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Abstract

Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a
common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In
this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the
reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed:
encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors
produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein
acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different
organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be
present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and
seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites
showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were
induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation
during Giardia encystation.

Citation: Merino MC, Zamponi N, Vranych CV, Touz MC, Rópolo AS (2014) Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-
palmitoylation in the Encystation Process. PLoS Negl Trop Dis 8(7): e2997. doi:10.1371/journal.pntd.0002997

Editor: Steven M. Singer, Georgetown University, United States of America

Received November 15, 2013; Accepted May 23, 2014; Published July 24, 2014

Copyright: � 2014 Merino et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the Agencia Nacional para la Promoción de la Ciencia y Tecnologı́a(FONCyT) PICT 2010 grant to MCT and PICT 2008
grant to ASR; and by CONICET and SECYT-UNC grants to ASR. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: mcmerino@immf.uncor.edu

Introduction

The flagellated protozoan parasite Giardia lamblia is a major

cause of non-viral/non-bacterial diarrheal disease worldwide. This

parasite can cause asymptomatic colonization or acute or chronic

diarrheal illness and malabsorption [1]. Infection begins with the

ingestion of Giardia in its cyst form which, after exposure to gastric

acid in the host stomach and proteases in the duodenum, gives rise

to trophozoites. The inverse process is called encystation and

begins when the trophozoites migrate to the lower part of the small

intestine where they receive signals that trigger synthesis of the

components of the cyst wall. The encystation process is tightly

regulated but the exact mechanism that controls this process is still

obscure. Expression of the three Cyst Wall Proteins (CWP) and the

glycopolymer biosynthetic enzymes, is largely upregulated. In

addition, several other proteins, whose roles in encystation are yet

to be discovered, are upregulated at the transcriptional level [2],

[3]. Various protein posttranslational modifications (PTM) have

been implicated in the development of encystation, such as

phosphorylation [4] and deacetylation [5], among others [6], [7],

[8]. There is also some evidence of the role of PTM in gene

regulation for the control of this process [9].

Protein S-palmitoylation (hereafter referred to as palmitoyla-

tion), the post-translational addition of palmitic acid (16:0) to

cysteine residues of proteins, is a PTM essential for proper

membrane trafficking to defined intracellular membranes or

membrane sub-domains, protein stability, protein turnover, and

vesicle fusion [10], [11], [12]. Unlike the other lipid modifications,

palmitoylation is potentially reversible, providing a regulatory

switch for membrane association [13], [14]. Palmitoylation is

catalyzed by a family of protein acyltransferases (PATs), which

transfer a palmitoyl moiety derived from palmitoyl-CoA to a free

thiol of a substrate protein to create a labile thioester linkage [15],

[16]. The discovery of these enzymes came through studies in

yeast that identified the PATs Erf2 and Akr1, which are active

against Ras and casein kinase, respectively [17], [16]. These

enzymes are polytopic integral membrane proteins which share

the conserved Asp-His-His-Cys (DHHC) - cysteine-rich domain

(CRD). The general membrane topology predictions indicate that

the core structure of a PAT is four transmembrane domains

(TMDs), with the N- and C- terminus in the cytoplasm [18]. The

signature feature DHHC-CRD, which is indispensable for

palmitoylating activity, is located in the cytoplasmic loop between

the second and third TMDs [19]. There is a small group of PATs

that display six TMDs with an extended N-terminal region

encoding ankyrin repeats. The yeast PAT called Akr1 is a member

of this group [16], [20]. All these findings were crucial in defining

palmitoylation as an enzymatic process and led to subsequent
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identification of protein acyltransferases in many other organisms,

such as mammals [21], [22], plants [23], and protozoan parasites

like Toxoplasma gondii [24], [25], Plasmodium [26], [25], and

Trypanosoma brucei [27].

There is scarce knowledge about palmitoylation in Giardia, but

some findings indicate that this PTM may play an important role

in pathogenesis. It was shown that a19-giardin, one of the major

protein components of the Giardia cytoskeleton, can be both

myristoylated and palmitoylated [28] and that the variant-specific

surface proteins (VSPs) may be palmitoylated within their C-

terminal domains [29], [30]. Later, Touz et al. determined the

exact site of palmitoylation of the VSPs, characterized the enzyme

responsible for this modification, and determined the participation

of palmitoylation during antigenic variation [31], a process in

which the trophozoite continuously changes its surface antigen

coat [32]. Antigenic variation and encystation are two distinctive

mechanisms of defense that the parasite has developed to survive

in hostile environmental conditions during its life cycle, and it has

been suggested that both are mechanistically related processes

[33].

Accumulation of material in membrane vesicles followed by

transport and vesicle fusion and secretion are some of the main

events involved in Giardia encystation. Because palmitoylation

has been reported to play a key role in these events in other cell

types [12], [10], [34], [35], [36], it is likely that this PTM may

also play a role in Giardia encystation. In this work, we address

the question of whether PATs and palmitoylation itself are

involved in Giardia encystation. We provide evidence about the

role of palmitoylation in Giardia encystation biology by

inhibiting this PTM with 2-bromopalmitate (2-BP) or 2-

fluoropalmitate (2-FP). Using bioinformatics, we identified the

potential PATs (hereafter called DHHC proteins) in the Giardia
lamblia proteome and performed a phylogenetic analysis of these

proteins. We evaluated the expression of the total collection of

DHHC proteins in trophozoites and encysting parasites. Using

dhhc transgenic Giardia parasites, we revealed the intracellular

localization of DHHC proteins and their influence in CWP

expression and cyst yield when parasites were induced to encyst.

Our data suggest a role of palmitoylation and DHHC proteins in

encystation, providing an insight into the impact of this PTM in

Giardia survival.

Methods

Giardia lamblia culture, transfection, and differentiation
Trophozoites of the isolate WB, clone 1267 [37], were cultured

in TYI-S-33 medium supplemented with 10% adult bovine serum

and 0.5 mg ml21 bovine bile (Sigma, St. Louis, MO) as described

[38]. GL50806_40376 (High Cysteine Non-variant Cyst protein;

HCNCp), GL50803_1908, GL50803_2116, GL50803_16928,

and GL50803_8711 open reading frames (ORF) were amplified

from genomic DNA. GL50806_40376 was cloned into the vector

pTubV5-pac [39] to generate pHCNCp-V5 plasmid. GL50803_

1908, GL50803_2116, GL50803_16928, and GL50803_8711

were each one cloned into the vector pTubHA-pac [39] to

generate the pDHHC-HA plasmids. Trophozoites were transfect-

ed with the constructs by electroporation and selected by

puromycin (Invivogen, San Diego, CA) as previously described

[40], [41], [42]. Trophozoites transfected with empty pTubHA-

pac or pTubV5-pac plasmids were used as control. Primer

sequences used for DHHC proteins cloning are depicted in table

S1. Encystation was induced by growing trophozoites for one

culture cycle in TYI-S-33 medium without bile (pre-encystation).

Bile-deficient medium was poured off along with unattached

trophozoites and replaced with warmed encysting medium

containing 0.45 mg ml21 porcine bile (Sigma, St. Louis, MO)

and 0.25 mg ml21 lactic acid (Sigma, St. Louis, MO), pH 7.8, and

incubated at 37uC for 48 h [43]. Total encysting cultures were

harvested at 48 h by chilling and centrifugation, and subsequently

used for palmitoylation assay, RNA extraction, western blot,

immunofluorescence, or flow cytometry.

