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Abstract

Tuberculosis (TB) remains an infectious disease of global significance and a leading cause

of death in low- and middle-income countries. Significant effort has been directed towards

understanding Mycobacterium tuberculosis genomics, virulence, and pathophysiology

within the framework of Koch postulates. More recently, the advent of “-omics” approaches

has broadened our appreciation of how “commensal” microbes have coevolved with their

host and have a central role in shaping health and susceptibility to disease. It is now clear

that there is a diverse repertoire of interactions between the microbiota and host immune

responses that can either sustain or disrupt homeostasis. In the context of the global efforts

to combatting TB, such findings and knowledge have raised important questions: Does

microbiome composition indicate or determine susceptibility or resistance to M. tuberculosis

infection? Is the development of active disease or latent infection upon M. tuberculosis

exposure influenced by the microbiome? Does microbiome composition influence TB ther-

apy outcome and risk of reinfection with M. tuberculosis? Can the microbiome be actively

managed to reduce risk of M. tuberculosis infection or recurrence of TB? Here, we explore

these questions with a particular focus on microbiome-immune interactions that may affect

TB susceptibility, manifestation and progression, the long-term implications of anti-TB ther-

apy, as well as the potential of the host microbiome as target for clinical manipulation.

Tuberculosis is a globally dominant infection with a long-term

burden of antibiotic use

Tuberculosis (TB) persists as one of the top 10 causes of death in the world, with currently an

estimated 1.4 million deaths annually [1]. Morbidity and mortality are associated with active

TB disease, which is believed to develop in 5% to 10% of individuals that are exposed to and

infected by Mycobacterium (M.) tuberculosis. In the majority of individuals, M. tuberculosis
infection is thought to result in clinically asymptomatic latent tuberculosis infection (LTBI).

There is currently no standardized test to confirm the presence of viable M. tuberculosis in

individuals with LTBI, and diagnosis is largely based on immunological tests that indicate anti-

gen experience (e.g., skin reactivity to M. tuberculosis purified protein derivatives (PPD); IFNγ
release assays (IGRA) detecting reactivity of CD4+ T cells to M. tuberculosis-specific antigens

in whole blood). Of note, there are reports of individuals showing no signs of antigen
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experience or active TB disease in settings of repeated high exposure and transmission of M.

tuberculosis. While it is difficult to determine how these “resisters” may be protected from pro-

ductive infection with M. tuberculosis, a range of innate and adaptive immune mechanisms

governed by genetic and epigenetic factors, as well as antigen experience may contribute [2]. It

is currently estimated that one quarter of the world’s population is latently infected with M.

tuberculosis [3], with a calculated 5% to 10% lifetime risk of developing active TB [1,4]. Never-

theless, a recent review of human cohort studies undertaken before and after antibiotics

became available reemphasized that active TB disease most commonly develops within 1 to 2

years of (confirmed or likely) exposure to M. tuberculosis. The review of historic data suggested

that the risk for active TB beyond 2 years after exposure declines sharply, arguing that reactiva-

tion of LTBI might be a much less common event than currently believed and that active TB

later in life might result from re-exposure rather than reactivation [5].

First-line anti-TB antibiotics isoniazid, pyrazinamide, and ethambutol are narrow-spec-

trum, showing little or no activity outside the mycobacterial genus [6], but are often combined

with the broad-spectrum antibiotic rifampin, which affects a wide range of Gram-positive and

Gram-negative bacteria [1,7]. Indeed, TB antibiotics are being administered to millions of peo-

ple every year, with up to 780 narrow- and broad-spectrum antibiotic doses administered over

a 9-months period [8,9]. This represents one of the longest duration antibiotic regimens used

globally. Given the recognized effects that antibiotics have on the composition and function of

the host microbiome [10], it is not surprising that conventional TB therapeutic regimens are

associated with long-lasting alterations of the gut microbiota in patients and animal models,

with impact noted for up to 8 years in a study following patients that were treated for drug-

resistant TB (DR-TB) [11–13]. Moreover, significant risk factors for developing active TB,

including HIV infection, malnutrition, smoking, alcohol, and diabetes [1,14–17], are associ-

ated with both structural and functional changes in the gut microbiota. How these comorbidi-

ties, their clinical management and long-term antibiotic use affect the lung microbiome

remains poorly understood [12,18–21]. Yet, profound and long-lasting impact on the micro-

biota is likely to have deleterious consequences for susceptibility and immune control of infec-

tious diseases, including TB.

The microbiome in health and disease

The colonization of the host by microorganisms begins within minutes of birth or hatching.

There is a gradual succession in the diversity and density of these communities, influenced by

a myriad of genetic, environmental, and behavioral inputs [22,23]. During those eras of micro-

biology governed by microscopy and later, culture-based methods, these communities were

deemed to be largely comprised of “commensal” microbes: deriving benefits from residing

with the host, but with relatively benign and/or unknown impacts on the host itself. The

expansion of cultured microbes from different body sites using techniques in anaerobic micro-

biology helped explain and expand the appreciation of the mutualistic relationships between

these communities and their host in terms of structural, metabolic, and immune development

[24]. As such, these communities can be considered as the “x-factor” in the genotype x envi-

ronment x lifestyle interactions governing host response and phenotype. The step advances in

nucleic acid sequencing technologies have enabled a phylogenetic and/or gene-based func-

tional assessment of the microbial communities resident at different body sites, and which is

commonly referred to as the human microbiome.

By removing the obligatory step of microbial cultivation, a much greater appreciation of the

structural and functional dynamics of these communities in the context of health and disease

has been developed. In addition to the oral cavity, the microbiota of the large intestine is the

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009377 April 15, 2021 2 / 36

https://doi.org/10.1371/journal.ppat.1009377


most studied compartment of the “human microbiome” [19]. Until recently, microbiome

composition was almost exclusively characterized using amplicons produced from the gene

encoding 16S rRNA [25]. However, over the last decade, efforts such as the Human Micro-

biome and integrated Human Microbiome Projects [26] have expanded the scope of investiga-

tion to include other regio-specific communities of the human body, the provision of

functional as well as taxonomic information via “shotgun metagenomic sequencing” and

thereby, a more holistic examination of all 3 domains of life (i.e., Bacteria, Archaea, Eucarya,

and their respective viromes) extant (and extinct) in these communities [27–31]. Collectively,

these efforts might be summarized into 5 key concepts relevant to our understanding of the

roles of the human microbiota in health and disease: First, our microbiota have coevolved with

us, drawn from a rather restricted range of the phyla assigned across all 3 domains of life and

known to exist in nature. There is a remarkable amount of similarity among the bacterial

phyla resident at different body sites, with complexity (and individuality) at different body

sites reflected at higher levels of classification [32,33]. Second, this complexity includes a sub-

stantial amount of “dark matter” that currently remains biologically uncharacterized at the

organismal and genetic level [34]. Third, body sites previously considered to be sterile, such as

the healthy lung [35], are now recognized to harbor a variable but nontransient community of

microbes considered relevant to sustaining tissue homeostasis with emerging roles in the host

defense against pathogenic organisms [36]. Fourth, the advances in food industrialization,

medicines, antibiotic use, and hygiene are proposed to impose selective pressures on (at least)

the colonic microbiota of Western societies and diminished diversity (“missing microbes”) is

linked with the increased incidence of chronic and noncommunicable diseases [37,38].

Indeed, while the definition of a healthy microbiome remains enigmatic, the concept of “dys-

biosis” (alterations in measures of microbial diversity and community composition compared

to asymptomatic and/or healthy individuals) is now widely considered a hallmark of many

chronic and noncommunicable diseases [39,40]. Finally, there are dynamic and bidirectional

interactions between the immune system and microbiota with both local and systemic

impacts. One example is the multifaceted interplay between the gastrointestinal microbiota

and the respiratory tract, coined the gut-lung axis [19]. In this review, we draw on central

aspects of these concepts in highlighting the emerging links and implications for TB.

