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Abstract: Small molecule inhibitors of adipocyte fatty-acid binding protein 4 (FABP4) have
received interest following the recent publication of their pharmacologically beneficial effects.
Recently, it was revealed that FABP4 is an attractive molecular target for the treatment of type 2
diabetes, other metabolic diseases, and some type of cancers. In past years, hundreds of effective
FABP4 inhibitors have been synthesized and discovered, but, unfortunately, none have reached the
clinical research phase. The field of computer-aided drug design seems to be promising and useful
for the identification of FABP4 inhibitors; hence, different structure- and ligand-based computational
approaches have been used for their identification. In this paper, we searched for new potentially active
FABP4 ligands in the Marine Natural Products (MNP) database. We retrieved 14,492 compounds from
this database and filtered through them with a statistical and computational filter. Seven compounds
were suggested by our methodology to possess a potential inhibitory activity upon FABP4 in the
range of 97–331 nM. ADMET property prediction was performed to validate the hypothesis of the
interaction with the intended target and to assess the drug-likeness of these derivatives. From these
analyses, three molecules that are excellent candidates for becoming new drugs were found.

Keywords: FABP4; A-FABP; aP2; antidiabetes; antiobesity; antiatherosclerosis; anticancer;
computational tools; computer-aided drug discovery

1. Introduction

Fatty acids (FAs) are a class of carboxylic acids that have many functions of vital importance in
humans [1]. It was recently reported that elevated levels of FAs in plasma lead to specific physiological
disorders [2], among these is type 2 diabetes [3], obesity [4] and atherosclerosis [5]. FAs have poor
solubility in water, and, to overcome this problem, they are always associated with carrier proteins to
facilitate trafficking in aqueous environments. Some examples of these carrier proteins are albumin,
lipocalins, and fatty acid-binding proteins (FABPs) [6].

The adipocyte FABP (also called A-FABP, aP2, or FABP4) is a highly expressed FABP in adipocytes.
Its levels are regulated by peroxisome-proliferator-activated receptor-c agonists, as well as by the levels
of insulin and free FAs [7]. Studies conducted in FABP4 knockout mice have shown that this carrier
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protein has a crucial role in many aspects of the metabolic syndrome [8,9], with a potential role in
future clinical treatments of this disorder. Indeed, the lack of a gene that codifies FABP4 partially
prevents the advancement of insulin resistance and obesity in mice. Thus, small molecules that inhibit
the physiological function of FABP4 can mimic the phenotype of FABP4-deficient mice, and might
be useful candidates for the treatment of metabolic syndromes. It was also reported that FABP4 is
highly expressed in macrophages [10]. Macrophages are an essential site of FABP action, and total
or macrophage-specific FABP4-deficiency leads to a marked defense against early and advanced
atherosclerosis [11].

The family of FABP proteins also has a significant role in cancer cells and cancer progression [12].
Up to now, modified FABP expression was described in different types of cancers, such as prostate,
bladder, renal cell carcinoma, and other types of cancer cells [13–15]. Despite this, the biological
functions of FABPs in cancer remain mostly unclear [16].

Recently, a variety of effective FABP4 inhibitors have been developed [17], but, unfortunately,
none of them are currently in the clinical research phase (Figure 1).
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Figure 1. Structures of selected potent FABP4 inhibitors belonging to various chemical classes. 

Computer-aided drug design shows a promising and useful tool for the identification of novel 
molecules able to bind FAPB4. Notably, different structure-based computational approaches 
(docking-based virtual screening studies) have already been performed in this context with different 
libraries of compounds, leading to important results [18,19]. 

In line with our recent interest in the development of QSAR models and related applications 
[20–27], we recently produced the first 3D-QSAR model for the description of a dataset of selective 
and potent FAP4 inhibitors [28,29]. The 3D-QSAR model was then combined with a scaffold-hopping 
analysis, allowing the design of new potent molecules able to interact with the binding site and inhibit 
FABP4. Finally, three of the ligands suggested by the scaffold-hopping analysis were synthesized and 
tested in vitro, yielding IC50 values between 3.70 and 5.59 M. 