Palmitoylation assay
The assay followed the procedure described by Papanastasiou et

al. and Corvi et al. [29], [44]. Briefly, 86106 growing and

encysting wild-type or dhhc transgenic parasites were washed,

suspended in 1 ml of RPMI (Gibco, Invitrogen, Carlsbad, CA)

containing 200 mCi of [9,10-3H(N)]-palmitic acid (Perkin-Elmer,

MA), previously conjugated to BSA fatty acid free (1:1, mol:mol

ratio), and incubated for 4 h at 37uC. The samples were then

suspended on SDS–PAGE loading buffer without any reducing

agent and loaded onto SDS-PAGE gel. The gel was then

incubated for 30 min in ddH2O and for 30 min more in 1M

sodium salicylate pH 6.5. The gel was then incubated with 3%

glycerol, 10% acetic acid, and 40% methanol for 30 min, dried for

2 h at 80uC using a gel dryer machine, and exposed to

autoradiographic film for a month. For hydroxylamine treatment,

the gel was soaked in either 1 M NH2OH- NaOH pH 7.0 or 1 M

Tris-HCl pH 7.0 (Control) for 48 h. Finally, the gel was incubated

for 30 min in ddH2O and for 30 min more in 1M sodium

salicylate pH 6.5, dried as described above, and exposed to

autoradiographic film for a month.

Acyl-biotin exchange
Total cellular palmitoylated proteins from growing and

encysting wild-type or transgenic (overexpressing HCNCp) para-

sites, were purified following the procedure described by Wan et
al. [45]. Briefly, 56107 trophozoites or 48 h encysting parasites

were harvested and lysed with Lysis buffer (LB; 50 mM Tris-HCl

pH 7.4, 5 mM EDTA, 150 mM NaCl) with 10 mM N-Ethylma-

leimide (NEM; Thermo Scientific Pierce Rockford, IL) plus

protease inhibitors. After sonication, 1.7% of Triton X-100 was

added to each sample and incubated for 1 h at 4uC under

shacking. The samples were then centrifuged at 5006g for 5 min

at 4uC. The supernatant was collected in a new tube and

solubilized proteins were precipitated with chloroform-methanol.

Author Summary

Giardiasis is a major cause of non-viral/non-bacterial
diarrheal disease worldwide and has been included within
the WHO Neglected Disease Initiative since 2004. Infection
begins with the ingestion of Giardia lamblia in cyst form,
which, after exposure to gastric acid in the host stomach
and proteases in the duodenum, gives rise to trophozoites.
The inverse process is called encystation and begins when
the trophozoites migrate to the lower part of the small
intestine where they receive signals that trigger synthesis
of the components of the cyst wall. The cyst form enables
the parasite to survive in the environment, infect a new
host and evade the immune response. In this work, we
explored the role of protein S-palmitoylation, a unique
reversible post-translational modification, during Giardia
encystation, because de novo generation of endomem-
brane compartments, protein sorting and vesicle fusion
occur in this process. Our findings may contribute to the
design of therapeutic agents against this important human
pathogen.
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Proteins were resolubilized in 4% SDS buffer (SB; 4% SDS,

50 mM Tris-HCl pH 7.4, 5 mM EDTA) with 10 mM NEM by

incubating at 37uC under shacking. Each sample was then

diluted with 3 vol of LB with 1 mM NEM, protease inhibitors,

and 0.2% Triton X-100 and incubated overnight at 4uC under

shacking. Proteins were then precipitated by three sequential

chloroform-methanol extractions after which each sample was

dissolved in SB and split into two equal fractions: one for neutral

pH hydroxylamine treatment (hyd+) and the other for neutral

pH Tris buffer treatment (hyd2). The hyd+ portion was diluted

with 4 vol of hyd+ buffer (1M hydroxylamine pH 7.4, 150 mM

NaCl, 1 mM HPDP-Biotin, 0.2% Triton X-100, protease

inhibitors), and the hyd- portion with 4 vol of the hyd- buffer

(50 mM Tris-HCl pH 7.4, 5 mM EDTA, 150 mM NaCl, 1 mM

HPDP-Biotin (Thermo Scientific Pierce, Rockford, IL), 0.2%

Triton-X-100, protease inhibitors) and incubated for 1 h at

room temperature under shacking, followed by chloroform-

methanol precipitation. The samples were then resuspended in

SB at 37uC under shacking. Protein pellets were solubilized in

LB containing 0.2% Triton X-100. Streptavidin-agarose

(Thermo Scientific Pierce, Rockford, IL) was added at concen-

tration of 25 ml beads ml21 and the lysate and samples were

incubated for 1 h at room temperature. Unbound proteins were

removed by four sequential washes with LB containing 0.2%

Triton X-100. Samples were finally eluted with 100 mM DTT

containing 0.2% Triton X-100. Each eluate was then analyzed

by Western blotting.

Inhibition of palmitoylation
Giardia trophozoites were cultured as described above. 2-

bromopalmitate (2-BP) (Sigma-Aldrich, St. Louis, MO) or 2-

fluoropalmitate (2-FP) (Cayman Chemical, Ann Arbor, MI) were

added to the media for 48 h to reach a final concentration of 10,

20, 40, 50, 75 or 100 mM for 2-BP, and 100, 150 or 200 mM for 2-

FP. The inhibitors were diluted in DMSO (Sigma-Aldrich, St.

Louis, MO) following manufacturer indications. The parasites

were then analyzed by staining them with Trypan blue to

distinguish live from dead cells and by counting them in a

Neubauer chamber. To perform a growth curve, parasites from

three independent experiments were counted. Parasites were

induced to encyst as described above. 2-BP or 2-FP were added

with encysting media for 48 h to reach a final concentration of 10,

20 or 40 mM for 2-BP, and 100 mM for 2-FP. The inhibitors were

diluted in DMSO as mentioned above. For immunofluorescence

the parasites were subcultured onto 12 mm round glass coverslips

(Glaswarenfabrik Karl Hecht, Sondhein, Germany) in 24-well

culture plates for 1 h, fixed with 4% paraformaldehyde in PBS for

20 min at 4uC, washed twice in PBS and blocked with 10%

normal goat serum (Invitrogen, Carlsbad, CA) in 0.1% Triton X-

100 in PBS for 30 min at 37uC. The samples were then incubated

with FITC labeled anti-CWP1 mAb (Waterborne Inc., New

Orleans, LA) diluted 1:250 in PBS containing 3% normal goat

serum and 0.1% Triton X-100 for 1 h at 37uC or anti-CWP1

mAb and DAPI diluted in PBS (dilution 1:500) (Sigma, St. Louis,

MO). The coverslips were then mounted onto glass slides using

FluorSave reagent (Calbiochem, La Jolla, CA). Fluorescence was

visualized in a Zeiss Axiovert 200 microscope (Carl Zeiss, Jena,

Germany). To quantify the percentage of encysting parasites, 55

cells from three separate experiments were counted and classified

as encysting I, encysting II, or cyst according to the cell shape,

membrane staining, and number and size of the encystation-

specific vesicles. The average was taken in each of the three

groups.