Microbiota in the M. tuberculosis-infected host

Characterization of the microbiome composition of TB patients and the M. tuberculosis-
infected host in animal models has been the subject of significant efforts (Table 1) and has

been reviewed in significant detail elsewhere [8,41–44]. Table 1 and Fig 1A and 1B summarize

the findings from colonic (fecal) and lung microbiota of humans and animal models of M.

tuberculosis infection compared to noninfected “controls”. In general terms, the fecal micro-

biota profiles of treatment-naïve, new-onset, and recurrent TB patients consistently show a

decrease in bacterial diversity compared to control individuals [45,46]. Phylogenetic integra-

tion of the data available through these studies reveals changes to the relative abundances of

the bacterial lineages affiliated with the families of Ruminococcaceae and/or Lachnospiraceae

(Fig 1A). It is important to note that increased and decreased relative abundance, as well as no

significant changes have been reported (Table 1 and Fig 1A), highlighting the challenges posed

by integrating data obtained across different host organisms, control populations, and study

designs. Nevertheless, these 2 bacterial families of the phylum Firmicutes represent the 2

numerically most abundant groups of Gram-positive bacteria in the human colon [47]. Mem-

bers of both groups are recognized for their capacity to utilize carbohydrates in simple and

polymeric forms and govern the schemes of anaerobic fermentation that produce the short-
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Table 1. Summary of microbiome studies performed on animal models of TB and TB patients, investigating the impact of M. tuberculosis infection on the host

microbiome.

Impact of M. tuberculosis infection on the host microbiome

Location Specimen Host and study design Change in microbiota

composition

Effects on the immune system Sequencing technology and

data analysis

Ref

Gut Feces Newly diagnosed TB

patients (NTB, n = 19)

and recurrent TB

patients (RTB, n = 18);

Healthy controls

(n = 20)�

Decrease of Prevotella,

Lachnospira, Roseburia, and

Bacteroidetes in NTB and RTB

groups; Enrichment of Escherichia
and Collinsella genera in RTB.

Lachnospira and Prevotella
directly correlated with CD4+

cell counts in peripheral blood

of NTB and inversely

correlated with RTB.

16S rRNA gene amplicon

(Illumina) sequencing;

Greengenes databaseΔ;

Quantitative Insights into

Microbial Ecology (QIIME

Version 1.7.0˚)

[45]

Feces TB patients who did not

receive antibiotics 1

month prior to

enrollment (n = 18);

healthy controls (n = 18)

Decrease of Faecalibacterium,

Bacteroides, Ruminococcus, and

Dorea; increase of Enterococcus
and Prevotella genera.

n.d. 16S rRNA gene amplicon

(Illumina) sequencing;

Greengenes databaseΔ;

(QIIME v 1.9.1˚)

[46]

Feces TB patients (n = 6) (fecal

samples collected before

the start of treatment);

healthy individuals

(n = 6)

Increase of Faecalibacterium,

Coprococcus,
Phascolarctobacterium,

Bacteroides, and

Pseudobutyrivibrio; decrease of

Prevotella, Bifidobacterium

n.d. 16S rRNA gene amplicon

(Illumina) sequencing;

Greengenes databaseΔ;

(QIIME v 1.8˚)

[244]

Feces TB patients (n = 46);

healthy individuals

(n = 31)

Presence of Haemophilus
parainfluenzae, Roseburia
inulinivorans, and Roseburia
hominis in TB patients but not

controls

n.d. Shotgun metagenomic

Illumina sequencing;

Metaphlan2 (species

abundance)

[254]

Feces TB patients (n = 25);

LTBI patients (n = 32);

healthy individuals

(n = 23)

A higher relative abundance of

Bacteroidetes concurrent with low

Firmicutes/Bacteroidetes ratio in

active TB and LTBI

Positive association of

Bacteroidetes and

polymorphonuclear

neutrophils in TB and LTBI

patients; concurrent increase of

pro-inflammatory cytokines

(IL-6 and IL-1B) and low

relative abundance of

Bifidobacteriaceae in TB

patients

16S rRNA gene amplicon

(Illumina) sequencing;

Greengenes databaseΔ;

QIIME˚

[159]

Feces Female Balb/c mice

(n = 5) infected with Mtb
CDC1551 or Mtb
H37Rv; preinfection

samples from each group

as control (n = 3)

Decrease of Clostridiales

(Lachnospiraceae,

Ruminococcaceae families) and

Bacteroidales orders.

n.d. 16S rRNA gene amplicon

(454) pyrosequencing

sequencing; Silva databaseΔ;

QIIME˚

[53]

Feces Female C57BL/6 mice

treated with a cocktail of

broad-spectrum

antibiotics ceased 2 days

before Mtb infection;

control group mice w/o

Abx treatment; stool

samples collected after

intranasal Mtb H37Rv
infection (n = 4–14

mice/group)

Decrease of Bacteroidetes and

Firmicutes; increase of

Betaproteobacteria

Decrease in MAIT cells and

IL17A in the lungs and

increased susceptibility to Mtb

RT-qPCR was performed

using phylum-specific

primers

[149]

Feces Female C57BL/

6J-CD45a(Ly5a) mice

(n = 3–5), 4–8 weeks old,

infected with Mtb
H37Rv; uninfected age-

matched control

(n = 3–5), repeated

sampling over 20 weeks

of infection

Decreased relative abundance of

Clostridiales; increased

Bacteroidales; although neither

significant by 20 weeks

n.d. 16S rRNA gene amplicon

(Illumina) sequencing;

custom reference database

built from the NCBI 16S

rRNA gene sequence and

taxonomy database (version

May 2016Δ; QIIME v 1.9.1˚)

[11]

(Continued)

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009377 April 15, 2021 4 / 36

https://doi.org/10.1371/journal.ppat.1009377


Table 1. (Continued)

Impact of M. tuberculosis infection on the host microbiome

Location Specimen Host and study design Change in microbiota

composition

Effects on the immune system Sequencing technology and

data analysis

Ref

Feces Rhesus macaques

(n = 4–6) infected with

Mtb Erdman

Families Lachnospiraceae,

Ruminococcaceae, and

Clostridiaceae significantly

increased in animals with severe

disease; members of the family

Streptococcaceae,

Erysipelotrichaceae, and the

Bacteroidales RF16 and

Clostridiales vadin B660 groups

were decreased in the same group.

Roseburia intestinalis,
Succinivibrio dextrinosolvens,
certain Ruminococcaceae, and

Weissella were enriched, and

Streptococcus equinus was

decreased in some or all animals

with severe disease.

n.d. 16S rRNA gene amplicon

(Illumina) sequencing; Silva

databaseΔ; QIIME2/

DADA2˚; Shotgun

metagenomics with NextSeq

500 platform

[204]

Respiratory

tract

BAL Pulmonary TB patients

(TB) (n = 6); healthy

controls (n = 10)

Decrease of Streptococcus,
Prevotella, Fusobacterium;

increase of Lactobacillus,
Acinetobacter, Mycobacterium,

and Staphylococcus genera.

n.d. 16S rRNA gene amplicon

(Illumina) sequencing;

(QIIME v 1.8˚)

[58]

BAL Mtb-positive (MTB+,

n = 70) and Mtb-

negative (MTB−, n = 70)

TB patients#

Mycobacterium and Anoxybacillus
genera highly abundant in MTB+;

MTB− microbiota enriched with

Prevotella, Alloprevotella,

Veillonella, and Gemella genera.

n.d. 16S rRNA gene amplicon

(Illumina) sequencing; Silva

databaseΔ; Mothur (v

1.35.1˚)

[255]

BAL TB patients (n = 10);

healthy controls (n = 5)

Presence of the 4 important genus

of lung microbiota (Streptococcus,
Neisseria, Veillonella, and

Haemophilus)

Frequency of Streptococcus
directly correlated with TB;

frequency of Haemophilus in

TB patients is correlated with

expression level of T-bet gene

(Th1 immune response)

Lung microbiota was

detected through culture

methods.

[158]

BAL TB patients (n = 32);

healthy controls (n = 24)

Cupriavidus dominance and

decrease of Streptococcus in TB

patients; wide distribution of

Mycobacterium and

Porphyromonas in TB patients

n.d. 16S rRNA gene amplicon

(454) pyrosequencing;

Ribosomal Database Project

(RDP)Δ; Fast UniFrac˚

[256]

nasal,

oropharynx,

sputum samples

TB patients (n = 6);

healthy controls (n = 6)

Abundance of Thermi phylum

and unclassified sequences

belonging to the Streptococcaceae

family in TB patients; decrease of

the genus Cryptococcus in TB

patients

n.d. 16S rRNA gene and ITS

amplicon (454)

pyrosequencing;

Greengenes databaseΔ;

QIIME (v 1.6˚)

[257]

OWs, BALs,

bronchoscope

control samples

Cynomolgus macaques

(n = 26) infected with

Mtb Erdman

Increase of Aggregibacter,
Staphylococcus, Streptococcus, and

the unculturable Candidate

division SR1 bacteria; decrease of

Lachnospiraceae

n.d. 16S rRNA gene amplicon

(Illumina) sequencing;

Greengenes databaseΔ;

QIIME˚

[60]

�NTB, no more than 1 week anti-TB treatment; RTB, previously treated and declared as cured prior to recurrence.
#No healthy individuals recruited as controls, positive M. tuberculosis (Mtb) detection determined by a combination of sputum smear, culture, RT-PCR, and GeneXpert.
ΔTaxonomic assignment.

