 0. Perhaps it may require a sort of construction
to settle the final form for applicability of our algorithm. This is practically not difficult
to achieve, when several sources of data reporting become available. For instance, we
could reformat the data in Table 2 from our previous example by defining a new set
of income brackets so as to run the code to perform Gini decomposition by sources of
income.

TheGini index is calculated to be 0.3526 and the factorswith associated components
are displayed in Table 5. It is evident that the corresponding Gini decomposition data
in Table 3 are indeed slightly less than or equal to those in Table 5. This is due to
the fact that the associated Lorenz curve is supported by more points from Table 2
than that by those from Table 4. Thus, the resulting Gini index (0.3558) for Table 2
is expected to be slightly larger than that (0.3526) for Table 4. Moreover, the Gini
decomposition for the reformatted dataset Table 4 inherits the widening effect of all
income components of dataset Table 2. In other words, this scenario does not produce
any negative decomposition factor Φk , as expected.
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Table 4 European family income components of households from the five income brackets in 2014 (in
EUR)

Characteristic Total Work Pension Benefits Other household∑
k xik xi1 xi2 xi3 xi4 hi

Under 25,000 17,337 10,697 3929 1593 1118 10

25,000–49,000 36,168 21,788 9583 2782 2016 7

50,000–74,999 66,393 35,378 20,943 6407 3665 5

75,000–99,999 87,150 51,210 24,475 8189 3275 10

100,000 and above 139,737 80,733 42,635 12,313 4056 4

Table 5 Decomposition results:
income share ηk , factor
centralization ratio Θk , absolute
factor Φk , and proportional
factor φk for the dataset Table 4

Work Pension Benefits Other

ηk 0.5808 0.2862 0.0907 0.0423

Θk 0.3480 0.3792 0.3576 0.2239

Φk 0.2021 0.1085 0.0324 0.0095

φk 0.5733 0.3078 0.0920 0.0269

In general, there is no reason to believe that a factor is always positive because the
associated factor centralization ratio Θk may be negative. As we mentioned that Θk

can be regarded as a generalized local Gini index. It reduces to a local Gini index only
if the k source of household incomes are ranked in the same order as household gross
income Tk .

To make a point for an occurrence of Θk < 0, we use a hypothetical data set Table
6, in which rows are put in a desirable order by form (1). There are, for instance,
five income sources: wage income, capital income, transfer income, self-employment
income, and special income from the economic data reporting. One way to see such a
situation happening is to allow the low-income bracket household to receive a special
income through a government program (such as the economic stimulus checks were
issued for low income families in the U.S. during the outbreak of COVID-19 lock-
down period in 2020), and no such income recipient has family income above a certain
upper-income bracket.

Running the Gini decomposition R-code in Fig. 5, we obtain the Gini index G =
0.2283 from the output in Fig. 4. Various preliminary and finer decomposition results
of G (factors Φk , proportion factors φk , the share of the incomes in the total income
ηk , and the factor centralization ratios Θk) are computed and recorded in Table 7 for
further structural analysis of income inequality.

We now conclude with some analysis and interpretation of these results. First,
the wage income has the most contribution to unequalizing (widening) effect on the
overall income inequality according to the associated factor contribution 0.2149 (being
most positive). Only the special income has an equalizing effect due to a negative
contribution of the associated factor−0.0049. So, a large value ofΦk , associated with
wage income in this case, suggests that it is an important source of the total inequality.
The same can be said for the proportional factor ofwage income φk . Likewise, one can
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Table 6 A hypothetical data for an aggregated family income in thousands from five sources

Households Total Wage Capital Transfer Self-employ Special
h j

∑
k x jk x j1 x j2 x j3 x j4 x j5

24410 1347.285 1020.121 8.086 234.848 19.223 65.007

27492 1685.244 1300.232 9.438 287.614 29.082 58.878

31633 2503.753 2100.445 14.20 317.534 21.438 50.136

31952 2771.706 2311.398 16.04 344.556 35.844 63.868

32291 3284.889 2799.069 38.195 386.723 60.902

31664 3324.510 2964.355 31.242 292.011 36.902

31519 5727.711 5071.598 56.548 533.18 66.385

Table 7 Decomposition results
income share ηk , factor
concentration ratio Θk , absolute
factor Φk , and proportional
factor φk for the dataset Table 6

Wage Capital Transfer Self-employ Special

ηk 0.8531 0.0085 0.1146 0.0130 0.0107

Θk 0.2519 0.3387 0.1113 0.2017 −0.4566

Φk 0.2149 0.0029 0.0128 0.0026 −0.0049

φk 0.9414 0.0126 0.0559 0.0115 −0.0214

reach a conclusion for the special income from the equalizing perspective. Finally, the
capital incomehas the largest factor centralization ratio 0.3387, but the smallest income
share 0.0085. A reader may wish to draw further analysis as to how the Gini index
decomposition sheds light on both the structure and dynamics of income inequality.
We believe that these results, computed and plotted in times for multiple years, can
be of interest to economists.

