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Acute myeloid leukemia (AML) is one of the malignant hematologic cancers with rapid
progress and poor prognosis. Most AML prognostic stratifications focused on genetic
abnormalities. However, none of them was established based on the cell type
compositions (CTCs) of peripheral blood or bone marrow aspirates from patients at
diagnosis. Here we sought to develop a novel prognostic model for AML in adults based on
the CTCs. First, we applied the CIBERSORT algorithm to estimate the CTCs for patients
from two public datasets (GSE6891 and TCGA-LAML) using a custom gene expression
signature reference constructed by an AML single-cell RNA sequencing dataset
(GSE116256). Then, a CTC-based prognostic model was established using least
absolute shrinkage and selection operator Cox regression, termed CTC score. The
constructed prognostic model CTC score comprised 3 cell types, GMP-like, HSC-like,
and T. Compared with the low-CTC-score group, the high-CTC-score group showed a
1.57-fold [95% confidence interval (CI), 1.23 to 2.00; p � 0.0002] and a 2.32-fold (95% CI,
1.53 to 3.51; p < 0.0001) higher overall mortality risk in the training set (GSE6891) and
validation set (TCGA-LAML), respectively. When adjusting for age at diagnosis,
cytogenetic risk, and karyotype, the CTC score remained statistically significant in both
the training set [hazard ratio (HR) � 2.25; 95% CI, 1.20 to 4.24; p � 0.0119] and the
validation set (HR � 7.97; 95% CI, 2.95 to 21.56; p < 0.0001]. We further compared the
performance of the CTC score with two gene expression-based prognostic scores: the
17-gene leukemic stem cell score (LSC17 score) and the AML prognostic score (APS). It
turned out that the CTC score achieved comparable performance at 1-, 2-, 3-, and 5-years
timepoints and provided independent and additional prognostic information different from
the LSC17 score and APS. In conclusion, the CTC score could serve as a powerful
prognostic marker for AML and has great potential to assist clinicians to formulate
individualized treatment plans.
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INTRODUCTION

Acute myeloid leukemia (AML) is characterized by malignant
clonal hematopoiesis, which is caused by the accumulation of
somatic mutations in hematopoietic stem cells (HSCs) or
downstream progenitors (Yamashita et al., 2020). Among
diverse leukemia subtypes, AML accounts for most leukemia
patients and leukemia-related deaths, and the incidence has been
continuously increasing in recent years (Ghazawi et al., 2019;
Roman et al., 2016; Shallis et al., 2019). The average 5-years
overall survival (OS) probability is approximately 24% by 2016 in
the United States, the fifth worst by cancer types, and 17%
between 2000 and 2007 in Europe (De Angelis et al., 2015;
Shallis et al., 2019). Therefore, accurately stratifying the
prognosis is of great significance to formulate individualized
treatment plans for AML patients.

As high-throughput sequencing technology becomes
affordable, the comprehensive landscape of AML driver
mutations has been gradually revealed (Cancer Genome Atlas
Research et al., 2013; Papaemmanuil et al., 2016). Identifying the
genetic abnormalities, including cytogenetic alterations and
molecular variants, greatly contributes to the prognostic
assessments for AML patients at diagnosis (Grimwade et al.,
2010; Marcucci et al., 2011). Nevertheless, existing prognostic
stratifications, such as the 2017 European LeukemiaNet (ELN)
risk stratification (Dohner et al., 2017), still require further
improvement due to the diversity and heterogeneity of the
AML-related genetic abnormalities within and across patients.
Some studies attempted to seek novel prognostic markers using
gene expression profiles (GEPs), such as the 17-gene leukemic
stem cell score (LSC17 score) (Ng et al., 2016) and the AML
prognostic score (APS) (Docking et al., 2021). Some of these
expression-based prognostic markers showed great performances
in evaluating prognosis for AML patients. However, it is difficult
to interpret how the genes used to compute the prognostic score
affect the prognosis.