˚Operational Taxonomic Units (OTUs) analysis.

BAL, bronchoalveolar lavage; LTBI, latent tuberculosis infection; n.d., not determined; NTB, newly diagnosed TB patients; OW, oral wash; RTB, recurrent TB patients;

RT-qPCR, quantitative reverse transcription PCR; TB, tuberculosis.

https://doi.org/10.1371/journal.ppat.1009377.t001
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chain fatty acids (SCFAs) acetate and/or butyrate [48]. Butyrate exerts immunomodulatory

effects (discussed below), but it is important to emphasize that members of these bacterial line-

ages also produce other factors that have been ascribed “anti-inflammatory” capacity [49–51],

albeit their impact on host responses to M. tuberculosis infection, if any, needs to be explored.

Moreover, variable changes in the relative abundances of non spore-forming Gram-negative

bacterial lineages assigned to the phylum Bacteroidetes (e.g., Prevotella and Bacteroides) are

reported, and relative abundances of Proteobacteria, which, when remarked upon, are

increased in M. tuberculosis-infected individuals (Fig 1A). During anaerobic growth, these lat-

ter bacterial groups favor the formation of “mixed acids” including succinate, lactate, formate,

but also SCFAs such as propionate and acetate [52]. In addition, structural components in par-

ticular the Gram-negative bacterial cell wall component lipopolysaccharide (LPS) can trigger

substantial pro-inflammatory responses at local and distant sites if epithelial barrier functions

are perturbed (discussed below). Taken together, these findings indicate that M. tuberculosis
infection is associated with a gut “dysbiosis.” While the cause-and-effect relationship between

TB and gut dysbiosis is currently unknown, longitudinal analysis of the fecal microbiota in a

mouse model suggest that M. tuberculosis infection causes a significant decrease of the relative

abundances of the Lachnospiraceae and Ruminococcaceae families within days of infection

[53]. Given that mycobacterial DNA was not detected in fecal samples of infected mice, the

selective decrease in bacterial diversity and the dysbiosis observed was unlikely due to the pres-

ence of M. tuberculosis within the gut. These findings suggest that the dysbiosis of the colonic

microbiota associated with TB may reflect early alterations in the mucosal immune milieu pre-

sented in the gut as a consequence of M. tuberculosis infection in the lung, and their translation

to selective pressures on the colonic microbiota [53]. Importantly, however, whether (tran-

sient) changes in the relative abundance of bacterial taxa affects host responses to M. tuberculo-
sis infection is unknown. In addition, anaerobic growth in the gut is likely to favor metabolic

pathways that result in similar classes of metabolites (e.g., SCFAs) across different bacterial

taxa. Thus, future studies should aim to combine longitudinal microbiome analyses with tran-

scriptome and metabolome profiling to establish whether changes in the relative abundance of

any taxa translate into biologically meaningful changes in the concentrations of immunomod-

ulatory metabolites, and other molecules, at local and distant tissue sites.

As reflected in Table 1, the studies of the lung microbiota in TB patients and model organ-

isms are fewer and often represent findings obtained from a relatively small number of indi-

viduals. Sputum samples have been commonly used to assess the lung microbiome in TB

patients [54,55]. However, potential contamination of these samples with bacterial genera typi-

cally present in the oropharyngeal microbiota (e.g., Prevotella, Bulleidia, and Atopobium) [18]

needs to be considered [56,57]. Alternatively, samples collected via bronchoalveolar lavage

(BAL) require more invasive collection methods but are beginning to provide insight into the

microbiota of the lower respiratory tract of humans [58]. The largest study to date used BAL to

characterize the lung microbiota of human patients with respiratory symptoms and abnormal

imaging results, with and without confirmed M. tuberculosis infection [59]. The relatively

diverse microbial community (e.g., Streptococcus and Prevotella) in patients without M. tuber-
culosis [59] contrasted the BAL microbiota of TB patients, which was dominated by M. tuber-
culosis. This highlights potential challenges for the precise annotation of the TB-associated

lung microbiota when using 16S rRNA gene profiling [59]. Nevertheless, longitudinal 16S

Fig 1. Alterations in microbiome composition (A = gut; B = respiratory tract) in individuals with active TB compared to controls. Significantly over- and

underrepresented bacteria in the gut (A) and lungs (B) of TB patients (circle), mice (rhombus), or macaques (triangle) models of TB. Taxonomic details are shown,

and over- or underrepresentation of the taxonomic level reported by each study is indicated by a red or blue shape, respectively.

https://doi.org/10.1371/journal.ppat.1009377.g001
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rRNA-based analyses of oral washes, BAL, and bronchoscopy samples in macaques experi-

mentally infected with M. tuberculosis, revealed increased microbial diversity early after infec-

tion (1 month), with the relative abundances of Aggregatibacter, Streptococcus, and

Staphylococcus genera elevated by 4 months post infection, and the relative abundances of

members of the Lachnospiraceae family being significantly decreased [60]. The magnitude of

alterations between individual animals were highly heterogenous, which was discussed to pos-

sibly reflect genetic makeup of the individual hosts, previous exposure to infection and treat-

ment, and the heterogenous nature of M. tuberculosis infection in macaques [60]. Indeed, the

caveats highlighted by the authors of this study are reflective of shortcomings of most micro-

biome research to date, which historically has been undertaken as a part of observational and

cross-sectional studies. This has led to calls for the utilization of more rigorous study design in

both animal models and clinical studies, and the pursuit of multinational and/or multicultural

frameworks to enhance demonstration of causality and progress towards clinical outcomes

[61–64]. For instance, longitudinal analyses in a defined experimental setting will be vital for

better characterizing microbiome dynamics during M. tuberculosis infection, and whether

these result from microbial interactions within the niche, or as a consequence of mucosal (and

peripheral) immune responses to M. tuberculosis infection. As the importance of microbiome

composition of the respiratory tract for susceptibility to infections is emerging [65], constrains

imposed by sample type and sequencing approaches will need to be overcome by standardized

methods that subtractively enrich microbial DNA from BAL samples, to advance the applica-

tion of shotgun metagenomic sequencing to provide a more holistic and nonbiased assessment

of microbial communities in respiratory health and disease [66,67].

Impact of TB antibiotics treatment on the host microbiome

The phenotypic and genetics basis of drug resistance in M. tuberculosis is one of the most sig-

nificant constraints to improving the clinical management of TB [68]. Treatment regimens for

drug-sensitive TB (6 to 9 months) and drug-resistant TB (up to 2 years) are protracted [1].

Antibiotic use disrupts both the composition and total abundance of the microbiota. Whereas

there is a limited number of studies addressing this in TB patients and mouse models of M.

tuberculosis infection, the results to date indicate that TB antibiotics have a long-lasting impact

on the gut microbiome composition [11–13,42–44]. Table 2 summarizes cross-sectional stud-

ies in humans and mouse models that have reported effects of TB antibiotics on the micro-

biota, with Fig 2 providing a phylogenetic integration of the findings to date. A common

theme is an antibiotic-induced dysbiosis, with depleted populations of Gram-positive bacteria

assigned to the Ruminococcaceae and Lachnospiraceae.

It is increasingly appreciated that commensal bacteria can confer a form of colonization

resistance against nonresident species including pathogens, via competition for metabolic

and/or spatial niches, as well as their production of bioactive molecules that can directly

inhibit/suppress the growth of susceptible microbes [69]. The sustained use of antibiotics for

recalcitrant Clostridioides difficile infection often results in long-term failure of antibiotics to

control this infection [69], and this has been used to exemplify how chronic antibiotic use

might be a risk factor for reinfection with M. tuberculosis [70,71]. Indeed, long-term impact of

TB antibiotics was indicated by a recent study reporting preferential loss of T cell reactivity to

M. tuberculosis-derived epitopes that showed similarities with microbiota species [72]. In a

mouse model, TB antibiotics altered gut microbiota composition and affected the immune

responses to M. tuberculosis infection [73], alluding to the multidimensional complexity of the

interplay between resident microbiota at the time of M. tuberculosis infection and the quality

of the immune response. Understanding of how prolonged antibiotic use affects predisposition
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Table 2. Summary of microbiome studies performed on animal models of TB and TB patients, investigating the impact of anti-TB treatment on the host

microbiome.