Dataset construction, multiple sequence alignment, and
phylogenetic analyses

A proteome database was constructed gathering complete

proteomes for 25 Metazoa (Amphimedon queenslandica (aqu),

Anolis carolinensis (aca), Apis mellifera (apm), Bombyx mori (bmo),

Caenorhabditis elegans (cae), Canis familiaris (cfa), Ciona
intestinalis (cin), Danio rerio (dre), Daphnia pulex (dpu), Drosoph-
ila melanogaster (dme), Equus caballus (eqc), Felis catus (fca),

Gallus gallus (gga), Gorilla gorilla (ggo), Homo sapiens (hsa),

Ixodes scapularis (ixs), Mus musculus (mmu), Nematostella
vectensis (nve), Ornithorhynchus anatinus (oan), Petromyzon
marinus (pma), Pteropus vampyrus (pva), Rattus norvegicus
(rno), Schistosoma mansoni (sma), Sus scrofa (ssc) and Xenopus
tropicalis (xtr)), 18 Fungi (Aspergillus nidulans (and), Batrachochy-
trium dendrobatidis (bde), Botryotinia fuckeliana (bfu), Candida
albicans (clb), Encephalitozoon cuniculi (ecu), Gibberella zeae (gze),

Leptosphaeria maculans (lem), Nematocida sp (nsp), Neurospora
crassa (ncr), Pichia pastoris (ppa), Puccinia graminis (pug),

Saccharomyces cerevisiae (sce), Schizosaccharomyces pombe (szp),

Sclerotinia sclerotiorum (scl), Tuber melanosporum (tme), Ustilago
maydis (uma), Vittaforma corneae (vco) and Yarrowia lipolytica
(yli)), 12 Plants (Arabidopsis thaliana (ath), Brachypodium dis-
tachyon (bdi), Glycine max (gmx), Medicago truncatula (met),

Oryza sativa (osa), Physcomitrella patens (php), Populus tricho-
carpa (pot), Selaginella moellendorffii (smo), Solanum lycopersicum
(sly), Solanum tuberosum (stu), Sorghum bicolor (sbi) and Vitis
vinifera (vvi)), 1 Brown alga (Aureococcus anophagefferens (aan)), 1

Red alga (Cyanidioschyzon merolae (cym)), 3 Green algae

(Ostreococcus taurii (ota), Chlamydomonas reinhardtii (chr) and

Chlorella variabilis (chv)), and 24 Protists (Babesia bovis (bbo),

Bigelowiella natans (bna), Chlamydomonas reinhardtii (chr),

Chlorella sp (chl), Cryptosporidium parvum (cpv), Dictyostelium
discoideum (ddi), Entamoeba histolytica (ehi), Giardia lamblia (gla),

Guillardia theta (gth), Leishmania major (lma), Paramecium
tetraurelia (pat), Perkinsus marinus (pem), Phaeodactylum tricor-
nutum (pht), Phytophthora capsici (pcs), Phytophthora ramorum
(pra), Plasmodium falciparum (pfa), Polysphondylium pallidum
(pop), Tetrahymena thermophila (tet), Thalassiosira pseudonana
(thp), Theileria parva (thp), Toxoplasma gondii (tgo), Trichomonas
vaginalis (tva), Trypanosoma brucei (trb) and Trypanosoma cruzi
(tcz)) from Ensembl, the Joint Genome Institute (JGI) and the

NCBI databanks. zf-DHHC HMMer profile was obtained from

Pfam [46], and used to search the proteomes database [47].

Incomplete sequences or those that did not start with the M

residue were deleted from the dataset. Also, 90% similar amino

acid sequences were clustered using CD-HIT web server with

default settings, to reduce the redundancy of the set [48]. The final

dataset contained 1034 amino acid sequences. Multiple sequence

alignment of DHHC-CRD amino acid sequences was carried out

using PROMALS3D online server with default settings [49].

Following manual curation using GeneDoc software [50],

sequences lacking conservation in the regions of interest (i.e.,

DPG, DHHC-CRD and TTxE) were removed. Block Mapping

and Gathering with Entropy (BMGE) [51] was used to select

columns suitable for phylogenetic inference with the following

settings: m = BLOSUM30, g = 0.2, b = 4.

Phylogenetic analysis was performed by Maximum Likeli-

hood (ML) using PhyML [52] with approximate likelihood-

ratio test (aLRT), in combination with the LG+G amino

acid replacement matrix, which was determined by ProtTest

to be the model of protein evolution which best fit the data

[53]. Phylogenetic trees were generated and edited with Itol

[54].

Protein S-palmitoylation in Giardia lamblia
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Semiquantitative Reverse Transcription Polymerase
Chain Reaction (RT-PCR)

RNA from WB1267 trophozoites or 48 h encysting WB1267

was extracted and purified using TRIzol reagent (Invitrogen,

Carlsbad, CA) and SV total RNA Isolation System (Promega,

Madison, WI). Total RNA were reverse transcribed using

Revertaid reverse transcriptase according to the manufacturer’s

specifications (Fermentas, Thermo Scientific, PA). DNA contam-

ination was tested by performing PCR in a ‘‘-RT’’ control (a mock

reverse transcription containing all the RT-PCR reagents, except

the reverse transcriptase. For PCR, 30 cycles (30 s at 94uC, 30 s at

55uC and 1 min at 72uC) were used ending with a final extension

of 10 min at 72uC. The expression of the Giardia glutamate

dehydrogenase (gdh) gene was assayed for positive control.

Aliquots (50 ml) of the RT-PCR reaction were size-separated on

1% agarose gel prestained with SYBR Safe (Invitrogen, Carlsbad,

CA). Primers sequences used in RT-PCR are displayed in table

S2. These assays were performed four times in duplicates.

Relative quantitative Real Time-PCR (qRT-PCR)
RNA from WB1267 trophozoites, 48 h encysting WB1267 or

dhhc transgenic 48 h encysting cells (GL50803_1908,

GL50803_2116, GL50803_16928, GL50803_8711) was extracted

and purified as described above. 2 mg of total RNA were reverse

transcribed using Revertaid reverse transcriptase according to the

manufacturer’s specifications (Fermentas, Thermo Scientific, PA).

DNA contamination was tested as described above. cDNA

samples were stored at 280uC until use. Control samples were

prepared as above using nuclease-free ddH2O in place of RNA.

Primers for PCR were designed using Primer express 3.0 software

(Applied Biosystems, Forster City, CA) and were synthesized by

Invitrogen, Inc. (Carlsbad, CA). Amplification was performed in a

final volume of 20 ml, containing 2 ml of each cDNA sample which

were previously diluted 1:1000 (for dhhc genes) or 1:10000 (for cwp
genes), and 10 ml of SYBR Green Master Mix (Applied

Biosystems, Foster City, CA). qRT-PCR was performed in a

StepOne thermal cycler (Applied Biosystems, Foster City, CA).

The mRNA levels of the genes studied were normalized to the

expression of the Giardia glutamate dehydrogenase (gdh) gene.

The relative-quantitative RT-PCR conditions were: holding stage:

95uC for 10 min, cycling stage: 40 cycles at 95uC for 15 s, 60uC
for 1 min and melt curve stage: 95uC for 15 s, 60uC for 1 min,

and 95uC for 15 s. Expression data were determined by using the

comparative DDCt method [55]. Primer sequences used in qRT-

PCR are displayed in table S3.

Western blot analysis
For Western Blot assays, parasite lysates or purified palmitoy-

lated proteins were incubated with 26Laemmli buffer, boiled for

10 min, and separated in 10% Bis-Tris gels using a Mini Protean

II electrophoresis unit (Bio-Rad). Samples were transferred to

nitrocellulose membranes (GE Healthcare Biosciences, Pittsburgh,

PA), blocked with 5% skimmed milk and 0.1% Tween 20 in PBS,

and later incubated with anti-HA mAb or anti-V5 mAb (Sigma,

St. Louis, MO; dilution 1:1000 or 1:50 respectively) diluted in the

same buffer for 1 h. The membrane was then washed, incubated

with IDRye 800CW conjugated goat anti-mouse Ab (LI-COR,

Lincoln, NE; dilution 1:10000) for 1 h, and analyzed on the

Odyssey scanner (LI-COR, Lincoln, NE). For the analysis of VSPs

expression, blockage was performed with 5% skimmed milk and

0.1% Tween 20 in TBS, and then incubated with 5C1 anti-

VSP1267 mAb diluted in the same buffer for 1 h. After washing

and incubation with an enzyme-conjugated secondary antibody,

proteins were visualized with the SuperSignal West Pico Chemi-

luminescent Substrate (Pierce, Thermo Fisher Scientific Inc.,

Rockford, IL, USA) and autoradiography. Controls included the

omission of the primary antibody, the use of an unrelated

antibody, or assays using non-transfected cells.