It has been suggested that the cell type compositions (CTCs) in
the tumor microenvironment are associated with tumor growth,
progression, invasion, and metastasis (Hanahan and Weinberg.,
2011). Recently, with the application of single-cell sequencing
technology in AML, 21 cell types in the bone marrow samples of
AML patients were identified, of which six were malignant (van
Galen et al., 2019). In addition, it suggested that the CTCs of AML
were associated with specific genetic mutation types and different
prognoses (van Galen et al., 2019). Therefore, it seemed feasible to
construct a novel AML prognostic score based on the CTCs, and
how the CTC-based prognostic score would perform remained to
be further studied. Experimental methods to acquire the CTCs of
samples, including flow cytometry (FCM) (Adan et al., 2017) and
single-cell RNA sequencing (scRNA-seq) (Potter., 2018), are
costly and infeasible with a large sample size at present.
Luckily, increasing computational methods have been
developed to infer the CTCs through bulk GEPs (Avila Cobos
et al., 2018)—for example, CIBERSORT uses the support vector
regression algorithm to deconvolute the bulk GEPs into CTCs
based on a reference matrix that comprises the gene expression
signatures (GES) of cell types of interest (Newman et al., 2015).

In this study, we aimed to develop a novel prognostic model
for de novo AML in adults based on the CTCs of patients at
diagnosis. Firstly, we constructed a cell type-specific GES
reference matrix by conducting a differential expression
analysis using AML scRNA-seq profiles. Then, we
deconvoluted the bulk GEPs of two AML datasets to CTCs
based on the custom reference matrix. Finally, we constructed
and evaluated an AML prognostic model, termed CTC score,
based on the estimated CTCs. The CTC score showed a
comparable performance to previous gene expression-based
prognostic models and could act as an independent prognostic
factor for AML. In addition, we demonstrated that the CTC score
provided additional prognostic information different from LSC17
and APS.

MATERIALS AND METHODS

Data Sources
We downloaded a scRNA-seq dataset, GSE116256 (van Galen
et al., 2019), and two bulk gene expression datasets, GSE6891
(Verhaak et al., 2009) and TCGA-LAML (Cancer Genome Atlas
Research et al., 2013), for AML from the Gene Expression
Omnibus (GEO) data repository (RRID:SCR_005012) and
Genomic Data Commons data portal (RRID:SCR_014514),
respectively. The scRNA-seq dataset contains single-cell GEPs
and cell annotations of 30,712 cells and 27,899 genes from the
bone marrow aspirates of 16 AML patients. The cell annotations
comprise information such as the number of unique molecular
identifiers (UMIs), the number of expressed genes, and the
inferred cell type for each cell. A total of 21 cell types were
defined, including HSC, HSC-like, progenitor (Prog), Prog-like,
granulocyte–monocyte–progenitor (GMP), GMP-like,
promonocyte (ProMono), ProMono-like, monocyte (Mono),
Mono-like, conventional dendritic cell (cDC), cDC-like,
plasmacytoid dendritic cell (pDC), early erythroid progenitor
(earlyEry), late erythroid progenitor (lateEry), progenitor B cell
(proB), mature B cell (B), plasma cell (plasma), naïve T cell (T),
cytotoxic T lymphocyte (CTL), and natural killer cell (NK).
Details of the scRNA-seq dataset can be learned from elsewhere
(van Galen et al., 2019). For the bulk gene expression dataset
GSE6891, 537 GEPs of AML patients profiled by microarray
were obtained. For TCGA-LAML, 151 GEPs with fragments per
kilobase million normalization were downloaded. The
corresponding clinical characteristics and survival
information for each sample were downloaded from the
cBioPortal database (RRID:SCR_014555).

Study Design
The workflow of this study is illustrated in Figure 1. We first
constructed the GES reference matrix of the 21 cell types required
in CIBERSORT (Newman et al., 2015) (RRID:SCR_016955)
using AML scRNA-seq profiles. The CTCs of patients in the
bulk gene expression datasets of GSE6891 and TCGA-LAML
were subsequently estimated. A CTC-based prognostic model
was established, with GSE6891 as the training set, and was
validated in TCGA-LAML subsequently.
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Data Preprocessing and Quality Control
For the scRNA-seq dataset GSE116256, we excluded cells derived
from samples of AML314, AML371, AML722B, and AML997 due
to the unconfident cell type annotations (van Galen et al., 2019).
Next, we computed the ratio of UMI counts to the number of
expressed genes for each cell, termed UTG ratio below. In each
cell type, cells with outlier values of UTG ratio were prone to be
low in quality. The threshold to filter such cells was determined to
be the median UTG ratio plus–minus three times the median
absolute deviation (Leys et al., 2013). A total of 27,023 cells
remained (Supplementary Figure S1).