4.4 Matrix illustration of Gini decomposition

In this section, we continue to use the hypothetical dataset Table 6 to display thematrix
structure for the Gini index decomposition by income source. It is only a numerical
illustration of Theorem 1 and Corollary 1 to give an aesthetic beauty of the matrix
structure for income inequality. We start with the income matrix and the household
vector representations for the dataset Table 6:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1020.121 8.086 234.848 19.223 65.007
1300.232 9.438 287.614 29.082 58.878
2100.445 14.2 317.534 21.438 50.136
2311.398 16.04 344.556 35.844 63.868
2799.069 38.195 386.723 60.902 0
2964.355 31.242 292.011 36.902 0
5071.598 56.548 533.180 66.385 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

24410
27492
31633
31952
32291
31664
31519

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using formulas (3) and (4), we get N = 210961, T = 638852082, and all values
of the percentile. By definition, we obtain the percentile vector and the associated
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diagonal matrices for Corollary 1 as follows:

p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.116
0.246
0.396
0.547
0.700
0.851
1.000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P+ = diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0.116
0.246
0.396
0.547
0.700
0.851

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, P− = diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.884
−0.754
−0.604
−0.453
−0.300
−0.149

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using formula (8), we obtain the “canonical” factor decomposition of vector � as
follows:

� =

⎛
⎜⎜⎜⎜⎝

0.2149
0.0029
0.0128
0.0026

−0.0049

⎞
⎟⎟⎟⎟⎠ , �+ =

⎛
⎜⎜⎜⎜⎝

0.4710
0.0051
0.0553
0.0069
0.0022

⎞
⎟⎟⎟⎟⎠ , �− =

⎛
⎜⎜⎜⎜⎝

−0.2561
−0.0022
−0.0426
−0.0042
−0.0071

⎞
⎟⎟⎟⎟⎠ .

Indeed, the sum of the components of factor � produces the Gini index G = ∑
Φk =

0.2283 (also by Lemma 1). Now, for this illustration, we use formula (9) for the factor
centralization index vector � = (Θk)k=1,2,...,5 from Corollary 1, which has a more
simpler as well as interpretable representation:

� = diag
(
x−1
1 , x−1

2 , . . . , x−1
5

)
Xᵀ(P+ + P−)hN .

The diagonal matrix can be constructed using formula (6) or xk = (Xᵀh)k , where
k = 1, 2, . . . , 5. We obtain all vectors needed for the Gini decomposition:

x =

⎛
⎜⎜⎜⎜⎝

2583.6
25.7
347.1
39.4
32.4

⎞
⎟⎟⎟⎟⎠ , =

⎛
⎜⎜⎜⎜⎝

0.8531
0.0085
0.1146
0.0130
0.0107

⎞
⎟⎟⎟⎟⎠ , 2 =

⎛
⎜⎜⎜⎜⎝

0.2519
0.3387
0.1113
0.2017

−0.4566

⎞
⎟⎟⎟⎟⎠ .

Indeed, we also have that Gini index G = ηᵀ� = 0.2283, as desired for Corollary 1,
Finally, for a less interpretable but structurally interestingmatrix of theGini decom-

position, we have

� = diag
(
x−1
1 , x−1

2 , . . . , x−1
7

)
Xᵀ diag

(
Tp − 17

)
h
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where 17 = (1, 1, 1, 1, 1, 1, 1)ᵀ and T is a Toeplitz matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

as required for Theorem 1. This operator acting on the percentile variable to extract
the percentile range related values for seven income brackets, which in general plays
a crucial role for the income decomposition. More exactly, its action in part splits the
bracket income total into parts for contributions to equalizing and unequalizing the
income inequality.