Immunofluorescence
For immunofluorescence assays (IFA), trophozoites or encysting

cells cultured in growth medium or encysting medium, respec-

tively, were harvested and washed two times with PBSm (1%

growth medium in PBS, pH 7.4) and allowed to attach to multi-

well slides in a humidified chamber at 37uC for 30 min. After

fixation with 4% formaldehyde (Sigma, St. Louis, MO) in PBS for

40 min at room temperature, the cells were washed with PBS and

blocked with 10% normal goat serum (Invitrogen, Carlsbad, CA)

in 0.1% Triton X-100 in PBS for 30 min at 37uC. Cells were then

incubated with the anti-HA mAb (Sigma, St. Louis, MO; dilution

1:500) in PBS containing 3% normal goat serum and 0.1% Triton

X-100 for 1 h at 37uC, followed by incubation with Alexa 546-

conjugated goat anti-mouse (dilution 1:500) secondary antibody at

37uC for 1 h. Encysting cells were also incubated with FITC-

conjugated anti-CWP1 mAb (Waterborne Inc., New Orleans, LA;

dilution 1:250). Alternatively, cells were incubated with 9C3 anti-

BiP mAb (marker for ER) [56] or 5D2 anti-AP2 mAb (marker for

peripheral vacuoles) [57] in PBS containing 3% normal goat

serum and 0.1% Triton X-100 for 1 h at 37uC, followed by

incubation with Alexa 546-conjugated goat anti-mouse (dilution

1:500) secondary antibody at 37uC for 1 h. Samples were then

incubated with FITC-conjugated anti-HA mAb (Sigma, St. Louis,

MO; dilution 1:100). Preparations were stained with DAPI diluted

in PBS (dilution 1:500) (Sigma, St. Louis, MO). Finally,

preparations were washed with PBS and mounted in Vectashield

mounting medium (Vector Laboratories, Burlingame, CA).

Fluorescence staining was visualized with a motorized FV1000

Olympus confocal microscope (Olympus UK Ltd, UK), using 636
or 1006 oil immersion objectives (NA 1.32). The fluorochromes

were excited using an argon laser at 488 nm and a helio-neon laser

at 543 nm. Detector slits were configured to minimize any cross-

talk between the channels. Differential interference contrast

images were collected simultaneously with the fluorescence

images, by the use of a transmitted light detector. Images were

processed using Fiji software [58] and Adobe Photoshop 8.0

(Adobe Systems) software. The colocalization and deconvolution

were also performed using Fiji.

Flow cytometry analysis
For the analysis of the amount of cyst yield in dhhc transgenic

trophozoites by flow cytometry, the parasites were induced to

encyst for 48 h. Trophozoites, encysting cells, and cysts were

collected from confluent cultures. Parasites were pelleted by

centrifugation at 1455 g for 15 min at 4uC, resuspended in cool

sterile ddH2O and placed at 4uC overnight. Mature water-

resistant cysts were then processed following the protocol for

immunofluorescence (see above) without permeabilization. Briefly,

parasites were washed two times with PBSm (1% growth medium

in PBS, pH 7.4). After blockade with 10% normal goat serum, the

parasites were labeled with anti-CWP1 mAb (Waterborne Inc,

New Orleans, LA; dilution 1:250) diluted in PBSm for 1 hour at

4uC. Cells were then washed twice in PBS and fixed with 4%

formaldehyde (Sigma, St. Louis, MO) in PBS for 40 min at room

temperature. Unlabeled samples were used to determine back-

ground fluorescence, and subsequently, fluorescently labeled cysts

were analyzed in triplicate on a FACSCanto II flow cytometer
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(Becton & Dickinson, New Jersey, NY). All samples were analyzed

in parallel by IFA to assess encystation efficiency.

Statistics
Results were analyzed for statistical significance (defined as p,

0.05 and indicated by asterisks in figures) by performing unpaired,

two-sided Student’s t-test with GraphPad Prism 5 Data Analysis

Software (GraphPad Software, Inc., La Jolla, CA). Mean and

standard error of mean (SEM) values were calculated from at least

three biologically and technically independent experiments.

Results and Discussion

Growing and encysting parasites displayed a different
pattern of total palmitoylated proteins with HCNCp and
VSPs being palmitoylated during growth and encystation

It has been shown that protein palmitoylation actively

participates in cell differentiation in a variety of cells [59], [60],

[61]. The analysis of the expression of palmitoylated proteins,

using metabolic labeling with [3H] palmitic acid, showed that

encysting Giardia parasites displayed a different pattern of total

protein palmitoylation than growing parasites (Figure 1A, T-ET/

hyd2). The results showed a band of ,60 kDa in trophozoites

that may correspond to the expressed VSPs [31] (Figure 1A, T/

hyd2). However, when Giardia encysting cells were analyzed, the

assay displayed a larger amount of palmitoylated proteins, as can

be judged by the larger number of bands displayed compared to

trophozoites (Figure 1A, ET/hyd2). When we performed neutral

treatment with hydroxylamine, almost complete removal of the

attached palmitates was observed in both growing and encysting

parasites (Figure 1A, T-ET/hyd+). This confirms that palmitate is

attached through a labile thioester linkage (S-palmitoylation) in

Giardia, as has been observed in other cell types including

parasites [62], being most common among palmitoylated proteins

[63]. Protein S-palmitoylation reversibility makes it a flexible,

rapid and precise way of protein activity regulation [64] which

may be crucial in the encystation process. The fact that the

amount of total S-palmitoylated proteins was higher in encysting

cells compared to trophozoites suggested that this PTM may play

an important role during Giardia differentiation. This observation

is in accordance with previous reports showing an important role

of protein S-palmitoylation in controlling several crucial processes

in parasites such as invasion or motility [44]. During Giardia
encystation, the cyst wall proteins (CWPs) are sorted, concentrated

within encystation-specific vesicles (ESVs), and exported to the

nascent cyst wall [65], [66], [67]. Thus, the larger amount of

palmitoylated proteins observed in encysting parasites (Figure 1A,

ET/hyd2) may be explained by this additional requirement of

protein sorting and export during this stage. In addition to the

CWP1, 2 and 3, another type of cyst wall protein has been

identified, a High Cysteine Non-variant Cyst protein (HCNCp)

[68]. HCNCp belongs to a large group of cysteine-rich, non-VSPs,

Figure 1. Analysis of S-palmitoylated proteins displays a different pattern in Giardia growing and encysting parasites. (A) Giardia
trophozoites (T) or encysting trophozoites (ET) were labeled with [3H]-palmitic acid and loaded onto SDS-PAGE. The gel was treated with (hyd+) or
without (hyd2) the thioester cleavage reagent hydroxylamine. Samples were then analyzed by autoradiography. (B) Western blotting performed on
palmitoylated proteins purified by ABE from hcncp-V5 transgenic trophozoites (HCNCp T) or hcncp-V5 transgenic encysting trophozoites (HCNCp ET).
(C) Western blotting performed on palmitoylated proteins purified by ABE from wild-type trophozoites (T) or encysting parasites (ET). The
approximate sizes are indicated on the right in kDa.
doi:10.1371/journal.pntd.0002997.g001
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Figure 2. Inhibition of protein palmitoylation yields a low amount of Giardia cysts. (A) Growth curves displaying optimal concentrations of
2-BP (left panel) or 2-FP (right panel) that do not affect Giardia growth. Giardia trophozoites were cultured with different concentrations of 2-BP (10,
20, 40, 50, 75 or 100 mM), 2-FP (100, 150 or 200 mM), or DMSO (control) for 48 h. The parasites were then analyzed by staining them with Trypan blue
to distinguish live from dead cells and by counting them in a Neubauer chamber. The graph displays the number (mean 6 SEM) of parasites counted
in three independent experiments. (B) Percentage of encysting parasites and cysts after inhibition of protein palmitoylation. Giardia trophozoites
were induced to encyst and 2-BP (10, 20 or 40 mM), 2-FP (100 uM) or DMSO (Control) added to the encysting media. After 48 h, the encysting
parasites were stained with anti-CWP1 mAb and analyzed by fluorescence microscopy. One representative cell of each encystation state (encysting I,
encysting II, cyst) is shown in the upper panel. The graph in the lower panel represents the percentage (mean + SEM) of the cells counted in each
state in three independent experiments. The asterisks indicate significant difference compared with the control (Student’s t test: * p,0.05; **p,0.01;
***p,0.001). (C) Number of nuclei in encysting II parasites treated with palmitoylation inhibitors. Trophozoites were induced to encyst and 2-BP (20
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Type I integral membrane proteins (HCMp) [68]. The palmitoy-