The bulk GEPs of GSE6891 were generated by Affymetrix
Human Genome U133 Plus 2.0 Array (Verhaak et al., 2009). The
raw CEL files were processed using affy (version 1.66.0) and
normalized by the Gene Chip Robust Multi-array Average (Wu
et al., 2004) algorithm using gcrma (version 2.60.0) Bioconductor
R package. The probe set IDs were transformed to the
corresponding gene symbols according to the chip definition

file (GEO accession: GPL570). The probe sets that did not match
any gene symbols or matched multiple gene symbols were filtered
out. To retain enough genes for subsequent analysis, we
computed the mean expression of probe sets that matched the
same gene and chose the probe set with the highest average gene
expression to represent that gene (Ng et al., 2016). Among the
cases in GSE6891, we only retained de novo AML cases whose age
at diagnosis were greater or equal to 18 with completed survival
information.

For TCGA-LAML, the ensemble gene IDs of the downloaded
GEPs were transformed to gene symbols according to the
comprehensive gene annotation files of GENCODE release 38
(GRCh38.p13; RRID:SCR_014966) in gene transfer format. We
filtered out the ensemble gene IDs matching the same gene
symbol due to the difficulty in determining which ensemble
gene ID to represent that gene. Among the cases in TCGA-
LAML, we took the same filtering criteria as implemented for the
GSE6891 dataset.

FIGURE 1 | Overview of the workflow.
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Constructing the Cell Type-Specific Gene
Expression Signatures Reference Matrix
We constructed the cell type-specific GES reference matrix based
on the AML scRNA-seq GEPs using Seurat (Stuart et al., 2019)
(version 3.2.0) R package. First, the single-cell GEPs of AML
patients were integrated and imported into a Seurat object. All
cells were labeled as the cell type in the annotation file. Then, we
normalized the UMI counts to counts per million (CPM) and
performed natural-log transformation [log (CPM+1)].
Subsequently, we conducted the differential expression analysis
using FindAllMarkers function to acquire highly expressed genes
of each cell type by comparing the cells of 1 cell type against all
others in turn. The tests of comparisons between groups used the
“bimod” method, a likelihood-ratio test for single-cell gene
expression (McDavid et al., 2013). The “min.pct” parameter
was set to 0. Other parameters were set as default. The
acquired highly expressed genes of each cell type with the
adjusted p-values lower than 0.05 and the average natural-log
fold-change (logFC) above 1 were retained (Supplementary
Figure S2 and Supplementary Table S1). Notably, the highly
expressed genes selected to build the GES reference matrix are the
dominant influence factor for CTC estimations, thereby affecting
subsequent modeling. Therefore, we extracted the top 25, 50, 100,
and 150 most significantly highly expressed genes for each cell
type and computed themean expression by cell type to build 4 cell
type-specific GES reference matrices (GES25, GES50, GES100,
and GES150; Supplementary Figure S3, Supplementary Table
S2, Supplementary Table S3, Supplementary Table S4, and
Supplementary Table S5) (Donovan et al., 2020).

Simulations to Examine the Accuracy of
CIBEROSRT and Gene Expression
Signatures Matrices
We performed a simulation analysis to examine the accuracy of
CIBERSORT using the custom cell type-specific GES reference
matrices. Specifically, we first generated 100 artificial samples
using scRNA-seq profiles. For each sample, we selected a random
number of cells for each cell type from at least 50 to the maximum
number of cells for that cell type through the cell barcodes
(Donovan et al., 2020). The normalized GEPs of these cells
were summed to create the artificial sample with known cell
type compositions. Subsequently, we ran CIBERSORT on these
artificial samples using different GES matrices. Additionally, two
other deconvolution methods, MuSiC (Wang et al., 2019) and
MOMF (Sun et al., 2019), were also used for comparisons. The
Pearson correlation coefficients of the real proportions and the
estimated proportions were computed by each cell type as the
metric of accuracy.