Given the excellent result in identifying novel structures and in assisting in the design of novel 
FABP4 binders with this 3D-QSAR model, in this work, we decided to combine the ligand-based 
approach with a structure-based one (docking) to screen a large dataset of marine products for the 
identification of novel hit-compounds among the marine word. This purpose was pursued using a 
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Computer-aided drug design shows a promising and useful tool for the identification of
novel molecules able to bind FAPB4. Notably, different structure-based computational approaches
(docking-based virtual screening studies) have already been performed in this context with different
libraries of compounds, leading to important results [18,19].

In line with our recent interest in the development of QSAR models and related applications [20–27],
we recently produced the first 3D-QSAR model for the description of a dataset of selective and potent
FAP4 inhibitors [28,29]. The 3D-QSAR model was then combined with a scaffold-hopping analysis,
allowing the design of new potent molecules able to interact with the binding site and inhibit FABP4.
Finally, three of the ligands suggested by the scaffold-hopping analysis were synthesized and tested
in vitro, yielding IC50 values between 3.70 and 5.59 M.

Given the excellent result in identifying novel structures and in assisting in the design of novel
FABP4 binders with this 3D-QSAR model, in this work, we decided to combine the ligand-based
approach with a structure-based one (docking) to screen a large dataset of marine products for the
identification of novel hit-compounds among the marine word. This purpose was pursued using
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a statistical and computational approach, as already successfully reported, for the identification of
sigma-2 receptor ligands [30] and heme oxygenase 1 inhibitors [31].

2. Results

2.1. Design and Application of the Three Filters Used for the MNP Database Screening

The first filter used for the identification of FABP4 ligands was a statistical (based on 2D and
3D descriptors) one, as already used successfully by us [31]. We selected 2922 molecules among the
MNP database by a statistical/2D descriptors filter using DataWarrior software [32]. The appropriate
range of values to be considered for each chosen descriptor was obtained by analyzing the most potent
and selective compounds present in a recently published dataset of FABP4 ligands, giving a total
of 120 entities [28,29]. Therefore, the ranges for molecular weight (MW, 224/501), cLogP (−0.84/6.1),
cLogS (−8.77/−2.33), H-bond-acceptors (HBA, 2/7), H-bond-donors (HBD,0/2), total surface area (TSA,
170/400), polar surface area (PSA, 40/125), and relative polar surface area (RPSA, 0.07/0.4) (Figure 2),
belonging to the 120 potent and selective FABP4 inhibitors, were associated with each descriptor and
applied to the dataset of 14,492 MNP molecules to give 2922 marine filtered compounds.
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the eight selected descriptors associated with the 120 FABP4 inhibitors.

These skimmed molecules were then subjected to a second filtration using a mixed ligand- and
structure-based approach. Firstly, the 3D molecular structures of the 2922 marine compounds were
aligned to our previous published 3D-QSAR model for the FABP4 protein, and the compounds were
then evaluated, as previously reported, employing Forge software (v10.4.2, Cresset, New Cambridge
House, United Kingdom) [33]. Over the whole dataset of the first filtered marine natural products,
1854 molecules resulted in an excellent or good description by the model. This means that most of the
features in the evaluated molecules were well described by the training set of the 3D-QSAR model,
and the predicted activity could be considered reliable. Among these compounds, 198 molecules
resulted in a predicted pIC50 activity between 6.0 and 7.6. The 3D molecular structures of the
2922 marine compounds were then passed to the structure-based approach, adapting the docking
procedure already reported for the identification of FABP4 inhibitors [34,35]. The AutoDock software
(v. 4.2.6, Molecular Graphics Lab at The Scripps Research Institute, La Jolla, CA, USA) [36] was used
for all docking studies. The validation of the adopted docking procedure was assessed by using linear
regression analysis upon a benchmark data set of 34 known FABP4 inhibitors (Table S1, Figure S1).
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All of the generated binding poses were manually inspected in order to ensure correct positioning
within the binding pocket with respect to the interactions of ligand moieties with the amino acid
residues relevant for the catalytic activity. The residues Phe19, Met20, Ala33, Pro38, Lys58, Phe57, Ala75,
Glu72, Arg106, and Arg126 play an important role in the interactions of FABP4 with inhibitors [37,38].
Initially, these residues were used as a filter to discard the incorrect poses derived from the docking.
In addition, molecular dynamics (MD) simulation studies of three of the most promising compounds
(Table 1, 5339, 14123, and 13575) were conducted to verify the effectiveness of the poses selected.
In particular, for each selected ligand, we performed three 20 ns MD simulations using three different
poses, named P1–P3, where the P1 ones are those that visually satisfy the aforementioned reported key
interactions, whereas the others two (P2 and P3) lack some of them. The results reported in Figure 3 as
root-mean-square deviation (RMSD) fluctuations of the ligand coordinates clearly highlight the two
unfavorable poses, i.e., those with higher RMSD fluctuations [39]. These present even less persistence
of the hydrogen bond interactions with the key residues. On the contrary, the best poses (P1) show
very low RMSD fluctuation.
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Figure 3. MD simulations of the three selected poses P1–P3 for each of the three selected ligands 5339,
13575, and 14123.