lation prediction algorithm CSS-Palm 3.0 [69] strongly predicts

that HCNCp is palmitoylated at cysteines 1602 (CSS-Palm score

6.57, high stringency cut-off 0.31) and 1603 (CSS-Palm score 4.99,

high stringency cut-off 0.31), which are located in the transmem-

brane region and in the cytosolic tail respectively (HMMTOP,

(http://www.enzim.hu/hmmtop/) [70], [71]). In order to find out

whether HCNCp is palmitoylated or not, we performed the

following approach: first, we expressed full length HCNCp as a

fusion protein containing a C-terminal V5-tag and a tubulin

promoter [39]. The expression of the ,169 kDa HCNCp protein

was equally observed in hcncp-V5 transgenic growing and

encysting parasites, together with fragments of 21, 42 and

66 kDa already reported by Davids et al. [68] (Figure S1). Second,

hcncp-V5 transgenic trophozoites (HCNCp T) and encysting

(HCNCp ET) parasites were subjected to acyl biotin exchange

(ABE) as described in Methods. Parallel plus- and minus-

hydroxilamine (hyd) samples were analyzed by Western blotting

using an anti-V5 mAb (Figure 1B). Only the samples that were

treated with hydroxylamine had free cysteine residues able to be

detected by biotin/streptavidin (see Methods). When we assayed

HCNCp T purified samples, we observed three bands (169, 66

and 21 kDa) and a weak band of 42 KDa (Figure 1B, HCNCp T/

hyd+). Also, the four bands (169, 66, 42, and 21 kDa) were

observed for HCNCp ET purified sample compared to the control

(hyd2), showing that not only the full length but also the smaller

epitope-tagged fragments of the HCNCp protein were palmitoy-

lated in encysting parasites (Figure 1B, HCNCp ET/hyd+). The

presence of these four bands may account, at least in part, for the

bands shown in figure 1A (Figure 1A, ET/hyd2). Although we

showed that the constitutively expressed HCNCp can be

palmitoylated during growth and encystation, it was clearly

reported that HCNCp is almost exclusively expressed during

encystation when its expression was analyzed at the mRNA and

protein (expression under its own promoter) levels [68]. Altogeth-

er, these results suggest that HCNCp is likely important during

encystation, while the machinery necessary for its palmitoylation

remains unaltered during growth and differentiation. Despite the

need of additional assays to accurately identify additional

palmitoylation substrates, it seems that this PTM is more

frequently founded in encysting cells compared to trophozoites.

In parallel to HCNCp T and HCNCp ET samples, we also

performed ABE in wild-type trophozoites and encysting parasites

and analyzed the purified samples by Western blotting using anti-

VSP1267 mAb (Figure 1C). The results showed the specific

protein band of VSP1267 (MW ,60 KDa), in both growing and

encysting parasites, suggesting that this PTM may be important

for VSP function during the entire Giardia life cycle.

Further analysis using ABE or click chemistry [72] assays,

together with different methods for Mass spectrometry-based

proteomics, including Multidimensional protein identification

technology [45], will expand our knowledge about other palmitoy-

or 40 mM), 2-FP (100 mM) or DMSO (Control) added to the encystation media as described above. After 48 h, the encysting parasites were stained
with anti-CWP1 mAb and DAPI, and analyzed by fluorescence microscopy. One representative encysting II cell is shown. Scale bars = 5 mm.
doi:10.1371/journal.pntd.0002997.g002

Figure 3. Sequence alignment and schematic drawing of Giardia DHHC proteins. (A) Multiple Sequence alignment of DHHC proteins shows
conserved regions. The amino acid sequences of the total set of Giardia DHHC proteins, Erf2 (Yeast), ZDHHC4 (Human), and PF11_0167 (Plasmodium
falciparum) were aligned using T-Coffee software [104]. The conserved DHHC-CRD domain and the DPG and TTxE motifs are indicated in bold.
Positions exhibiting absolute identity are shown in pink, and high and lower amino acid similarities in green and yellow, respectively. (B) Schematic
representation of the primary structure of Giardia DHHC proteins. The domains were searched using SMART (http://smart.embl-heidelberg.de) [105],
[106]. Transmembrane domains were predicted using TMHMM (http://www.cbs.dtu.dk/services/TMHMM) [107] and TMPred (http://www.ch.embnet.
org/software/TMPRED_form.html) with default settings. Signal peptides were predicted with signalP (http://www.cbs.dtu.dk/services/SignalP) [108].
doi:10.1371/journal.pntd.0002997.g003
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lated proteins in Giardia, defining the palmitoyl proteome of this

parasite and shedding light on the role of this PTM in its life cycle.

Inhibition of palmitoylation during Giardia encystation
yielded a low number of cysts

The fact that Giardia encysting cells displayed a large amount of

palmitoylated proteins prompted us to find out whether inhibition

of protein palmitoylation would influence Giardia encystation.

Several compounds have been reported to block protein palmitoyla-

tion [73]. The 2-bromopalmitate (2-BP) [74] and the 2-fluoropalmi-

tate (2-FP) [73] inhibitors are non-metabolizable palmitate analogs

that block palmitate incorporation into proteins using a still unclear

mechanism. These two compounds have been widely used, act as

broad inhibitors of palmitate incorporation and do not appear to

selectively inhibit the palmitoylation of specific protein substrates. To

test the effect of these inhibitors during encystation, Giardia wild-

type trophozoites were induced to encyst together with the addition

of either 2-BP or 2-FP. It has been reported that 2-BP is not well

tolerated by in vitro cultured cells and causes cell death even after a

brief exposure to 100 mM of 2-BP [75]. Thus, a growth curve was

performed to determine the optimal concentrations that do not affect

Giardia growth (10, 20 or 40 mM for 2-BP and 100 mM for 2-FP),

observing that trophozoites died under concentrations higher than

50 mM of 2-BP or 150 mM of 2-FP (Figure 2A). After 48 h of

encystation, treated or control parasites were harvested, permeabi-

lized, stained with anti-CWP1 mAb and analyzed by fluorescence

microscopy (Figure 2B). Wild-type encysting trophozoites were

classified as encysting I (EI) (corresponding to 6 h of encystation

[76]), encysting II (EII) (corresponding to 12 h of encystation [76]),

and cysts (corresponding to 24–48 h of encystation [76]) (Figure 2B,

upper panel), based on the following features: cell shape, membrane

staining, and number and size of the ESVs. As shown in figure 2B

(lower panel), there was a significant reduction in the amount of cysts

when parasites were treated with 2-BP (20 mM or 40 mM) or 2-FP

(100 mM).

The effect of 2-BP as a generic palmitoylation inhibitor has been

reported in a wide variety of cells [77], [74], [78] including

parasites like Toxoplasma gondii [62], although the concentrations

used were much higher than the ones we used in this work.

Interestingly, with 20 and 40 mM of 2-BP, there was an increase of

the encysting II parasites compared to the control, reaching its

highest levels when the concentration of 2-BP was 40 mM and

resulting also in a diminution of encysting I cells (Figure 2B, lower

panel). Thus, the decrease in the amount of cysts may be at the

expense of the arrest of the cells at the encysting II stage of

differentiation. In order to find out whether the treatment with

palmitoylation inhibitors affect DNA replication, we analyzed the

number of nuclei in the population of EII cells that were increased,

observing no differences compared to the control (Figure 2C).