Effects of anti-TB treatment on the host microbiome composition

Location Specimen Host Treatment Change in microbiota

composition

Effects on the immune

system

Sequencing technology and

data analyisis

Ref

Gut Feces LTBI (n = 10), TB

(n = 28) TB patients

with 1-week anti-TB

therapy (TB1, n = 13),

TB patients with

2-week anti-TB

therapy (T2, n = 10,

cured TB patients

(TBc, n = 10); healthy

individuals (n = 13)

INH, RIF,

EMB, and

PZA

Decrease of Ruminococcus and

Faecalibacterium. Increased

abundance of Bacteroides species

and Parabacteroides distasonis in

all the treatment groups.

n.d. 16S rRNA gene amplicon

(Illumina) sequencing;

Ribosomal Database

Project (RDP) Δ; Mothur

v.1.36.1˚

[258]

Feces LTBI (n = 25), TB

treatment (n = 19),

cured TB patients

(n = 19); individuals

without Mtb infection

(IGRA-) as controls

(n = 50)

INH, RIF,

EMB, and

PZA

Enrichment of

Erysipelatoclostridium,

Fusobacterium, and Prevotella;

decrease of Blautia,

Lactobacillus, Coprococcus,
Ruminococcus, and

Bifidobacterium in the TB

treatment group. Depletion of

Bacteroides and overabundance

of Faecalibacterium,

Eubacterium, and Ruminococcus
in cured TB group: Enterobacter
cloacae, Phascolarctobacterium
succinatutens,
Methanobrevibacter smithii,
Bilophila, and Parabacteroides
are biomarkers of cured TB

patients.

n.d. 16S rRNA gene amplicon

(Illumina) sequencing;

NCBI refseq_rna database

with custom scriptsΔ;

QIIME˚/ Shotgun

metagenomic Illumina

sequencing; Metaphlan2

(microbial species

abundances) and

HUMAnN2 (functional

pathways)

[12]

Feces MDR-TB treatment

group (n = 6) and

untreated controls

(n = 26); MDR-TB

recovered group

(n = 18) and untreated

control (n = 28)

MDR-TB

treatment

Bacteroidetes, Cyanobacteria,

and Patescibacteria are

biomarkers for the recovered

group: decrease of Actinobacteria

and Firmicutes; increase of

Bacteroidetes in recovered

group.

n.d. 16S rRNA gene amplicon

(Illumina) sequencing;

RDP classifier (v 2.2)Δ;

Mothur˚

[13]

Feces 6–10 weeks old C57BL/

6 mice (n = 5) infected

with Mtb H37Rv; fecal

samples collected prior

to the treatment as

baseline (n = 5)

RIF or INH

+ PYZ

Expansion of Bacteroides,
Verrucomicrobiaceae, and

decrease in Lachnospiraceae in

RIF-treated samples; increase of

Clostridiaceae in INH/PYZ-

treated mice.

Expression levels of

MHCII and production

of TNFα and IL-1β
significantly reduced

after M. tuberculosis
infection. Alveolar

macrophages more

permissive for

intracellular M.

tuberculosis replication.

16S rRNA gene amplicon

(Illumina) sequencing;

Microbiome Analyst web

application (community

diversity profiling and

statistical analysis)

[73]

Feces 4–8-week-old C57BL/

6J-CD45a(Ly5a)

female mice (n = 3–5)

infected with M.

tuberculosis H37Rv;

uninfected age-

matched control

(n = 3–5)

INH, RIF,

and PZA

+ INH and

RIF

Decrease of genera Acetivibrio,

Robinsoniella, Alkaliphilus,
Stomatobaculum, Butyricicoccus,
Acetanaerobacterium, Tyzzerella,

Ruminococcus, and Peptococcus
(all belonging to class Clostridia,

phylum Firmicutes).

n.d. 16S rRNA gene amplicon

(Illumina) sequencing;

custom reference database

built from the NCBI 16S

rRNA gene sequence and

taxonomy database

(version May 2016)Δ;

QIIME (v 1.9.1˚)

[11]

(Continued)
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to recurrent TB and/or reinfection is an important area of future investment. Notwithstanding

the limits of current studies (e.g., cohort size, mode of sampling), anti-TB antibiotic regimens

exert selective pressure and reorganization of the gut and/or lung microbiota with profound

and long-lasting effects. Knowledge of the functional implications of these alterations via the

gut-lung axis on host immune response are emerging. The following sections examine the

physiological and metabolic cues arising from the gut (and lung) microbiota with implications

for host susceptibility or resistance to the clinical manifestations of M. tuberculosis infection.

Microbiome-immune crosstalk and host control of M. tuberculosis

Bioactive metabolites are a key element of the crosstalk between the host and its microbial col-

lective. Such metabolites arise from microbial metabolism (e.g., vitamins) as well as microbe-

facilitated modulation of host- or dietary-derived metabolites (e.g., bile acids, SCFAs) [74]. Sig-

nificant focus to date has been on the metabolic capacity of the gut microbiome, with evidence

for impact on immune functions at distant sites, including the lung via the gut-lung-axis [75]

(Fig 3). Here, we focus on the emerging concepts of direct and indirect contributions of the

host microbiome to host defense mechanisms against M. tuberculosis infection [44].

Epithelial barriers and innate immunity

Epithelial cells. The main route of M. tuberculosis entry into the human host is transmis-

sion via aerosol droplets. The size of M. tuberculosis-containing droplets allows entry into the

alveoli of the lower respiratory tract where the bacteria encounter respiratory epithelium, alve-

olar macrophages, and resident microbiota. The roles of alveolar epithelial cells in the host

defense against M. tuberculosis are incompletely understood. M. tuberculosis has been found in

cells of the alveolar epithelium in humans, and infected alveolar epithelial cells in vitro in some

but not all studies [76–80]. Transmigration of infected alveolar macrophages from the alveolar

space across the epithelium into the interstitium enables engagement of interstitial and

recruited inflammatory macrophages, a process important for control of M. tuberculosis [81].

While the importance of the gut microbiota in maintaining gut epithelial integrity and barrier

functions is well established [82–85], it is unknown whether microbiota-epithelial interactions

shape alveolar macrophage transmigration or macrophage recruitment to sites of M. tubercu-
losis entry. Pulmonary epithelial cellular defense mechanisms are directly responsive to

Table 2. (Continued)

Effects of anti-TB treatment on the host microbiome composition

Location Specimen Host Treatment Change in microbiota

composition

Effects on the immune

system

Sequencing technology and

data analyisis

Ref

Respiratory

tract

Sputum

samples and

throat swab

samples

New TB group (N-TB,

n = 25): patients, cured

new TB patients

(C-TB, n = 20),

recurrent TB group

(n = 30), treatment

failure group (n = 20);

healthy individuals

(n = 20)

mix of

DS-TB and

MDR-TB

treatments

Pseudomonas abundance in TB

treatment failure patients or

recurrent TB than in new or

cured TB patients; Prevotella,

Bulleidia, Atopobium, and

Treponema decrease in recurrent

TB patients than new TB group;

increased Corynebacterium
abundance in recurrent TB than

treatment failure TB.

n.d. 16S rRNA gene amplicon

(454) pyrosequencing;

Greengenes databaseΔ;

QIIME (v 1.5.0˚)

[18]

ΔTaxonomic assignment.

˚Operational Taxonomic Units (OTUs) analysis.