In Figure S2, it is possible to note that the compound 5339 forms a hydrogen bond with the residue
Arg106, π-π stack interactions with the residue Pro38, and hydrophobic interactions with the residues
Phe16, Ala 33, Ala36, Phe57, Ile62, and Ala75 with aromatic regions of the ligand. Compound 13575
establishes hydrogen bonds with the residues Tyr19 and Ala75, and the hydrophobic region of the
molecule establishes hydrophobic interactions with the residues Phe16, Ala33, Pro38, Phe57, and Ile 62
(Figure S3). Finally, compound 14123 shows a hydrogen bond with the residue Arg106, while other
hydrophobic interactions with Phe16, Met20, Ala 33, Pro38, Ala40, Ala, Ile 62, and Ala75 reinforce the
bond with the hydrophobic region of FABP4 (Figure S4).

Re-docking experiments conducted after 20 ns of MD simulation of P1 poses gave a calculated
pKi value of 7.92, 7.96, and 7.96 for the ligands 5339, 13575, and 14123, respectively, which are slightly
better than those calculated on the crystallographic laying of the FABP4 receptor, according to a correct
arrangement of the ligand in the catalytic pocket.

The 3D-QSAR and docking evaluation results are reported in Table S2.

Table 1. Structure, calculated pIC50 and pKi, and their mean, of the selected marine products.

MNP ID Structure pIC50 (QSAR) pKi (Docking) Mean
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BMS309403 FABP4 inhibitor in the binding pocket of the enzyme shows that the two compounds are 
partially overlapped and occupy almost the totality of the catalytic orthosteric site (Figure 4). 

6.10 6.87 6.48

a Present in the first 2% of both ligand- and structure-based filters. b Present in the first 5% of both ligand- and
structure-based filters.