Although a pleiotropic effect of 2-BP cannot be excluded, it is very

likely that the observed decrease in cyst formation is associated

with the inhibition of palmitoylation and the subsequent defect in

ESVs docking and fusion, as was shown to be the case for other

cells [79], [80].

Some results have suggested that palmitoylation in cells may

occur nonenzymatically, i.e. spontaneous formation of thioester

linkage in the presence of palmitoyl-CoA [81]. However, studies in

yeast showed that DHHC protein family-mediated palmitoylation

accounted for most of the palmitoylated proteins found in this

organism [79]. Therefore, we decided to explore the Giardia
proteome to study the presence of DHHC proteins in this parasite.

Bioinformatics revealed the presence of nine DHHC
proteins in the Giardia proteome

PATs, the discovery of which has been crucial for the enzymology

of palmitoylation, are a widespread evolutionary family of proteins

[16], [82] ranging from eight in Saccharomyces cerevisiae [82],

twelve in Trypanosoma brucei [27], eighteen in Toxoplasma gondii
[25], twelve in Plasmodium [26], [25] to twenty-three members in

humans [82]. To identify the complete set of Giardia putative

PATs, we performed a HMMER search against the Giardia
complete proteome using a DHHC PAT HMMer profile from

Pfam (zf-DHHC). As shown in figure 3A, we found nine DHHC

proteins in the Giardia proteome that displayed conserved

sequences when compared to other organisms: i) the DHHC-

CRD domain, ii) the two short motifs DPG (aspartate-proline-

glycine) and iii) TTxE (threonine-threonine-any-glutamate) motif

[20], [82]. One protein (gla_8711) contained a DHYC amino acid

motif, instead of the canonical DHHC motif. However, this DHYC

motif has been reported to be functional in the yeast PAT Akr1 [16].

We next analyzed the molecular identity of Giardia DHHC

proteins with bioinformatics tools. In agreement with previous

reports for other PATs [20], [18], [25], Giardia DHHC proteins

were predicted to be polytopic membrane proteins, mainly

Table 1. Collection of DHHC proteins in Giardia lamblia.

Name GiardiaDB1 accession number NCBI accession number UniProt Previously described (references)

gla_8619 GL50803_8619 XP_001704215 A8BY53 -

gla_1908 GL50803_1908 XP_001707652 A8BEE3 -

gla_8711 GL50803_8711 XP_001708375 A8BAE2 -

EAA36893 NFA2 EAA36893 A8BPQ2 (Touz et al., 2005)

gla_9529 GL50803_9529 XP_001709630 A8B4L4 (Touz et al., 2005)

gla_16928 GL50803_16928 XP_001706359 A8BKW0 (Touz et al., 2005)

gla_6733 GL50803_6733 XP_001707587 A8BE48 -

gla_96562 GL50803_96562 XP_001705995 A8BMZ6 -

gla_2116 GL50803_2116 XP_001704459 A8BW87 -

1GiardiaDB version 3.1 [109].
2NFA: not fully annotated.
The complete version of this protein is not annotated in GiardiaDB. It is only partially annotated as GL50803_42184 (Hypothetical protein sharing the last 252 aa with
the Giardia PAT EAA36893 of 446 aa).
doi:10.1371/journal.pntd.0002997.t001
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Figure 4. Phylogeny of DHHC proteins. (A) Phylogenetic relationships between DHHC proteins from Giardia and several other species.
Phylogenetic tree of DHHC proteins inferred from ML analyses is depicted in the left panel. Symbols correspond to aLRT values .0.7. Sequence
taxonomic identity is displayed with colors (outer circle around the tree), as shown in the upper right panel. MCs are labeled as A, B, C, D, E and F.
Giardia DHHC proteins are colored in red and indicated in black in the inner circle around the tree. Each Giardia DHHC protein position in the tree
(MC) is indicated in the table (lower right panel). (B) Trichomonas duplicated DHHC sequences accumulate mutations. Giardia DHHC proteins are
indicated in light blue, and Trichomonas DHHC proteins in yellow. Variations in the HC, C, and DHHC portions of the DHHC-CRD domain were
mapped in the tree using a green-to-black-to-red color code. Full conservation is depicted in light green, while lack of conservation is shown in red. A
clade of highly mutated Trichomonas sequences is displayed in red.
doi:10.1371/journal.pntd.0002997.g004
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harboring between three and six TMDs with the DHHC domain

facing the cytosol (Figure 3B). There is a small group of DHHC

proteins, including yeast DHHC protein Akr1, displaying the

conserved 33 amino acid ankyrin repeats, which are frequently

involved in protein-protein interactions [83]. By contrast, none of

the Giardia DHHC proteins showed ankyrin repeats in their

structure. Moreover, gla_8619 displayed a coiled coil structure and

gla_96562 a signal peptide. As already described for other

organisms [18], [25], Giardia DHHC proteins displayed a

conserved structure, sharing domains and motifs that are present

across all members of this enzyme family.

The names used in this paper, GiardiaDB, NCBI, and UniProt

accession numbers for Giardia DHHC proteins are indicated in

table 1.

Phylogenetic analysis of Giardia DHHC proteins
In order to elucidate the phylogenetic relationship among the

PATs and to infer the evolutionary history of Giardia DHHC

proteins, we retrieved 1034 DHHC-CRD protein sequences from

84 completely sequenced eukaryotic genomes, including the

Giardia lamblia genome (Assemblage A, isolate WB), by means

of the DHHC PAT HMMer profile from Pfam (zf-DHHC). A

Figure 5. Orthology relationships between Giardia isolates WB, GS and P15 (Assemblages A, B and E, respectively). Phylogenetic tree
of Giardia DHHC sequences from the three isolates inferred from ML analyses is depicted. Each isolate is indicated with a different color.
doi:10.1371/journal.pntd.0002997.g005

Figure 6. Differential expression of Giardia dhhc genes in growing and encysting parasites. Expression of gla_8619, gla_1908, gla_8711,
EAA36893, gla_9529, gla_16928, gla_6733, gla_96562, gla_2116 transcripts from 48 h encysting parasites (white bars) relative to the expression in
growing parasites (black bars). The data are the means and SEM of three separate experiments, and each experiment was carried out in triplicate. The
qRT-PCR analysis of dhhc genes was performed as described in Methods. The asterisks indicate that there was significant difference compared with
growing parasites (Student’s t test: * p,0.05; **p,0.01; ***p,0.001).
doi:10.1371/journal.pntd.0002997.g006
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Multiple Sequence Alignment was constructed with PRO-

MALS3D [49], and Block Mapping and Gathering with Entropy

(BMGE) [51] was used to select columns suitable for Maximum

Likelihood (ML) phylogenetic inference. Maximum likelihood

phylogenetic trees were calculated using PhyML [52], and Branch

support was evaluated by approximate likelihood-ratio test (aLRT)

[84]. The resultant phylogenetic tree can be divided in six

monophyletic clades (MC), three of which together contain almost

90% of all sequences (MC D, E and F). Four MC have Giardia
DHHC proteins: MC A and D contain one DHHC sequence each,

while MC E and F contain five and two Giardia sequences

respectively (Figure 4A and figures S2, S3, S4, S5). Without any

further consideration than the topology of the tree and the early

divergent phylogenetic status of Giardia, it can be argued that the

Most Recent Common Ancestor of Giardia and the rest of the

eukaryotic lineage (MRCA) had a minimum of four and a maximum

of six groups of PATs. However, of the two Giardia-lacking MC one

is almost entirely composed of Plant paralogues (MC C). Moreover,

many MC contain subclades composed mostly or even only by Plant

paralogues, suggesting that gene duplication have largely taken place

in this group. All these can be seen as an indication of functional

diversification among Plants, which also constitutes a plausible

evolutionary mechanism for the origin of the MC C.