Estimating Cell Type Compositions Using
CIBERSORT
The simulation results showed that the performances of
CIBERSORT, MuSiC, and MOMF were similar (Supplementary
Figure S4). However, we noticed that MuSiC and MOMF took a
much longer running time andmuchmore memory consumptions

(data not shown). Accordingly, we chose CIBEROSRT to estimate
the relative proportions of 21 AML cell types for the bulk gene
expression datasets GSE6891 and TCGA-LAML, setting 100
permutations and disabling the quantile normalization option.

Constructing an Acute Myeloid Leukemia
Prognostic Model Based on Cell Type
Compositions
After estimating the CTCs (Supplementary Table S6,
Supplementary Table S7, Supplementary Table S8, and
Supplementary Table S9), we found that the estimated
proportions of some cell types were almost 0 for most of the
samples, probably due to estimation error. To reduce the
influence on subsequent modeling, we converted the cell types
whose mean proportions were lower than 0.05 or median
proportions were equal to 0 to dichotomous variables, with 0
as the cutoff value. Cell types converted to dichotomous or that
remained continuous in both datasets and whose Pearson
correlation coefficient was r > 0.8 in the simulations were used
to train and validate the prognostic model.

The bulk gene expression dataset GSE6891 was set as the
training set, and TCGA-LAML was set as the validation set to
establish and validate a novel prognostic model for AML based on
CTCs. With OS as the survival outcome, we performed the least
absolute shrinkage and selection operator (LASSO) Cox regression
(Simon et al., 2011) and 10-fold cross-validation using glmnet
(version 4.1–1) R package. To obtain a robust model, we repeated
this process 100 times using different random seeds, and cell types
with non-zero coefficients in at least 95 fittings were retained. The
coefficients of 100 fitting processes for the retained cell types were
averaged as the final coefficient (Elsayed et al., 2020). The linear
combination of the selected cell types in the LASSO Cox regression
model weighted by the coefficients served as the prognostic marker
for AML, called CTC score. For better interpretation and
visualization, we partitioned all patients into low- and high-
CTC-score groups by median.

The established CTC score was validated in TCGA-LAML.We
computed the CTC scores for patients in TCGA-LAML based on
the linear equation above (Supplementary Table S10). We
likewise partitioned the patients in the validation set into low-
and high-CTC-score groups based on the median. Kaplan–Meier
curves were used to display the different prognoses between low-
and high-CTC-score groups.

We considered displaying the CTC score established on the
CTCs estimated with GES100 as the reference matrix to be the
main results. Other prognostic models based on the CTCs
estimated using GES25, GES50, and GES150 were considered
as sensitivity analysis and could be accessible in Supplementary
Figure S5. The Harrell’s concordance index (C-index) was used
to compare the performance of these models (Harrell et al., 1996).

Verifying the Prognostic Independence of
the Cell Type Composition Score
We found that GMP-like has a great weight when computing the
CTC score (see results part). It has been reported that GMP-like is
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highly associated with two abnormal karyotypes (i.e., PML-RARA
and RUNX1-RUNX1T1), both of which indicate a favorable
prognosis (Appelbaum et al., 2006; Wang and Chen., 2008; van
Galen et al., 2019). Thus, it is crucial to verify whether the
prognostic significance of CTC score was dominantly captured
by existing prognostic factors such as karyotypes and cytogenetic
risk classifications. To verify this point, we first implemented
univariable Cox regressions for clinical characteristics. The
clinical characteristics significant in both training and validation
dataset and CTC score were introduced to multivariable Cox
regressions using survival (version 3.2–7) R package.

Comparing the Cell Type Composition
Score with the LSC17 Score and Acute
Myeloid Leukemia Prognostic Score
We further evaluated the performance of CTC score by
comparing it with the LSC17 score and APS. The LSC17 score
was constructed by the expression of 17 genes highly expressed in
LSCs, while the APS was constructed by the expression of 16
genes acquired by LASSO Cox regression (Ng et al., 2016;
Docking et al., 2021). The LSC17 score and APS for patients
in the validation set TCGA-LAML were computed in compliance
with the data processing flow and calculation equation according
to the original articles (Supplementary Table S10) (Ng et al.,
2016; Docking et al., 2021). Considering the comparability, all
three prognostic scores were not converted to dichotomous
variables. We implemented the time-dependent receiver
operating characteristic (ROC) curve analysis to evaluate and
compare the predictive accuracy using area under the ROC curve
(AUC) as the indicator. The predictive sensitivities and
specificities of CTC score, LSC17 score, and APS at 1-, 2-, 3-,
and 5-years timepoints were computed and compared using
timeROC (Blanche et al., 2013) (version 0.4) R package.