2.2. Merged Ligand- and Structure-Based Filters

The results derived from the ligand-based calculation (i.e., 3D-QSAR evaluation) and the
structure-based calculation (i.e., docking calculations) were then merged with the aim to create
a final filter. For this purpose, the best (lowest calculated IC50 or Ki) 2% and 5% of the molecules
obtained from each of the two approaches were retrieved, and those simultaneously present in both
filters were selected (Table 1). The 2% filter resulted in only one molecule (5339), whereas the 5% one
returned six other molecules (14123, 13575, 7846, 3164, 2076 and 1534).
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All the binding poses retrieved from the molecular docking calculations of the seven compounds
reported in Table 1, which showed the classical interactions of the most common FABP4 ligands,
are reported in the Supplementary Material (Figures S2–S8). In particular, the best-docked pose
of compound 5339, chosen as representative, superposed with the co-crystallized structure of the
BMS309403 FABP4 inhibitor in the binding pocket of the enzyme shows that the two compounds are
partially overlapped and occupy almost the totality of the catalytic orthosteric site (Figure 4).
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Among the seven filtered best potential inhibitors, molecule 5339 (indole alkaloid) has been
reported as an inhibitor of the Ca2+-ATPase of the sarcoendoplasmic reticulum (SERCA) [40].
Compound 14123 (steroid) was identified as cytotoxic and an anti-tumor agent [41]. Compound 13575
(diterpene) was tested for its cytotoxicity against several tumor cells, but it lacked any activity [42].
Compound 7846 is a cembrane diterpenoid; similar compounds were reported to exert growth-inhibition
effects toward tumor cells [43]. Compound 3164 (pentacyclic hydroquinone) was reported as cytotoxic
by acting on DNA topoisomerase I [44]. Compound 2076 (alkaloid) was reported as cytotoxic against
several tumor cell lines [45]. Compound 1534 (sesquiterpene) has anti-inflammatory activity by
acting as a phospholipase A2 (PLA2) inhibitor [46]. Interestingly, PLA2 catalyzes the hydrolysis
of phospholipids to produce free fatty acids. The fatty acid is the substrate for the biosynthesis of
eicosanoids, which are known to mediate inflammation. Based on this mode of action, compounds that
inhibit PLA2 activity have been targeted as potential therapeutic agents in the treatment of inflammation.
The association between PLA2 and FABP4 in the regulation of inflammatory responses has already been
proven [47], and dual inhibition of such proteins would be advantageous in inflammation treatment.
Moreover, compound 1534 is a sesquiterpene, and this class of natural products, together with steroids,
diterpenes, diterpenoids, quinones, and alkaloids, has already been identified as a candidate for the
inhibition of FABP4 [48].

2.3. ADMET Properties

As the interaction of an inhibitor with an enzyme cannot guarantee its suitability as a drug, to further
strengthen the results of 3D-QSAR and docking studies, we also performed in silico ADMET studies
on the seven molecules reported in Table 1. The ability to reach targets in bioactive form was assessed
using the SwissADME (http://swissadme.ch) and pkCSM (http://biosig.unimelb.edu.au/pkcsm/) web
platforms. Importantly, the technologies implemented in these platforms are able to predict, with a
fair degree of certainty, the false-positive results commonly observed in biochemical assays of small
molecules [49].

http://swissadme.ch
http://biosig.unimelb.edu.au/pkcsm/
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The oral availability of our proposed bioactive compounds is shown in the bioavailability radar
plots (Figure 5), which provide a graphical snapshot of the drug-likeness parameters of the investigated
molecule. Notably, five compounds (5339, 13575, 7846, 3164, and 1534) have been predicted as orally
bioavailable, whereas compounds 14123 and 2076 present only one off-shoot relative to the lipophilicity
(LIPO) and unsaturation (INSATU) vertexes, respectively, leading to suboptimal physicochemical
properties for their oral bioavailability.Mar. Drugs 2019, 17, x 7 of 14 
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Figure 5. Radar plots of the six drug-likeness parameters used to predict the oral bioavailability of
the seven investigated compounds. The colored zone is a suitable physicochemical space for oral
bioavailability. LIPO (Lipophility): −0.7 < XLOGP3 < 5.0; SIZE: 150 g/mol < MW < 500 g/mol;
POLAR (Polarity): 20 Å2 < TPSA < 130 Å2; INSOLU (Insolubility): 0 < Log S (ESOL) < 6;
INSATU (Insaturation): 0.25 < Fraction Csp3 < 1; FLEX (Flexibility): 0 < Num. rotatable bonds
< 9. All results have been obtained from the SwissADMET web server [50].

In addition to the Lipinski rule of five [51], another four drug-likeness rules named Ghose [52],
Egan [53], Veber [54], and Muegee [55], were contemporarily satisfied by six compounds with the
exception of molecule 14123 (Table 2). Instead, the stringent lead-like criteria of Teague [56] were passed
by compounds 5339 and 2076. As lead-likeness tests are intended to provide leads with high affinity in
high-throughput screens that allow for the discovery and exploitation of additional interactions in the
lead-optimization phase, molecules 5339 and 2076 are excellent candidates for investigation based on
the scaffold hopping approach.