DS-TB, drug-susceptible TB; LTBI, latent tuberculosis infection; MDR-TB, multidrug-resistant TB; n.d., not determined; TB, tuberculosis.

https://doi.org/10.1371/journal.ppat.1009377.t002
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microbiota-derived SCFAs [86]. Whether production of antimicrobial peptides (AMPs) upon

encounter with M. tuberculosis [87,88], is shaped by the lung-resident, or remote, microbiota,

will be important to determine as this bears relevance to host defense against M. tuberculosis,

and bacterial pathogens more generally. Moreover, microfold (M) cells in the upper respira-

tory tract have been suggested to act as entry points for M. tuberculosis across the epithelial

barrier into mucosa-associated lymphoid tissues, which may result in extrapulmonary mani-

festation of M. tuberculosis (e.g., cervical lymphadenopathy in the absence of evidence for

Fig 2. Alterations in microbiome composition (A = gut; B = respiratory tract) of patients upon TB antibiotics treatment. Significantly over- and underrepresented

bacteria in the gut (A) and lungs (B) of TB patients (circle), mice (rhombus), or macaques (triangle) models of TB undergoing therapy for drug-sensitive or multidrug-

resistant TB. Taxonomic details are shown, and over- or underrepresentation of the taxonomic level reported by each study is indicated by a red or blue shape,

respectively.

https://doi.org/10.1371/journal.ppat.1009377.g002
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pulmonary TB) [89,90]. This process has been reported to be facilitated by interactions

between the M. tuberculosis virulence factor EsxA and scavenger receptor B1 on M cells in the

airway epithelium [91]. With microbiota composition implicated in M cell density and func-

tionality in the gut [92], microbiota contributions to airway M cell functions remain to be elu-

cidated, including implications for M. tuberculosis infection in the antibiotic-naïve or

antibiotic-experienced host.

Host-microbiota interactions are critical in governing tissue homeostasis at sites of close

contact as well as distant sites. Yet, microbial dysbiosis and compromised but barrier func-

tions, e.g., in the context of chronic inflammation and antibiotics treatment, have been impli-

cated in inflammation and metabolic dysfunction at distant sites. This is driven at least in part

Fig 3. Proposed microbiome-immune interactions in M. tuberculosis infection. Microbiota of the upper and lower

respiratory tract may define epithelial barrier integrity, M cell frequency, antimicrobial defense, composition, and

functionality of innate and adaptive immune mechanisms. Through the gut-lung axis, the microbiota of the intestinal tract

influences barrier and immune functions in the periphery and at sites of M. tuberculosis infection. Fig 3 was created with

BioRender.

https://doi.org/10.1371/journal.ppat.1009377.g003
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through innate immune activation of macrophages and other innate immune cells by micro-

biota-derived bacterial products such as LPS [83,93–96] (Fig 3). Some studies have questioned

whether epithelial functions in the gut are altered in TB patients and how this might affect

pharmacodynamics of TB antibiotics and have returned varying results [97–101]. With long-

term antibiotics regimens and sustained alterations of the gut microbiota, it is relevant to

query if and how the integrity of epithelial barriers (e.g., gastrointestinal and respiratory tract)

is affected in TB patients during and after treatment, and whether this has long-term conse-

quences for tissue and organ homeostasis, immune functions, metabolism, cognition, and

behavior [83].

Macrophages. Macrophages are major host cells for intracellular M. tuberculosis, and bac-

terial interference with macrophage antimicrobial defense mechanisms enable intracellular

persistence and replication [102]. The immune-regulatory and metabolic phenotype of alveo-

lar macrophages, as well as ready availability of nutrients key to intracellular M. tuberculosis
survival have been implicated in facilitating the exponential intracellular replication of M.

tuberculosis within alveolar macrophages for several days post infection [81]. The airway

microbiota has been implicated in defining alveolar macrophage functions [75,103], including

during M. tuberculosis infection [73]. Infection of mice with M. tuberculosis after a course of

treatment with the TB antibiotics isoniazid and pyrazinamide for 8 weeks resulted in slightly

higher lung bacterial burden. This was accompanied by an altered phenotype of alveolar mac-

rophages, including diminished MHCII expression, TNF and IL-1β production, as well as cel-

lular respiration and ATP production [73]. Alveolar macrophages derived from such

antibiotic-treated mice were diminished in their ability to control intracellular M. tuberculosis
replication in ex vivo cultures. The authors linked functional dysbiosis to these outcomes,

which were reversed by fecal microbiota transfer (FMT). It is interesting to note that the anti-

biotic-driven phenotypic alteration of alveolar macrophages was not inducible in in vitro cul-

ture in the presence of isoniazid and pyrazinamide but required the in vivo tissue context [73],

suggesting that alveolar macrophage phenotypic imprinting required tissue- and/or micro-

biome-derived factors. In this context, it is noteworthy that in in vitro cultures of PBMC, the

presence of lactic acid bacteria has been reported to enhance M. tuberculosis-induced IFNγ
production and promoted IFNγ-driven macrophage antimicrobial defense mechanisms [104].

Thus, positioning the microbiota as one of the likely sources of cues that define alveolar mac-

rophage functions related to antimicrobial defense, inflammation, and engagement of adaptive

immunity is important for our understanding of early host control of M. tuberculosis infection

with implications for developing active disease or LTBI.

Innate and innate-like lymphoid cells. Microbial products, including metabolites, dis-

tinctly guide development and functions of innate and innate-like lymphocytes. Conversely,

the localization of innate and innate-like lymphoid cells to mucosal sites directs the composi-

tion and spatial distribution of the microbiota [105]. SCFAs such as acetate, propionate, and

butyrate are the most abundant bacterial products derived from commensal bacterial fermen-

tation of dietary fibers in the intestine and have been found to regulate cellular metabolism

and exert potent immune-regulatory functions [106,107]. SCFAs instruct the proliferation and

function of group 3 innate lymphoid cells (ILC3) [108], which play central roles in immune

responses at mucosal and epithelial sites, including the lung [109]. Control of M. tuberculosis
infection is critically dependent on intact IL-12 and IFNγ signaling, and IFNγ-mediated pro-

tection is largely attributed to adaptive T cell responses [110]. However, more recently, contri-

butions of innate and innate-like lymphoid cells have been unveiled.

Based on their cytokine expression profiles, ILCs are categorized into group 1, including

natural killer (NK) cells and noncytotoxic type 1 ILCs (IFNγ, TNF), group 2 (IL-4/5/13), and

group 3 (IL-17/22) [111].
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IFNγ-expressing NK cells have been described to accumulate in the pleural fluid of patients

with TB pleurisy [112]. Individuals with LTBI exhibited increased numbers of circulating NK

cells in peripheral blood and these cells exhibited increased cytotoxic capacity associated with

high expression of granzyme B and perforin [113], and accumulation of CD27+ NK cells in the

lung has also been associated with LTBI in nonhuman primates [114]. In contrast, circulating

NK cells were markedly decreased in peripheral blood of patients with active TB [113]. NK

cells have been reported to contribute to CD8+ T cell responses, and lyse mycobacteria-

infected monocytes, macrophages, as well as regulatory T cells expanded in the presence of

mycobacterial antigens [115–117]. Patients with active TB exhibit diminished proportions of

type 1, 2, and 3 ILCs, but not NK cells, in peripheral blood [118], which is thought to be a result

of ILC accumulation in infected lungs, as has been shown for mice infected with M. tuberculo-
sis or Mycobacterium bovis bacille Calmette-Guérin (BCG) [118,119]. Transcriptome analyses

of ILC2s and ILC3s isolated from lungs of TB patients revealed distinct immune signatures

[118], suggesting specific functional contributions. Early studies in mice indicated that defi-

ciency in T and B lymphocytes as well as ILCs (RAG2−/− γc−/−) resulted in higher susceptibility

to M. tuberculosis infection compared to T and B cell deficiency (RAG2−/−), which was attrib-

uted to IL-12-driven IFNγ production by innate lymphocytes [120]. More recently, specific

contributions of group 3 ILCs to host control of M. tuberculosis early during infection have

emerged, specifically in the formation of inducible bronchus-associated lymphoid tissue

(iBALT) [118], which is associated with a degree of host protection early during M. tuberculosis
infection [121].