Statistical Analysis
For the clinical characteristics of patients in the bulk gene
expression datasets GSE6891 and TCGA-LAML, continuous
variables were described by medians and ranges, and
categorical variables were described by frequencies and
proportions. We used the Wilcoxon test or Kruskal–Wallis test
for group comparisons of continuous variables and the chi-square
test or Fisher’s exact test for that of categorical variables. All
statistical tests were two-tailed, and p-values lower than 0.05 were
considered statistically significant. All the analyses were
performed in R-4.0.2.

RESULTS

Clinical Characteristics and Cell Type
Compositions for Two Bulk Acute Myeloid
Leukemia Datasets
For the bulk gene expression dataset GSE6891, 11 patients whose
age at diagnosis was lower than 18, 17 patients of myelodysplastic
syndrome, and four patients with missing survival information

were filtered out. Eventually, 429 patients were eligible, whereas
all patients in TCGA-LAML passed the filtering criteria. The
descriptive characteristics of patients in these two datasets are
shown in Table 1. Patients in GSE6891 were younger than those
in TCGA-LAML (p < 0.0001). FAB classification (p � 0.0010) and
cytogenetic risk (p � 0.0313) were also different between GSE6891
and TCGA-LAML. Patients in GSE6891 comprises more FAB-
M5 subtype (23.3% in GSE6891 vs 9.9% in TCGA-LAML) and
less poor cytogenetic risk strata (19.3% in GSE6891 vs 23.8% in
TCGA-LAML). The CTCs for patients in the GSE6891 and
TCGA-LAML datasets estimated with GES100 as the reference
matrix are shown in Supplementary Figure S6.

Cell Type Composition-Based Prognostic
Score for Acute Myeloid Leukemia
The median follow-up time of patients in the bulk gene
expression datasets GSE6891 and TCGA-LAML was
20.11 months [interquartile range (IQR), 7.89–92.78 months]
and 19 months (IQR, 6.45–42.1 months), respectively. We
fitted a LASSO Cox regression model and defined the CTC
score computed by the following equation:

TABLE 1 | Characteristics of acute myeloid leukemia patients in the training set
and the validation set.

Characteristic GSE6891 TCGA-LAML p-value

(Training
set; n = 429)

(Validation
set; n = 151)

Age at diagnosis, years <0.0001
Median (range) 44 (18–60) 56 (21–88)
≤55 361 (84.1) 74 (49.0)
>55 68 (15.9) 77 (51.0)
Sex 0.3233
Female 218 (50.8) 69 (45.7)
Male 211 (49.2) 82 (54.3)
FAB classification 0.0010
M0 16 (3.7) 15 (9.9)
M1 94 (21.9) 36 (23.8)
M2 100 (23.3) 37 (24.5)
M3 24 (5.6) 15 (9.9)
M4 81 (18.9) 29 (19.2)
M5 100 (23.3) 15 (9.9)
M6 6 (1.4) 2 (1.3)
M7 0 (0) 1 (0.7)
NA 8 (1.9) 1 (0.7)
Cytogenetic risk 0.0313
Good 91 (21.2) 31 (20.5)
Intermediate 245 (57.1) 81 (53.6)
Poor 83 (19.3) 36 (23.8)
NA 10 (2.3) 3 (2.0)
Karyotype 0.0964
Others 351 (81.8) 127 (84.1)
PML-RARA 21 (4.9) 14 (9.3)
RUNX1-RUNX1T1 32 (7.5) 7 (4.6)
NA 25 (5.8) 3 (2.0)

Patients with missing values were removed before performing the statistical tests. Chi-
square tests were implemented to compare the constituent ratios of characteristics
between the training set GSE6891 and the validation set TCGA-LAML, except for FAB
classification, for which Fisher’s exact test was conducted.
FAB, French–American–British; NA, not available; CTC, cell type composition.
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CTC score � (−1.7016 × GMP-like) + (0.2015 × HSC-like) +
(−0.293 × T), where HSC-like and T were dichotomous. The
negative coefficient of GMP-like indicated that lower relative
proportions of GMP-like at diagnosis would predict worse
survival outcomes. The estimated HSC-like greater than 0 and
T equal to 0 would predict worse prognoses.