Finally, the outcome of the pan assay interference structures (PAINS) model [57], conceived to
exclude small molecules that are likely to show false positives in biological assays, post only one alert
for compound 1534, concerning the presence of a quinone moiety.

Human gastrointestinal absorption (HIA) and blood–brain barrier penetration (BBB), relative to
the absorption and distribution parameters, respectively, have been graphically represented by the
extended and renewed version of the Edan–Egg model, named the Brain or IntestinaL EstimateD
(BOILED) permeation predictive model (BOILED-Egg). The visual analysis of Figure 6 highlights that
all investigated molecules, with the exception of 3164, were predicted to be passively absorbed by the
gastrointestinal tract, and three of them, 5339, 14123, and 2076, passively permeate through the BBB,
the first with the aid of the P-glycoprotein and the other two without it. These data are reflected in the
values shown in Table 3.

Regarding the absorption parameters, compounds 5339, 14123, 13575, and 2076 present a promising
oral availability, due to the optimal Caco-2 cell permeability and HIA (>0.9 and >90%, respectively,
Table 3), and skin permeability (logKp < −2.5, Table 3).
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Table 2. Drug-likeness, lead-likeness, and PAINS parameters of compounds reported in Table 1 a.

MNP ID 5339 14123 13575 7846 3164 2076 1534

Drug-likeness

Lipinski violations 0 1 0 0 0 0 0

Ghose violations 0 2 0 0 0 0 0

Veber violations 0 0 0 0 0 0 0

Egan violations 0 0 0 0 0 0 0

Muegge violations 0 1 0 0 0 0 0

Lead-likeness violations 0 2 2 1 2 0 1

PAINS alerts 0 0 0 0 0 0 1
a All results were obtained from the SwissADMET web server [50].Mar. Drugs 2019, 17, x 8 of 14 
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Figure 6. BOILED-Egg plot. Points located in the BOILED-Egg’s yolk (yellow) represent the molecules
predicted to passively permeate through the blood–brain barrier (BBB), whereas the ones in the egg
white are relative to the molecules predicted to be passively absorbed by the gastrointestinal tract;
the blue dots indicate the molecules for which it was expected to be effluated from the central nervous
system (CNS) by the P-glycoprotein, whereas the red ones point to the molecules predicted not to be
effluated from the CNS by the P-glycoprotein.

Table 3. Pharmacokinetic and toxicity evaluated parameters of compounds reported in Table 1 a,b.