Due to the intimate connection between microbiota and ILCs, many questions arise from

these recent observations, including: Are ILC3 contributions to immune control of M. tubercu-
losis shaped by the metabolic capacity of the microbiome (e.g., dynamics and relative abun-

dance of SCFA at mucosal sites and in the periphery [108]? Do (myco)bacteria-derived

components or TB antibiotics direct ILC3 functions, e.g., through engagement of arylhydro-

carbon receptor (AhR) [122,123], a ligand-dependent transcription factor that governs ILC3

functions [124]? Are microbiota-derived metabolites that drive IL-22 production at mucosal

sites (e.g., tryptophan derivatives) [125] linked to the host control of M. tuberculosis attributed

to type 3 ILC and IL-22 [118,126,127]? Does plasticity within type 1 ILC (i.e., conversion of

NK cells to type I ILCs) occur during M. tuberculosis infection, similar to what has been

described recently in the context of Toxoplasma gondii infection [128] and tumor immune

evasion [129]? Is ILC functionality at the sites of M. tuberculosis infection reflective of the ILC

composition detectable in peripheral blood and do alterations in the periphery indicate rele-

vance to host control, e.g., as discussed for NK cell dynamics in active TB versus LTBI and

healthy controls [113,130,131]?

MAIT cells. Innate-like lymphocytes, including mucosa-associated invariant T cells

(MAIT), natural killer T cells (NKT), and γδ T cells recognize microbially derived nonpeptide

antigens via semi-invariant T cell receptors (TCRs) resulting in cytokine production and/or

cytotoxic activity. Among these, MAIT cell development has been closely linked to the pres-

ence of the microbiota driven by thymic presentation of bacteria-derived antigen [132–135],

although microbiota-independent MAIT cell development during embryogenesis has also

been reported [136]. MAIT cells are abundant in barrier tissues and at mucosal sites, including

the lung, apart from representing up to 10% of circulating human T cells [137]. The evolution-

ary conserved MAIT cell TCRs have been shown to recognize the vitamin B2 precursor metab-

olite, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU), presented by the MHC-

1-like molecule MR1 [138,139]. In addition, IL-18 and IL-12 can drive antigen-independent

activation of MAIT cells [140]. TCR-mediated MAIT cell effector functions include cytokine

production (predominantly IL-17A by MAIT cells in mice and human tissues; IFNγ, TNF in
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human blood), cytotoxicity against cells that present antigen via MR1, and bystander activa-

tion of dendritic cells [137].

Peripheral blood MAIT cell numbers are significantly diminished in TB patients [141–146]

and have been noted to negatively correlate with TB disease severity [143]. A TB household

contact study reported that MAIT cells in peripheral blood show signatures of activation

[147]. Whereas MAIT cell accumulation in infected lungs has been reported for some bacterial

pathogens, studies in M. tuberculosis-infected nonhuman primates have shown only limited

accumulation in infected lung tissue [148]. Observations in mice appear to suggest a more

nuanced picture of MAIT cell contributions to the host control of mycobacterial infection in

this model organism. Initial studies indicated contributions of MAIT cells to early host control

of mycobacterial infection in the lung upon aerosol or intranasal challenge, as well as in spleen

after intravenous delivery of bacteria, albeit with relatively small and transient effects

[141,149,150]. In contrast, a recent study using MR1-deficient mice reported no difference in

the ability to control M. tuberculosis infection compared to wild-type mice [151]. Exogenous

administration of 5-OP-RU (in conjunction with Toll-like receptor (TLR) agonists) prior to

M. tuberculosis infection resulted in expansion of MAIT cells but did not affect M. tuberculosis
burden in the lung [151,152], despite delayed CD4+ T cell priming in mesenteric lymph nodes

[151]. On the other hand, therapeutic administration of 5-OP-RU well into the chronic phase

of M. tuberculosis infection conferred some protection in the lung dependent on IL-17A, but

not TNF or IFNγ. A possible interpretation of these observations is that the microenvironment

and/or activation status of MAIT cells at the time of stimulation skews their cytokine profile

towards regulatory or inflammatory functions [151]. Whether exogenous application of MAIT

cell antigen would have similar effects in humans will be important to establish, especially con-

sidering the relative higher abundance of a MAIT cells in humans when compared to labora-

tory mice [137]. Such insights will be critical especially if targeted engagement of MAIT cells is

to be explored for host-directed interventions in TB [151]. Thus, experimental evidence to

date suggests that MAIT cells contribute to host responses against M. tuberculosis infection,

and that it appears to be important to determine whether the timing of their engagement in

the context of infection is beneficial or detrimental to immune responses that control myco-

bacterial infections. Of note, a genetic polymorphism in MR1 has been associated with TB sus-

ceptibility and manifestation in humans [153], and household contact studies have led to the

hypothesis that MAIT cells in early stages of M. tuberculosis exposure are associated with pro-

tection from productive infection [147,154]. Findings that abundance or depletion of distinct

bacterial species correlates with distinct MAIT cell functionality (e.g., IFNγ, granzyme B

expression) in a TB household contact study [147] might be reflective of the impact of phyloge-

netic diversity, relative demand for riboflavin, and/or carbon source utilization within micro-

bial ecosystems as indicated in in vitro studies on MAIT cell activation [155,156]. Whether

these observations translate into in vivo settings with diverse microbial ecosystems at different

anatomical sites requires further investment into more detailed analyses on how the micro-

biome shapes innate immune cell responses at mucosal barriers (Fig 3).

Adaptive immunity

T cells. CD4+ T cells are critical in the host control of M. tuberculosis infection, with con-

tributions of CD8+ T and B lymphocytes increasingly appreciated. Inflammatory circuits, e.g.,

driven by IL-12/IFNγ, TNF, and IL-17, are central to controlling M. tuberculosis, yet tight reg-

ulation of these immune effector mechanisms, e.g., by regulatory T (Treg) cells and IL-10, is

essential for preventing severe pathology and poor pathogen control [110]. With the growing

understanding of how dynamic interactions between microbiota and the host immune system
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define the development and functions of lymphocytes [157], there is a growing interest in how

the microbiota shapes adaptive immune responses that are critical for the host control of M.

tuberculosis infection [44,158].

There is evidence suggesting that microbiota composition licenses T cell functions critical

to controlling M. tuberculosis infection. A recent study in a small cohort of patients with active

TB (prior to treatment commencement), LTBI and healthy controls reported a positive corre-

lation between the abundance of Coriobacteriaceae in fecal samples of LTBI individuals with

M. tuberculosis antigen-specific IFNγ responses in peripheral blood [159]. Observations in

mice indicate the extent and qualitative impact of antibiotic-induced dysbiosis might differen-

tially impact on immune mechanisms that control M. tuberculosis. Specifically, impaired host

control of M. tuberculosis in mice exposed to broad-spectrum antibiotics exposure was associ-

ated with decreased proportions of IFNγ+ and TNF+ CD4+ T cells alongside an increased per-

centage FoxP3-positive Treg cells in the spleen [160]. In contrast, mice treated with the

narrow-spectrum TB antibiotics isoniazid and pyrazinamide displayed a comparatively slight

increase in M. tuberculosis lung burden at the onset of the chronic phase of infection, which

was associated with impaired antimicrobial defense by alveolar macrophages, without impact

on the percentages of TB antigen-specific T cells [73]. In both settings, FMT experiments in

mice rescued antibiotic-induced impairment of M. tuberculosis control by the host [73,160].

The impact of broad-spectrum antibiotics on mycobacteria-specific T cell responses has been

extended to a vaccine setting in mice with impaired CD4 and CD8 activation, as well as

impaired generation of lung-resident and effector memory T cells [161].

There are examples of microbiota species that have been suggested to poise the host towards

Th1 responses, including Klebsiella aeromobilis, Klebsiella pneumoniae, and Bilophila wads-
worthia [162,163]. Defining if and how specific bacterial groups or species within the micro-

biota gear M. tuberculosis-specific T cell responses towards increased effector functions (e.g.,

IFNγ, TNF) and whether this translates into benefits for the host in controlling M. tuberculosis
might offer opportunities for targeted intervention. This might encompass promotion of a spe-

cific microbiota composition but could equally be explored for metabolic capacities of the

microbiota that define host immune functions. Microbial products and metabolites, in partic-

ular SCFAs, have been established as key mediators of immune-modulatory functions of the

microbiota [164]. In this context, the potential contributions of SCFAs such as butyrate have

become of particular interest (Fig 3).

Butyrate reduced M. tuberculosis antigen-specific IFNγ and IL-17A production and ele-

vated IL-10 production of in vitro cultured human peripheral blood mononuclear cells

(PBMCs) [165,166]. This is consistent with the immune-modulatory functions of butyrate,

which are driven by suppression of histone deacetylase (HDAC) activity that enhances FOXP3
expression and Treg differentiation [167,168]. Additional effects of SCFA on immune func-

tions include reprogramming of Th1 cells towards IL-10 production [169], inhibition of

HDAC-dependent epigenetic regulation of inflammatory gene expression (e.g., IL12b, Nos2)

by macrophages and dendritic cells [170,171], as well as limiting neutrophil activation [172].