Comparing with the low-CTC-score group, the high-CTC-
score group showed a 1.57-fold (95% CI, 1.23 to 2.00; p � 0.0002)
higher overall mortality risk in the training set GSE6891 and 2.32-
fold (95% CI, 1.53 to 3.51; p < 0.0001) in the validation set TCGA-
LAML (Table 2). The 5-years OS rate for GSE6891 was 47.7%
(95% CI, 41.4–54.9%) in the low-CTC-score group and 31.1%
(95% CI, 25.5–37.9%) in the high-CTC-score group. For TCGA-
LAML, the 5-years OS rate was 41.2% (95% CI, 29.7–57.1%) and
17.7% (95% CI, 10.2–30.7%) in the low-CTC-score group and
high-CTC-score group, respectively (Figure 2).

The individual-level results of CTCs estimated using GES25,
GES50, GSE100, and GES150 could be obtained in
Supplementary Table S6, Supplementary Table S7,
Supplementary Table S8, and Supplementary Table S9. As
displayed in Supplementary Figure S5, the CTC-based scores
established by reference matrices with different GES matrices
were robustly associated with the OS of AML in the validation set,
with C-index ranging from 0.64 (95% CI, 0.58–0.70) to 0.67 (95%
CI, 0.61–0.73).

Cell Type Composition Score Is an
Independent Factor in Predicting Acute
Myeloid Leukemia Prognosis
We performed univariable and multivariable Cox regressions in
both the training and validation sets to test whether the CTC
score is an independent factor associated with the OS for AML in
adults. Among the clinical characteristics, age at diagnosis,
cytogenetics risk, and karyotype were significantly associated
with OS in both datasets (Table 2). The multivariable Cox
regression results showed that CTC score remained statistically
significant in GSE6891 (HR � 2.25; 95% CI, 1.20 to 4.24; p �
0.0119) and TCGA-LAML (HR � 7.97; 95% CI, 2.95 to 21.56; p <
0.0001) when adjusting for age at diagnosis, cytogenetic risk, and
karyotype (Figure 3). These results suggested that CTC score can
predict the prognosis of AML independent of age at diagnosis,
cytogenetic risk, and karyotype.

Cell Type Composition Score Provides
Additional Prognostic Information Different
from LSC17 and Acute Myeloid Leukemia
Prognostic Score
In TCGA-LAML, we evaluated the predictive accuracy of 1-, 2-,
3-, and 5-years OS using ROC curves. The corresponding AUCs

TABLE 2 | Univariable Cox regression with overall survival as the outcome.

Characteristic GSE6891 (Training set, n = 429) TCGA-LAML (Validation set, n = 151)

HR (95% CI) p-value HR (95% CI) p-value

Age at diagnosis, years
≤55 Reference Reference
>55 1.83 (1.36–2.47) <0.0001 2.71 (1.79–4.11) <0.0001

Sex
Female Reference Reference
Male 0.94 (0.74–1.19) 0.6002 1.01 (0.68–1.51) 0.9465

FAB classification
M0 2.14 (0.96–4.79) 0.0632 3.76 (1.18–12.04) 0.0256
M1 1.43 (0.75–2.72) 0.2770 3.73 (1.29–10.81) 0.0152
M2 1.40 (0.74–2.66) 0.3046 3.33 (1.15–9.64) 0.0262
M3 Reference Reference
M4 1.28 (0.67–2.47) 0.4574 3.93 (1.34–11.53) 0.0126
M5 1.66 (0.88–3.14) 0.1186 4.57 (1.42–14.67) 0.0106
M6 0.89 (0.25–3.18) 0.8532 9.69 (1.74–53.99) 0.0095
M7 NA NA 7.83 (0.86–71.13) 0.0675

Cytogenetic risk
Good Reference Reference
Intermediate 1.99 (1.39–2.84) 0.0002 3.11 (1.58–6.10) 0.0010
Poor 3.40 (2.27–5.10) <0.0001 4.36 (2.10–9.03) <0.0001

Karyotype
Others Reference Reference
PAML-RARA 0.39 (0.18–0.82) 0.0136 0.28 (0.10–0.78) 0.0143
RUNX1-RUNX1T1 0.39 (0.22–0.70) 0.0017 0.45 (0.14–1.44) 0.1800