MNP ID 5339 14123 13575 7846 3164 2076 1534

Absorption

Caco-2 permeability 0.967 1.318 1.700 0.916 −0.363 1.236 0.596

Human intestinal absorption 92.279 95.061 97.33 88.869 68.223 98.368 91.388

Skin permeability −3.198 −2.864 −2.829 −3.486 −2.735 −2.895 −3.482

Distribution

VDss (human) 0.458 −0.177 0.031 −0.276 −1.88 0.145 −0.014

Fraction unbound (human) 0.157 0.000 0.055 0.338 0.021 0.029 0.067

BBB permeability 0.536 0.016 −0.707 −0.616 −0.802 0.021 −0.053

CNS permeability −2.124 −1.628 −2.183 −2.859 −3.041 −2.176 −1.869

Excretion
Total clearance 0.553 0.501 0.228 1.374 0.181 0.444 0.925

Renal OCT2 substrate b No No Yes No No No No

Toxicity

AMES toxicity No No No No No Yes No

Oral rat acute toxicity (LD50) 2.564 2.175 2.119 2.823 2.664 2.305 2.341

Minnow toxicity −0.338 −0.467 0.169 2.126 −0.189 0.260 0.038
a All results were obtained from the pkCSM web server [58]. b Semaphore flags: green = good, yellow = tolerable,
red = bad. b Unimportant, because the total clearance is high.
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The volume of distribution (VDss) and unbound fraction are two of the most important
pharmacokinetic drug parameters. Values of the VDss > 0.45 indicate that the drug will be distributed
in tissue, whereas values <−0.15 indicate that the drug will be distributed in plasma. So, VDss describes
the extent of drug distribution, and the unbound fraction describes the portion of free drug in plasma
that may extravasate. Except for compounds 3164, the other ones showed intermediate values of VDss,
and should have an adequate plasma distribution profile, with a fraction of the unbound drug between
0 and 0.157. These values indicate that the molecules can be well distributed and present a significant
unbound fraction in the plasma, thus becoming available to interact with the pharmacological target.
Only compound 3164 is entirely unable to penetrate the central nervous system (CNS).

The predicted values of the total clearance (Table 3), which measure the efficiency of the body in
eliminating a drug, indicate that all compounds have a good renal elimination (1.5–8.4 mL/min/kg) and
are not substrates of the renal organic cation transporter 2 (OCT2), with the exception of compound
13575. Finally, compounds 2076 and 14123 did not pass the AMES and Minnow toxicity tests,
respectively, whereas all others did not present any particular toxicity problems.

The overall lecture of Table 3 highlights that compounds 5339, 13575, and 1534 could be excellent
candidates as drugs, or could lead to further studies and manipulations.

3. Materials and Methods

3.1. Dataset of Compounds

The chemical structures of the marine dataset were retrieved from Marine Natural Products
(MNP, http://docking.umh.es/). The full list of the 2922 molecules that passed the first statistical filter,
including the MNP ID, SMILES, ligand-, and structural-based evaluation results, are available in the
Supplementary Material (Table S1).

3.2. Structure Preparation and Minimization

The structures of all the molecules used in this study were built using Marvin Sketch (18.24,
ChemAxon Ltd., Budapest, Hungary) [59]. A first molecular mechanics energy minimization was used
for 3D structures created from the SMLES, and the Merck molecular force field (MMFF94) present in
Marvin Sketch [59] was used. The protonation states were calculated assuming a neutral pH. The PM3
Hamiltonian, as implemented in the MOPAC package (MOPAC2016 v. 18.151, Stewart Computational
Chemistry, Colorado Springs, CO, USA) [60–62], was then used to further optimize the 3D structures
before the alignment for the 3D-QSAR filter and the docking calculations.

3.3. Compound Alignment for the 3D-Ligand Based Filter

The alignment and evaluation of the 2922 selected marine products were performed as follows.
Firstly, the 3D structures of the molecules were imported into the software Forge (v10.4.2, Cresset,
New Cambridge House, Hertfordshire, UK). The molecules were then aligned by a maximum common
substructure algorithm using a customized and validated set-up [20,22,24], in the FABP4 3D-QSAR
model already published by us [28,29]. Before the alignment, the filed points of each molecule were
generated using the XED (extended electron distribution) force field in Forge. The conformational
analysis was done using a maximum number of 500 conformers using a gradient cutoff for conformer
minimization of 0.1 kcal/mol and a similarity threshold, below which two conformers are assumed
identical, of 0.5 Å. The energy window was set to 2.5 kcal/mol, and all the conformers with calculated
energy outside the selected energy window were discarded.

3.4. Molecular Docking

Flexible ligand docking experiments were performed by employing AutoDock 4.2.6 software
implemented in YASARA (v. 19.5.5, YASARA Biosciences GmbH, Vienna, Austria) [63,64], using the
three-dimensional crystal structure of substrate-free fatty acid-binding protein 4 in complex with

http://docking.umh.es/
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BMS309403 (PDB ID: 2NNQ) obtained from the Protein Data Bank (PDB, http://www.rcsb.org/pdb),
and the Lamarckian genetic algorithm (LGA). The maps were generated by the program AutoGrid
(4.2.6) with a spacing of 0.375 Å and dimensions that encompass all atoms extending 5 Å from the
surface of the structure of the crystallized ligands. All parameters were inserted at their default
settings as previously reported [30]. In the docking tab, the macromolecule and ligand were selected,
and GA parameters were set as ga_runs = 100, ga_pop_size = 150, ga_num_evals = 25,000,000,
ga_num_generations = 27,000, ga_elitism = 1, ga_mutation_rate = 0.02, ga_crossover_rate = 0.8,
ga_crossover_mode = two points, ga_cauchy_alpha = 0.0, ga_cauchy_beta = 1.0, number of generations
for picking worst individual = 10.