If we hypothesize that all DHHC sequences evolve from 4 PATs

groups in the MRCA, we should be able to explain, in a

parsimonious way, the MC lacking Giardia sequences as examples

of evolutionary innovation. As we mentioned before, this is

suitable in the case of the MC C, but not for the MC B (the other

Giardia sequences-lacking MC). This is because MC B is

composed of sequences from a greater variety of organisms

compared to MC C, making the possibility of a common

functional diversification very unlikely. Nevertheless, it is possible

for the MC B to be the result of reductive evolution, meaning that

Giardia lost sequences during its adaptation to a parasitic lifestyle,

since the more stable environment provided by the host can cause

relaxation or loss of selective constraints.

We tested gene loss across DHHC-CRD protein family by

examining the heavily duplicated genomes of Trichomonas
vaginalis, given that duplicated genes are most likely to be

released from functional constraints (Figure 4B). For this, we

retrieved all DHHC sequences from Trichomonas (http://trichdb.

org/trichdb/) using the same pipeline described above, except that

this time no sequences were excluded from the posterior analysis.

Variations in the HC, C and DHHC portions of the DHHC-CRD

domain were extracted from the MSA, and mapped onto a

phylogenetic tree. Contrary to what is found in Plants, there is a

substantial presence of poorly conserved sequences among

Trichomonas genome that cluster together in the tree. Moreover,

we found a strong correlation between the degree of conservation

in the HC, C and DHHC portions of the DHHC-CRD domain

within each sequence.

Altogether, our findings suggest that the MRCA had five groups

of DHHC sequences from which the other sequences eventually

evolved by functional diversification, and that Giardia lost at least

one representative sequence presumably during its adaptation to a

parasitic lifestyle.

We also determined the orthology relationships between

sequences from different assemblages. For this, we retrieved

DHHC sequences from Giardia isolates WB, GS and P15

(Assemblages A, B and E, respectively; http://giardiadb.org/

giardiadb/), following the pipeline described above. As expected,

every DHHC sequence in the isolate WB has a highly similar

ortholog in the other isolates, which cluster together in the tree

(Figure 5). Only one WB sequence, EAA36893, escapes this

pattern, but this probably constitutes a case of defective annotation

in isolates GS and P15.

DHHC proteins were expressed in trophozoites and
encysting cells

Semi-quantitative RT-PCR indicated that all the dhhc genes

were expressed in trophozoites and in encysting parasites (Figure

S6). This prompted us to explore further the expression levels of

these genes in growing and encysting parasites by performing qRT-

PCR analysis of mRNA expression from these cells. As shown in

figure 6, many of the dhhc transcripts were present at relatively

constant levels, but gla_8619, gla_1908, and EAA36893 were

downregulated in encysting parasites while gla_2116 was upregu-

lated in 48 h encysting cells. Considering that Giardia contains

minimal systems, either as a result of reductive processes associated

with a parasitic lifestyle, as a reflection of basic evolutionary

characteristics, or both [85], [86], the fact that the nine dhhc genes

found by bioinformatics were expressed in vegetative and encysting

parasites suggests that protein palmitoylation and the PATs

themselves may be playing a key role during the entire life cycle

of this parasite.

We next sought to characterize four of the nine DHHC proteins

that are expressed in Giardia based on their expression profile. We

chose two that are expressed at similar levels in growing and

encysting parasites (gla_8711 and gla_16928), one that is

downregulated during encystation (gla_1908), and one that is

upregulated in encysting parasites (gla_2116).

Figure 7. Expression of DHHC-HA proteins in Giardia tropho-
zoites. Western blotting performed on total protein extracts from
dhhc-ha transgenic trophozoites. Expected sizes are indicated in
brackets. Relative molecular weights of protein standards (kDa) are
indicated on the left.
doi:10.1371/journal.pntd.0002997.g007
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Figure 8. Localization of DHHC-HA proteins in trophozoites and effect of DHHC-HA overexpression in encystation. Subcellular
localization of gla_1908-HA (A), gla_2116-HA (B), gla_16928-HA (C), or gla_8711-HA (D) in trophozoites or encysting parasites. For trophozoites,
gla_1908-HA, gla_2116-HA or gla_16928-HA were stained with anti-BiP (ER) mAb, anti-HA mAb and DAPI; gla_8711-HA was stained with anti-AP2
(PVs) mAb, anti-HA mAb and DAPI. For encysting parasites, after 48 h of encystation dhhc-ha transgenic parasites were stained with anti-HA mAb,
anti-CWP1 mAb and DAPI. The cells were analyzed by fluorescence microscopy. One representative cell from each stage is shown. Yellow areas in
trophozoites indicate co-localization between DHHC-HA and ER (gla_1908-HA, gla_2116-HA or gla_16928-HA), or between DHHC-HA and PVs
(gla_8711-HA). Yellow areas in encysting parasites indicate co-localization between DHHC-HA and CWP1. The inset in C (gla_16928 transgenic
encysting II parasites) corresponds to the zoomed area indicated by the lined box. Scale bars = 5 mm.
doi:10.1371/journal.pntd.0002997.g008
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DHHC proteins gla_1908, gla_2116, gla_16928, gla_8711
displayed a different intracellular localization

To further analyze these DHHC proteins, we expressed full-

length gla_1908, gla_2116, gla_16928 and gla_8711 as fusion

DHHC proteins containing C-terminal HA-tag [39] and

evaluated their protein expression profiles by Western blotting

using an anti-HA mAb (Figure 7). Analysis by semi-quantitative

RT-PCR indicated that the overexpression of these fusion

proteins was 2 to 3-times higher in transgenic cells, as reported

for protein expression using a similar vector [9]. Immunofluo-

rescence assays showed that HA-tagged gla_1908, gla_2116,

and gla_16928 partially co-localized with BiP in the endoplas-

mic reticulum (ER) or around the nuclei of transgenic

trophozoites (Figure 8, trophozoite). Our results confirmed the

localization of gla_16928 already shown by Touz et al. [31].

Analysis of intracellular localization of yeast and mammalian

DHHC proteins revealed that the majority of these localize to

the ER and Golgi [20], [87]. However, there are a few

exceptions, including human DHHC5 protein [87] and Giardia
DHHC protein (EAA36893) [31], which localize to the plasma

membrane. Also, we found that gla_8711 partially co-localized

with the adaptor protein AP-2 [57] at the lysosomal-like

peripheral vacuoles (PVs) as well as in plasma membrane and

flagella (Figure 8, trophozoite). Ongoing experiments intended

to knock-down this protein may reveal its importance during the

Giardia life cycle.

The overexpression of the DHHC proteins disclosed a
differential involvement during encystation

The hallmark of encystation in Giardia is the synthesis of

CWP1, CWP2, and CWP3 [88]. These proteins are expressed

and concentrated within the ESVs before they are targeted to the

cyst wall [89], [6], [90]. To address the influence of the

overexpression of these HA-tagged DHHC proteins during

encystation, dhhc-ha transgenic trophozoites were induced to

encyst in vitro. The localization of DHHC-HA proteins as well as

CWP1 expression, intracellular localization, and vesicle forma-

tion were addressed by IFA. To examine in detail the results

obtained, we decided to analyze each dhhc-ha transgenic cell

following the protocol described above, in which the cells were

classified as encysting I, encysting II, and early cyst. We observed

that gla_1908 (Figure 8A), gla_2116 (Figure 8B), and gla_8711
(Figure 8D) transgenic parasites displayed normal encystation. It

was noteworthy that gla_16928 (Figure 8C) had enlarged ESVs,

with co-localization between gla_16928-HA and CWP1 observed

in those vesicles (Figure 8C, inset). Additionally, it was noted that

gla_16928 early cysts had a larger size and an abnormal shape

compared with wild-type cells (not shown) and other transgenic

early cysts.