CTC score
Low Reference Reference
High 1.57 (1.23–2.00) 0.0002 2.31 (1.53–3.51) <0.0001

Patients with missing values were removed before performing the statistical tests.
HR, hazard ratio; CI, confidence interval; FAB, French–American–British; NA, not available; CTC, cell type composition.
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and 95% CIs for CTC score, LSC17 score, and APS were
computed as shown in Figure 4. The differences in AUCs of
CTC score versus LSC17 score and CTC score versus APS at four
time points were not statistically significant (Supplementary
Table S11), suggesting that CTC score can achieve a similar
predictive accuracy compared with LSC17 score and APS.
Additionally, we simultaneously included CTC score, LSC17
score, and APS into the multivariable Cox regression
(Figure 5). CTC score (HR � 3.65; 95% CI, 1.37 to 9.7; p �
0.0095) and APS (HR � 1.84; 95% CI, 1.06 to 3.18; p � 0.0297)
remained statistically significant, suggesting that both CTC score
and APS could capture additional prognostic information
compared with LSC17 score. Furthermore, the additional
prognostic information captured by the CTC score was
different from that captured by APS.

DISCUSSION

In the present study, we have constructed an AML prognostic score
based on the assumption that the CTCs of AML patients at
diagnosis can reflect the genetic abnormalities and are thus
correlated with their prognosis (van Galen et al., 2019). To
estimate CTCs, we first constructed a cell type-specific GES
reference matrix GES100 through a differential expression
analysis of the AML scRNA-seq dataset. Then, we applied the
CIBERSORT algorithm to deconvolute the bulk GEPs of AML
samples to CTCs by the customGES referencematrix. Subsequently,
an AML prognostic score based on the CTCs (i.e., CTC score)
comprising 3 cell types, GMP-like, HSC-like, and T, was established

for de novo AML in adults. CTC score was significantly associated
with the OS in both the training set and the validation set.

Previous studies applying CIBERSORT to estimate the
immune microenvironment for AML all used LM22, which
contains the GESs of 22 immunocytes provided by the author
as the reference matrix (Newman et al., 2015; Xu et al., 2020;
Cheng et al., 2021; Jia et al., 2021). However, the estimates of
CTCs might be inaccurate in these studies because of the
resemblance between normal immunocytes and malignant
leukemic blasts, especially for the myeloid lineages—for
example, both Xu et al. (2020) and Cheng et al. (2021)
identified that higher relative proportions of M2 macrophage
were associated with a poorer prognosis for AML. Additionally,
Xu et al. (2020) suggested the marker gene of M2 macrophage
CD206, also presenting in immature dendritic cells (DCs)
(Wollenberg et al., 2002), as a novel prognostic predictor.
However, we found that CD206 was highly expressed in cDC-
like (Supplementary Figure S7). Thus, the estimated proportions
for M2 macrophage might be overestimated due to the similarity
between cDC-like and M2 macrophage when using LM22 as the
reference. To fix this issue, we constructed custom GES reference
matrices containing all 21 cell types of the bone marrow
annotated by the single-cell GEPs. In this manner, the
estimated relative proportions of using CIBERSORT could
reflect the real proportions of each cell type in the sample.
When considering both the normal and the malignant cell
types in AML samples, the established CTC score showed a
powerful prognostic significance.

We noticed that the coefficient of GMP-like in CTC score was
greater than the other 2 cell types. It has been revealed before that

FIGURE 2 | Kaplan–Meier curves of low-cell type composition (CTC)-score and high-CTC-score groups for the training set GSE6891 (A) and the validation set
TCGA-LAML (B).
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GMP-like was associated with PML-RARA and
RUNX1–RUNX1T1 fusion in the TCGA-LAML dataset (van
Galen et al., 2019). This finding was repeated in the bulk gene
expression dataset GSE6891 (Supplementary Figure S8).
Researchers found that the PML–RARA fusion leads to a block
in the differentiation of myeloid cells at the promyelocytic stage
(Grisolano et al., 1997). In recent decades, the PML–RARA fusion-
induced AML has become highly curable since the broad
application of target chemotherapy drugs, all-trans retinoic acid
and arsenic trioxide, into clinical use (Wang and Chen., 2008). The
RUNX1–RUNX1T1 fusion-induced AML has also been
determined to have a good prognosis (Appelbaum et al., 2006).
It is characterized by the expressed myeloperoxidase, a protein
expressed mainly in neutrophils, in more than 90% of leukemia