5 Density matrix and Lorenz curve

In this section, we present two alternative and interpretable matrix forms of factor �

appeared in Corollary 1. The purpose is to establish a matrix representation of the
associated Lorenz curve. The significance of understanding the structure of Lorenz
curve can give insights to improve the Gini index.

5.1 Density matrix for factor

Using the share density functions (11), we define the associated density matrix S =
(s jk) j=1,2,...,n; k=1,...,m . A slightly different form of the matrix equation (9) may be
induced by (18), giving another perspective for the structure of income inequality:

� = SᵀP+hN + SᵀP−hN , (22)

where we notice that the percentile income splitting matrix is acting on the household
proportion vector.

Likewise, with an emphasis on a generalized covariance between the share density
and income brackets (20), we obtain yet another form:

� = Sᵀ(P − HN )hN + SᵀP−hN , (23)

where the household proportion matrix and the percentile matrix are defined by the
diagonal matrices:

HN = diag

(
h1
N

,
h2
N

, . . . ,
hn
N

)
and P = diag (p1, p2, . . . , pn) .
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Fig. 2 A bar graph of S for
seven income brackets
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Matrix equations (22) and (23) are displayed purposely to exhibit the two parts of
vector �, having the widening and narrowing effects on the total income inequality.
Each results from the household proportion vector acting on the matrix composition of
the transpose of density matrix S with household-percentile deviation matrix P−HN

or an appropriate part of percentile income splitting matrix: P+ + P−. In view of the
integral (15), the appearance of S in these equations leads to investigating a matrix
structure for the associated Lorenz curve.

5.2 Matrix representation of Lorenz curve

Now, if we consider a vector given by the values of Lorenz curve for the percentiles
and denote L(p) = (L(pi ))i=1,2,...,n , then using formula (14), we arrive at the matrix
representation for the Lorenz curve

L(p) =
m∑

k=1

SkTp,

where the matrices in the matrix summation are respectively defined by

Sk =

⎛
⎜⎜⎜⎜⎜⎝

s1k 0
s1k s2k
...

...
. . .

s1k s2k · · · s(n−1)k
s1k s2k · · · s(n−1)k snk

⎞
⎟⎟⎟⎟⎟⎠

and T =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
−1 1

−1
. . .

. . . 1
0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

n×n

.
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Here the triangular matrix Sk may be thought of as the kth component of the density
distribution matrix, which is defined by

S = S1 + S2 · · · + Sm,

and T, which may be called the percentile range matrix, is a typical n × n Toeplitz
matrix whose role is to measure the percentile range componentwise for all income

brackets. They are all nonsingular and have the explicit inverses, with T
−1

being the
lower triangular matrix of having all nonzero entries equal to 1, and

S
−1 =

⎛
⎜⎜⎜⎜⎜⎝

s −1
1 0

−s −1
2 s −1

2
−s −1

3 s −1
3
. . .

. . .

0 −s −1
n s −1

n

⎞
⎟⎟⎟⎟⎟⎠

where s j (p) =
m∑

k=1

s jk(p).

Indeed, quantities {s1, s2, . . . , sn} are the local share density functions on the n
percentile intervals respectively. We view these quantities as the components of the
total density functionwith respect to the incomebracket, since the total density function
s(p) in Sect. 2.2 can be written as

s(p) =
n∑
j=1

s j (p).

It is notable that the inverse of thematricesT andS can be used for the determination
of fractiles {p1, p2, . . . , pn}, provided any predetermined fraction of the incomes
owned by the poorest fraction of the population. It is also notable that the density

distributionmatrix S becomesT
−1

if it is induced by a uniform share density function.
In this case, the resulting Lorenz curve reduces to the curve of perfect equatability
L(p) = p.

Finally, using the density distribution and percentile range matrices, we obtain a
decomposition of the Lorenz curve by income source

L(p) =
m∑

k=1

Tk
T
Lk(p)

where Lk(p) = (T /Tk)SkTp can be thought of as a local generalized Lorenz curve
(without convexity) for the k-source of income distribution. Evidently, the Lorenz
curve is a weighted average of L1,L2, . . . ,Lm .
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5.3 Matrix illustrations of Lorenz curve

We now end Sect. 5 by calculating the density distributionmatrix for the Lorenz curve
using the dataset Table 6. By the definition of density matrix for the corresponding
income matrix X, we compute