Thus, the SCFA profile arising from a particular microbiome composition may impair

immune effector mechanisms that are central to effective host control of M. tuberculosis. If

present at the time of M. tuberculosis encounter, this may represent a risk factor for successful

infection and progression to active TB. Support for this hypothesis may be drawn from a

recent study in a cohort of HIV+ healthy individuals undergoing antiretroviral therapy (ART)

in a high-TB incidence environment. Individuals undergoing ART are characterized by SCFA-

producing microbiota in their lower airways, and in this cohort, SCFA serum concentrations

positively correlated with elevated risk of subsequently developing TB, as well as induction of

FoxP3+ Tregs in PPD-stimulated cultures of BAL lymphocytes [165]. Elevated serum SCFA
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concentrations were associated with increased presence of Prevotella in the lower airways

[165]. These correlations encourage investigation of how SCFA production locally in the lung,

or systemically, might hamper mucosal immune defense mechanisms against M. tuberculosis
infection. This might seem counterintuitive when considering the decrease in the relative

abundance of Ruminococcaceae and/or Lachnospiraceae described in some studies (Table 1

and Fig 1A). However, if altered microbiota composition in the context of active TB disease

was accompanied by diminished SCFA concentrations at peripheral sites, one might speculate

that microbiota changes upon M. tuberculosis infection could be reflective of a directly or indi-

rectly driven host adaptation to enable effective Th1 immune responses that control M. tuber-
culosis. Carefully designed longitudinal studies, integrating taxonomic, metagenomic,

metabolomic, and immunological analyses in a prospective setting will be necessary to estab-

lish whether a microbiome composition functionally geared towards a specific metabolic out-

put governs establishment and host control of M. tuberculosis infection.

B cells and antibodies. Mucosal and systemic antibody responses are directly shaped by

the microbiome. Exploration of these microbiota-immune interactions has largely focused on

the gut microbiota, a critical regulator of gut immunoglobulin A (IgA) production [173,174].

Microbiota-derived SCFAs gear B cell metabolism and gene expression towards antibody pro-

duction [175]. TLR-mediated sensing of the microbiota by epithelial and dendritic cells drives

expression of a proliferation-inducing ligand (APRIL) and B cell-activating factor (BAFF),

which promote B cell survival and IgA production by plasma cells [176–180]. There is emerg-

ing evidence that microbial cues at oral and respiratory epithelial sites similarly shape B cell

functions and antibody responses [180–182]. Despite these well-established links between

microbiota and antibody responses, it remains largely unknown how these contribute to host

responses during M. tuberculosis infection and TB disease.

The B cell compartment in peripheral blood undergoes dynamic changes during M. tuber-
culosis infection, and relative abundance of memory B cells, plasma blasts, and plasma cells has

been correlated with TB disease state (reviewed in [183]). M. tuberculosis infection induces

robust antibody responses, yet the contributions of B cells to the immune control of the infec-

tion are incompletely understood and have remained controversial. Different mouse models

of B cell deficiency indicated protective contributions of B cells during M. tuberculosis infec-

tion, through regulation of tissue pathology and local inflammatory cytokine responses [184–

186]. B cell depletion (anti-CD20, rituximab) in M. tuberculosis-infected nonhuman primates

did not affect overall lung pathology, bacterial burden, and clinical outcome in an early disease

setting. Nevertheless, at the level of individual granulomas, B cell contributions to bacterial

control, production of IL-6 and IL-10, as well as diminishing the frequency of T cells express-

ing IL-2, IL-10, or IL-17 have been reported [187].

M. tuberculosis infection in the immune-competent host elicits robust antibody responses

against diverse mycobacterial protein and oligosaccharide antigens [188]. Recent insights into

potential roles of antibody-mediated modulation of M. tuberculosis control by host cells

[189,190] have reinvigorated the interest in B cell functions in TB. Antibody-mediated opsoni-

zation (serum or purified IgG) has been implicated in M. tuberculosis restriction by infected

human and mouse macrophages associated with enhanced phagocytosis and delivery to pha-

golysosomal compartments [189–194]. More detailed insights into patient-specific patterns

and functional contributions of IgG subtypes in this context will be of great value, especially in

light of earlier observations implicating distinct outcomes of activating versus inhibitory Fcγ
receptors for the host control of M. tuberculosis infection [195]. Antibiotics-mediated deple-

tion of resident microbiota has been associated with decreased pulmonary IgA production,

which has been associated with increased susceptibility to pulmonary bacterial infections in

humans and mice [180]. This observation likely bears relevance for M. tuberculosis infection in
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light of reports that passive transfer of purified, mycobacteria-specific IgA diminished bacterial

burden in infected lungs [196–198]. The molecular and cellular mechanisms underlying this

protection are incompletely understood but may include IgA-mediated inhibition of infection

of macrophages and lung epithelial cells with contributions of the human FcαRI IgA receptor

[190,198]. Humoral immune responses in individuals infected with M. tuberculosis are highly

heterogenous and influenced by complex interactions of a number of factors, including age,

state of infection (active TB disease or LTBI), and immune competency (e.g., HIV, diabetes).

With the fundamental contributions of the microbiota to shaping local airway mucosal as well

as systemic antibody responses [173,199], it is imperative to define how microbiota-defined

local and systemic antibody responses affect host susceptibility and manifestation (active dis-

ease versus LTBI) during M. tuberculosis infection. The design of future studies needs to

include considerations on the impact of systemic and mucosal antigen exposure on antibody

repertoire [199]. Isotype- and/or target cell-specific functional differences of M. tuberculosis-
specific antibodies may be further defined by distinct glycosylation profiles characteristic to

disease state, i.e., active versus latent TB [189]. It will be important to determine whether treat-

ment with TB antibiotics causes secondary IgA deficiency [180] and whether this poses risks

for (re)infection with M. tuberculosis. A comprehensive view of B cell functionality, beyond

antibody responses, in this context will further enhance understanding of cellular drivers of

local inflammatory responses [185,187], macrophage polarization [200], neutrophilia

[185,201], and immune regulation [202,203].

Are there opportunities for microbiota-focused preventative and

adjunct-therapeutic strategies?

With the notion that the larger collective of “commensal microorganisms” may, directly and

indirectly, shape host susceptibility to M. tuberculosis (re)infection, protective immune

responses, and disease manifestation, the questions arising now center on how this knowledge

might translate into therapeutic or preventative measures. Areas of focus include opportunities

at the gene product (e.g., metabolites and bioactives), organismal (e.g., probiotics, genetically

modified organisms (GMO), FMTs), and dietary level of interventions to correct microbial

dysbiosis or specifically deliver functional capabilities that reshape host immune responses

and resilience to M. tuberculosis infection and/or recurrence.

Strategies that promote the introduction and/or restoration of a “beneficial” microbiota,

such as dietary interventions or defined probiotic formulations may prove to be an effective

strategy to complement TB treatment, in particular in correcting the long-lasting dysbiosis

that occurs as consequence of prolonged TB antibiotics regimens. Moreover, gut microbiota

composition prior to infection has been found to correlate with disease manifestation in non-

human primates experimentally infected with M. tuberculosis, which raises the possibility of

defining a gut microbiota that reduces host susceptibility to M. tuberculosis infection and TB

disease manifestation [204]. Gut microbiota diversity, abundance, and host immune response

are strongly impacted by diet and nutrition and much still needs to be learned about these

interrelationships in the context of disease susceptibility and prevalence associated with

under-, mal-, and overnutrition [120]. Protein–calorie undernutrition, type 2 diabetes associ-

ated with overnutrition, and micronutrient deficiencies (e.g., vitamin D) are risk factors for

developing active TB [205–208].

Probiotics such as Bifidobacterium spp. as an adjunct therapy with conventional TB antibi-

otics are reported to restore and maintain what is considered a “healthy microbiome” [209–

211]. A longitudinal study in TB patients reported that a multi-strain probiotic formulation

(Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus
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bulgaricus, Bifidobacterium breve, Bifidobacterium longum, and Streptococcus thermophilus)
combined with supplementation of vitamins B1, B6, and B12 increased serum concentrations of

IFNγ and IL-12, compared to the control group receiving only anti-TB antibiotics and vitamin

B6 [212]. Whether rational design of safe-for-human-use probiotics can include the design of

strains that withstand TB antibiotic therapy as proposed recently [213] remains to be carefully

evaluated.