blasts (Schlaifer et al., 1993; Aratani., 2018). Both of these two gene
fusions are considered to be of good prognosis in cytogenetic risk
classification (Slovak et al., 2000). In other words, the CTC score is
probably confounded by these two gene fusions for the great weight
of GMP-like. Analogously, other covariates imbalanced such in the
training and validation sets as the cytogenetic risk might also
confound the results. Therefore, it is crucial to figure out whether
the CTC score can provide additional and independent prognostic
information to AML prognosis in comparison to the existing
classifications. In our study, we have justified this by conducting
multivariable Cox regression analyses. We introduced age at
diagnosis, karyotype, and cytogenetic risk as covariates for both
the training and validation datasets, and the CTC score remained
statistically significant.

FIGURE 3 | Forest plots of multivariable Cox regression results for the training set GSE6891 (A) and the validation set TCGA-LAML (B).
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Except for the LSC17 score and APS, most of the existing
studies were based on transcriptomic profiles aiming to construct
prognostic scores or find genes associated with the prognosis of
AML in adults or pediatric AML were based on transcriptomic
profiles (Duployez et al., 2019; Huang et al., 2019; Elsayed et al.,
2020; Wang et al., 2020). Some of the genes in these models were
inexplicable. Few AML prognostic studies focused on the CTCs of
samples from AML patients at diagnosis. In our study, we showed
that the AML prognostic model established on the CTCs could
independently assess the overall survival of AML patients. The

CTC score achieved comparative performance in predicting AML
prognosis compared with the gene expression-based prognostic
scores. Furthermore, we found that the CTC score could provide
additional information different from the LSC17 score and APS.
The CTC score clarified that GMP-like was a powerful cell marker
predicting the prognosis for AML. Rapid detection of the
proportions of GMP-like in the samples from AML patients at
diagnosis was expected to aid prognostic classification in the
future. Nevertheless, more datasets are required to further verify
the effectiveness of the CTC score. Besides this, to incorporate
CTC score, APS, and other prognostic factors into a more
powerful prognostic model for AML is expected in further
studies.

There exist several limitations in the present study. First,
the similarity between different cell types inevitably affects the
estimation of CIBERSORT. At present, the highly expressed
genes of each cell type are typically obtained by comparing
1 cell type against all others. Such a method makes it difficult
to distinguish 1 cell type from another similar cell type,
especially when the number of one of the cell types is
relatively small. To mitigate this influence, we filtered out
highly expressed genes with logFC lower than 1 and chose the

FIGURE 4 | Time-dependent receiver operating characteristic (ROC) curves for cell type composition score, LSC17 score, and acute myeloid leukemia prognostic
score of the validation set TCGA-LAML. One-year (A), 2-years (B), 3-years (C), and 5-years (D) ROC curves and the corresponding areas under ROC curve with 95%CI
are displayed.

FIGURE 5 | Forest plot for multivariable Cox regression, incorporating
three acute myeloid leukemia prognostic scores of the validation set TCGA-
LAML.
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most significant for each cell type. Second, the discrepancies of
distribution for some cell types (e.g., ProMono-like) between
the training set and the validation set, as shown in
Supplementary Figure S6, might be caused by estimation
error, different composition in AML subtypes between
datasets, and different transcriptome sequencing approach.
This might limit the power to identify the associations of these
cell types with AML prognosis. Third, we assumed that
samples from bone marrow aspirates and peripheral blood
comprised the same cell types. The samples of bulk GEPs
datasets GSE6891 and TCGA-LAML were from different
tissues, bone marrow aspirates, or peripheral blood, which
might cover the prognostic role of some anti-tumor cell
types—for example, T cells accounted for a great part in the
single-cell dataset (Supplementary Figure S1), whereas the
estimated proportions of bulk datasets were less
(Supplementary Figure S6).

In conclusion, our study established a novel AML prognostic
score using CTCs for de novo AML in adults. CTC score has great
potential to assist clinicians to formulate individualized treatment
plans, thereby improving the prognosis for AML patients.
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