When CWP expression was analyzed in dhhc transgenic

parasites by qRT-PCR, we observed that, except for gla_2116
transgenic cells, which displayed similar levels or even moderate

decrease in the mRNA expression of CWPs compared to the

Figure 9. The expression of cyst wall protein transcripts and the amount of cysts are different among dhhc transgenic encysting
parasites. (A) qRT-PCR analysis of cwp1, cwp2, and cwp3 transcripts expression in dhhc transgenic parasites after 48 h of encystation (white bars),
relative to the expression in wild-type encysting cells (control) (black bars). The data are the means and SEM of three separate experiments, and each
experiment was carried out in triplicate. (B) Percentage of water-resistant cysts in dhhc transgenic parasites determined by flow cytometry after 48 h
of encystation. The results are presented as the percentage (mean 6 SEM) of cysts in three independent experiments. The asterisks indicate that
there was significant difference compared with the control (Student’s t test: * p,0.05; **p,0.01; ***p,0.001).
doi:10.1371/journal.pntd.0002997.g009
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control, the other dhhc-ha transgenic parasites showed increased

expression of CWP1, CWP2, and CWP3 (Figure 9A). Several

transcription factors have been described as involved in the

regulation of cwp gene transcription [91], [92], [93], [94], [95],

[96], [97]. However, the mechanisms underlying transcription

control in this parasite have not been completely elucidated. It has

always been assumed that the mobilization mechanism for

transcription factors in many organisms is based on proteolytic

processing [98], [99], [100], [101]. Nevertheless, there is a group

of lipid-modified transcription factors whose mobilization mech-

anism to the nucleus is not based on proteolytic processing but on

reversible palmitoylation [102]. If that were the case for the

transcription factors involved in Giardia encystation, DHHC

proteins would be palmitoylating different transcriptions factors

that, in turn, may regulate CWP expression. It would be

interesting to explore the molecular architecture of Giardia
transcription factors to find out whether palmitoylation is involved

in regulating their shuttling between the cytoplasm and the nuclei.

Analyzing the amount of water-resistant cysts, we observed that

gla_1908 and gla_8711 transgenic cells yielded a significantly

higher amount of cysts than the control (Figure 9B). In contrast,

gla_2116 transgenic cells, while displaying an apparently normal

encystation process (Figure 8B) and CWP expression (Figure 9A),

produced a reduced number of mature cysts (Figure 9B). A likely

explanation is that gla_2116 may be involved in the palmitoyla-

tion of a protein in charge of turning encystation-specific genes off

and ending the encystation process. In the case of gla_16928
transgenic parasites, these cells produced a low percentage of cysts

(Figure 9B) although the CWP expression was increased

(Figure 9A). These findings, in addition to the large ESVs seen

in figure 8C (encysting II) and the large size of early cysts

(Figure 8C, early cyst), may be explained by a high rate of

synthesis of CWPs in gla_16928 transgenic parasites, which may

exceed the mechanisms of vesicle discharge regulation, leading to

the formation of immature non-water-resistant cysts. Further

experiments using knock-down strategies are needed to completely

address the role of each DHHC protein in the encystation process.

Table 2 summarizes the main features of the Giardia DHHC

proteins analyzed in this work.

The different localization of DHHC-HA proteins in trophozo-

ites and the differential effect of DHHC overexpression in

encystation prompted us to evaluate the palmitoylation pattern

in the dhhc transgenic parasites (Figure 10). gla_1908, gla_2116,
gla_16928, and gla_8711 transgenic trophozoites or encysting

parasites displayed a similar global protein palmitoylation pattern

compared to wild type (Figure 1A). Mass spectrometry-based

proteomics analyses will be necessary to accurately identify any

differences in the palmitoylation substrates among the dhhc
transgenic parasites.

Conclusion
This work presents a detailed analysis of Giardia lamblia

DHHC protein structure and phylogeny and reveals a possible

role of palmitoylation in Giardia encystation. Our data, suggesting

the presence of DHHC proteins in growing and encysting

parasites, reinforced the idea that this PTM has conserved and

important functions in cell-signaling, protein-sorting and protein-

export throughout evolution. Without being able to assign a

specific substrate candidate to each Giardia DHHC proteins, we

showed that overexpression of these enzymes had consequences on

CWP expression and on the amount of cysts produced. Proteomic

analysis of Giardia palmitoyl proteome would be a great

contribution to elucidating the mechanisms by which palmitoyla-

tion participates in encystation biology. Finally, the suggested role

of palmitoylation in Giardia encystation, a key event that enables

the parasite to survive in the environment, infect a new host and

evade the immune response [1], [103], could open new ways to

intervene in the process of Giardia infection.

Figure 10. Analysis of palmitoylated proteins in dhhc trans-
genic growing and encysting parasites displays a similar
pattern to wild type parasites. Giardia trophozoites (T) or encysting
trophozoites (ET) were labeled with [3H]-palmitic acid and loaded onto
SDS-PAGE. Samples were then analyzed by autoradiography. The
approximate sizes are indicated on the right in kDa.
doi:10.1371/journal.pntd.0002997.g010

Table 2. Main features of the Giardia DHHC proteins analyzed in this paper.

dhhc transgenic
Giardia parasites Gene expression

Subcellular
localization

Development of encystation
process observed by IFA Expression of CWPs

Amount of mature
water-resistant cysts
produced

gla_1908 Reduced during encystation ER and NE1 Normal High Large

gla_2116 Increased during encystation ER and NE Normal Similar to wild
type or even lower

Low

gla_16928 No significant difference ER and NE Large ESVs; large early cysts High Low

gla_8711 No significant difference PM2 Normal High Large

1NE: nuclear envelope.
2PM: plasma membrane.
doi:10.1371/journal.pntd.0002997.t002
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Supporting Information

Figure S1 Expression of HCNCp-V5 in Giardia growing
and encysting parasites. Western blotting performed on total

protein extracts from hcncp-V5 transgenic trophozoites (T) or

hcncp-V5 transgenic encysting trophozoites (ET). Expected size is

indicated in brackets. Relative molecular weights of protein

standards (kDa) are indicated on the left.

(TIF)

Figure S2 The zoomed subclade containing gla_8619,
gla_6733, gla_1908, and gla_8711 (A) or EAA36893 (B)
from the phylogenetic tree presented in figure 4.
Sequence taxonomic identity is displayed with colors as described

in figure 4.

(TIF)

Figure S3 The zoomed subclade containing gla_9529
from the phylogenetic tree presented in figure 4.
Sequence taxonomic identity is displayed with colors as described

in figure 4.

(TIF)

Figure S4 The zoomed subclade containing gla_16928
(A) or gla_96562 (B) from the phylogenetic tree present-
ed in figure 4. Sequence taxonomic identity is displayed with

colors as described in figure 4.

(TIF)

Figure S5 The zoomed subclade containing gla_2116
from the phylogenetic tree presented in figure 4.
Sequence taxonomic identity is displayed with colors as described

in figure 4.

(TIF)

Figure S6 Differential expressions of Giardia dhhc
genes in trophozoites and encysting parasites by semi-

quantitative RT-PCR. Expression of gla_8619, gla_1908,

gla_8711, EAA36893, gla_9529, gla_16928, gla_6733,

gla_96562, gla_2116 transcripts from growing parasites (upper

panel) and 48 h encysting parasites (lower panel). Expression of

glutamate dehydrogenase (gdh) mRNA fragment was tested as

positive control. Expected sizes are indicated in brackets. Relative

molecular weights of standards (bp) are indicated on the left.

(TIF)

Table S1 Oligonucleotide primers used for Giardia
DHHC cloning.

(DOCX)

Table S2 Oligonucleotide primers used for semiquan-
titative RT-PCR.

(DOCX)

Table S3 Oligonucleotide primers used for qRT-PCR.

(DOCX)
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