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.3369 0.0027 0.0775 0.0063 0.0215
0.4294 0.0031 0.0950 0.0096 0.0194
0.6936 0.0047 0.1049 0.0071 0.0166
0.7633 0.0053 0.1138 0.0118 0.0211
0.9243 0.0126 0.1277 0.0201 0
0.9789 0.0103 0.0964 0.0122 0
1.6747 0.0187 0.1761 0.0219 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A plot of this matrix S produces a bar graph in Fig. 2, which can be used to contrast
the graph for the share density function s(p) over all sources of income in Fig. 3. The
associated density distribution matrix and the corresponding vector for the Lorenz
curve are respectively displayed as follows:

S=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4449 0 0 0 0 0 0
0.4449 0.5565 0 0 0 0 0
0.4449 0.5565 0.8268 0 0 0 0
0.4449 0.5565 0.8268 0.9153 0 0 0
0.4449 0.5565 0.8268 0.9153 1.0847 0 0
0.4449 0.5565 0.8268 0.9153 1.0847 1.0978 0
0.4449 0.5565 0.8268 0.9153 1.0847 1.0978 1.8914

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0515
0.1240
0.2480
0.3866
0.5526
0.7174
1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A plot of L(p) together with s(p) in Fig. 3 can be quite useful to envision the linear
interpolation for the Lorenz curve one would expect. The visual aspect of s(p), cor-
responding to all entries at the bottom of matrix S, can provide geometric intuition
for the study of income redistribution over some brackets. Observing striking density
changes over some consecutive percentile intervals can be useful for improving the
Gini index.

6 Conclusion andmiscellaneous remarks

This paper shows that the Gini index for multiple sources of income can be estimated
based on data aggregation. The structure of the overall inequality has been made
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Lorenz curve for seven income brackets

Fig. 3 Total density and a Lorenz curve for seven income brackets

Fc Fp Fm fc Theta Eta
[1,] 0.2149 0.4710 -0.2561 0.9414 0.2519 0.8532
[2,] 0.0029 0.0051 -0.0022 0.0126 0.3387 0.0085
[3,] 0.0128 0.0553 -0.0426 0.0559 0.1113 0.1146
[4,] 0.0026 0.0069 -0.0042 0.0115 0.2017 0.0130
[5,] -0.0049 0.0022 -0.0071 -0.0214 -0.4566 0.0107

x1 x2 x3 x4 x5 h p
[1,] 1020.121 8.086 234.848 19.223 65.007 24410 0.1157
[2,] 1300.232 9.438 287.614 29.082 58.878 27492 0.2460
[3,] 2100.445 14.200 317.534 21.438 50.136 31633 0.3960
[4,] 2311.398 16.040 344.556 35.844 63.868 31952 0.5474
[5,] 2799.069 38.195 386.723 60.902 0.000 32291 0.7005
[6,] 2964.355 31.242 292.000 36.902 0.000 31664 0.8506
[7,] 5071.598 56.548 533.180 66.385 0.000 31519 1.0000

Tot-income Tot-household Gini-Index
[1,] 638851734 210961 0.2283
[1] "Total k-source income:"
[1] 545044068 5423485 73232391 8319632 6832157

Fig. 4 A verbose output from a sample run of R-code (Fig. 5) for the Gini decomposition of a dataset
(Table 6), where all components �, �+,�−, �, η, and Œ in coding are identified by Fc, Fp, Fm, Theta,
Eta, and fc, respectively

evident in terms of the Gini index decomposition factors. They can be termed as
an algebraic sum of two parts of the associated income over all income brackets in
the direction of widening and narrowing the entire inequality respectively. Further
variations of the factor have been formulated in terms of the share density function,
which offer useful interpretations.

The matrix form of the share density function leads to the finding of a matrix rep-
resentation of the associated linear interpolated Lorenz curve, which can be useful for
further questions about improving theGini index andmodeling the Lorenz curve based
on aggregated datasets. This paper also shows that the Lorenz curve can be decom-
posed by income source and interpreted as a weighted average of local generalized
Lorenz curves.

Summing up, this paper has provided a new matrix approach to computing the
decomposition factors of Gini index and Lorenz curve under the framework of basic
matrix operations. Indeed, such computation schemes are more tractable for algo-
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Fig. 5 R-code listing for the Gini Decomposition of aggregated data by income source
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rithmic implementation by R programming as well as easily achievable by matrix
software technology such as Matlab. A significant contribution of this paper is to use
R code for performing the Gini index decomposition by income source. An extended
research, Shao (2020), suggests that this technique works equally well for the Gini
decomposition by population subgroup.
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