Immune cross-reactivity between mycobacterial species as well as direct impact on the

microbiota are associated with beneficial effects of orally administered heat-killed Mycobacte-
riummanresensis. Indeed, formulations using this environmental bacterium that is commonly

found in drinking water are being explored for potential benefits in the treatment of TB. In a

susceptible mouse model of M. tuberculosis infection, orally administered heat-killed M. manre-
sensis reduced lung pathology, bacterial burden, and inflammatory responses, and in combina-

tion with TB antibiotics, expanded the life span of infected mice when compared to mice

treated only with antibiotics [214]. Following on from early clinical safety profiling [215,216], a

placebo-controlled randomized interventional trial in HIV–negative and HIV–positive individ-

uals undergoing treatment for TB is currently analyzing the impact of a M. manresensis-based

food supplement on gut microbiota composition, antigen-specific CD4+ T cell responses, as

well as time to sputum conversion and reduction in bacterial burden (NCT03851159).

Perhaps the most dramatic approach to “probiotic therapy” is the integration of FMT into

clinical practice. Although practiced by some cultural groups for centuries [217], FMT has

recently become a mainstream intervention for the treatment of recurrent Clostridioides diffi-
cile infection, offering high therapeutic efficacy and with limited prevalence of adverse events,

at least in the short term [218]. These findings have catalyzed global interest in both research

and clinical settings for the evaluation of FMT as induction therapy for a variety of medical

conditions where gut “dysbiosis” is implicated [219–221]. In the context of TB, the findings

that FMT reversed the increased susceptibility of antibiotic-treated mice to M. tuberculosis
infection [73,160] warrants further investigation into microbiota compositions that confer

benefits to the host. In summary, probiotics as an adjunct and/or therapeutic option for the

restoration of gut homeostasis has long been investigated and continues to hold promise, and

this extends to their potential as adjunct therapeutics alongside TB antibiotics [222–224].

With current limitations of probiotics and FMT, dietary interventions, defined microbial

metabolites, and actively secreted bioactives might offer a pragmatic alternative. For example,

indolepropionic acid (IPA), which is produced by bacteria taxonomically affiliated with the

Clostridiales, including Peptostreptococcus anaerobius, has been shown to inhibit growth of M.

tuberculosis, both in vitro and in vivo. This has been attributed to antagonistic effects of IPA

on M. tuberculosis tryptophan biosynthesis, leading to suggestions that IPA per se and/or tar-

geting the M. tuberculosis tryptophan pathway may be avenues for the discovery of novel anti-

mycobacterials [225–228]. Additional positive effects of IPA on epithelial barrier function as

well as activation of innate and adaptive immune responses [229–232] might be worth explor-

ing for dually acting compounds. A second example are bacteria-derived AMPs, which directly

affect microbial ecology, including specific inhibition of bacterial pathogens [233,234]. The in

vitro antimycobacterial activity of bacteriocins isolated from Lactobacillus salivarius, Strepto-
coccus cricetus, and Enterococcus faecalis exceeds that of the TB antibiotic rifampicin [235],

with nisin and lacticin being effective towards M. tuberculosis, Mycobacterium kansasii, Myco-
bacterium smegmatis, and Mycobacterium avium subspecies paratuberculosis [236,237]. Syner-

gism with TB antimicrobials, such as those reported for bacteriocin AS-48 from E. faecalis and

ethambutol [238] may offer avenues for exploration, e.g., whether combinations allow for

shortening of current antibiotics regimens or reducing antibiotic dosing to limit toxic side

effects.
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Notwithstanding the notion that SCFAs poise host immune mechanisms towards a permis-

sive environment for M. tuberculosis infection, whether modulation of SCFA production

might be a target for intervention in TB requires careful consideration. With SCFA the pri-

mary microbial metabolites released within the gastrointestinal tract, host evolution has

favored the development of sensor-regulatory pathways linked with immune and/or metabolic

pathways that can monitor and respond to alterations in these primary microbial metabolites.

In chronic diseases with characteristic gut dysbiosis (e.g., inflammatory bowel disease), the

presumptive reduction in butyrate-producing bacteria is widely considered to compromise

barrier integrity, mucin production, and FoxP3+ Treg cell production [239,240]. While the

link between SCFAs and host immune responses is relatively well characterized, the minimal

effective concentrations of SCFA needed for the maintenance of barrier integrity and regula-

tory immune responses are less well understood. In that context, the therapeutic efficacy of

specifically modulating colonic butyrate and/or other SCFA concentrations via oral or colonic

routes of administration are, at best, mixed [241]. Such findings suggest that reaching thresh-

old concentrations of colonic SCFA are necessary but not sufficient to bias mucosal integrity

and immune responses. Indeed, additional metabolic capabilities being defined in “beneficial”

bacteria such as Faecalibacterium prausnitzii [242,243] highlight the complexity of microbial

metabolites and secreted products that define the sustainability of gut homeostasis and poise

(mucosal) immune responses.

Conclusions

Confidence in whether the microbiome composition is associated with host susceptibility M.

tuberculosis infection or can indeed skew effector mechanisms towards improved or dimin-

ished pathogen control requires carefully designed prospective and longitudinal studies in

large cohorts. The integration of microbiome, metagenome, and metabolome analyses, ideally

in the lung as well as the gut and potentially other distant sites, alongside immunological char-

acterization will be essential. Additionally, important confounding factors such as nutritional

status, coinfection(s), and other comorbidities [165,244] will need to be integrated into study

and cohort design. Careful considerations will need to be given to sampling techniques, as well

as appropriate control samples and cohorts [8].

Candidate microbiota/microbe/metabolite approaches and functional studies in animal

models of TB will be invaluable to further elucidate causality between microbiota composition,

metabolic capacity, and the immune control of M. tuberculosis infection. It will be particularly

important to determine the interplay between microbiota and immune components at distinct

stages of infection and disease. Our discussions above highlight the importance of acknowl-

edging potential composite effects of innate and adaptive immune cell functions, and the mul-

tidimensional interplay between microbiota and host defense mechanisms. For example,

butyrate enhanced antimicrobial defense in macrophages (e.g., AMP expression and autop-

hagy), thereby increasing control of extracellular and intracellular bacterial pathogens, includ-

ing mycobacteria [245]. Yet, SCFAs are emerging to create a permissive immune milieu for M.

tuberculosis infection in the host at least in part through their immune-modulatory effects on

adaptive immune responses. Moreover, detailed studies are required to fill current knowledge

gaps on the host interactions with viruses, fungi, and protozoa in the human microbiome,

which likely has profound implications for shaping host responses to infections [246,247].

Restoration of TB antibiotic-induced dysbiosis is an attractive and seemingly achievable tar-

get. Nevertheless, the transition of probiotics from being dietary supplements to an evidence-

based predictive intervention in clinical settings remains elusive [248,249]. Similarly, the

potential that FMT might serve to augment the treatment and immune control of M.
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tuberculosis infection, as indicated in mouse studies [73,160], is attractive. With the accelerat-

ing increase in reports associating microbiota composition with human pathologies, some

level of caution is warranted, e.g., in relation to invariably positive outcomes from studies

using human microbiota-associated or humanized gnotobiotic animal models [61]. Additional

critical considerations need to be given to the ethical, cultural, and safety implications of select-

ing and using stool samples for FMT, which continue to be reviewed and assessed for other

conditions where gut dysbiosis is diagnostic [250]. Similarly, interest in using diet as a first-

line intervention for the correction of microbiota-immune interactions and promoting gut

homeostasis in digestive health and disease have gained considerable momentum in recent

years [251,252]. Translation of these findings to the context of TB may offer insights over and

above gains made by promoting a more protein–calorie-rich diet in societies afflicted by mal-

and/or undernutrition. But not unlike the constraints associated with the advancement of pro-

biotics, FMT, and next-generation versions of both, the translation of such observations into

evidence-based interventions is contingent on further refinement of the approaches used to

produce such evidence [253].

In summary, notwithstanding the increasing body of literature focused on establishing

links between the microbiome and the immune control of TB, as with most microbiome-

focused research, the challenge at hand will be to establish causality, which would deliver solid

foundations for the pursuit of targeted interventions in TB.
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