All crystallographic water and SO4
2− buffer molecules and ions were removed. Linear regression

analysis was used to validate the correspondence between the experimental pKi values and the
calculated ones from docking scores, utilizing a benchmark data set of 34 known FABP4 inhibitors
possessing pKi values in the range of 1–5000 nM, to be reliable, chosen from those reported in the
reference [17] (Table S1).

3.5. Molecular Dynamics Simulations

The molecular dynamics simulations of the FABP4/ligand complexes were performed with the
YASARA Structure package. A periodic simulation cell with boundaries extending 8 Å [65] from the
surface of the complex was employed. The box was filled with water, with a maximum sum of all water
bumps of 1.0 Å, and a density of 0.997 g mL−1 with explicit solvent. YASARA’s pKa utility was used
to assign pKa values at pH 7.4 [66], and the cell was neutralized with NaCl (0.9% by mass); in these
conditions. Water molecules were deleted to readjust the solvent density to 0.997 g/mL. The final
system dimensions were approximately 40 × 40 × 40 Å3. The ligand force field parameters were
generated with the AutoSMILES utility [67], which employs semiempirical AM1 geometry optimization
and assignment of charges, followed by the assignment of the AM1BCC atom and bond types with
refinement using the RESP charges, and finally the assignments of general AMBER force field atom
types. Optimization of the hydrogen bond network of the various enzyme–ligand complexes was
obtained using the method established by Hooft et al. [68], to address ambiguities arising from multiple
side-chain conformations and protonation states that are not well resolved in the electron density.
A short MD was run on the solvent only. The entire system was then energy minimized using first a
steepest descent minimization to remove conformational stress, followed by a simulated annealing
minimization until convergence (<0.01 kcal/mol Å). The MD simulation was then initiated, using the
NVT ensemble at 298 K and integration time steps for intramolecular and intermolecular forces every
1.25 fs and 2.5 fs, respectively. Finally, 20 ns MD simulations without any restrictions were conducted,
and the conformations of each system were recorded every 200 ps.

3.6. In Silico ADMET Studies

In silico molecular studies were conducted with the use of SwissADME [50] and pkCSM [58]
web platforms.

4. Conclusions

Here, we described the screening of a collection of marine compounds retrieved from the MNP
database in search of new potentially active FABP4 inhibitors. The whole dataset was first filtered using
a statistical filter, employing 2D and 3D descriptors, and then the 2992 filtered molecules were further
evaluated in both a ligand- and a structure-based approach. For the ligand-based evaluation, we used
an already successful implemented 3D-QSAR model for FABP4, whereas, for the structure-based
evaluation, a docking analysis was performed, and the poses of some selected ligands were validated
by MD simulations. The results of both filters were then crossed between them for the 5% more active
molecules, highlighting seven compounds possessing a calculated mean activity in the range of 97–331

http://www.rcsb.org/pdb
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nM. Interestingly, some of these seven compounds have already been tested for their cytotoxicity,
and for anti-inflammatory actions, that could also be due to their activity in FABP4 inhibition.

These seven compounds represent a good starting point for the discovery of novel potent and
selective FABP4 inhibitors from natural products; in particular, compounds 5339, 13575, and 1534
possess very good predicted ADMET properties, which make them excellent candidates for becoming
new drugs. There is now the need for further in vitro and/or in vivo studies of these marine compounds
to experimentally confirm their activity as FABP4 inhibitors. Furthermore, the extension of our research
to other compounds (with high-expected activities) in Table S1 would also be a way to go.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/11/624/s1,
Table S1: Chemical structures of the FABP4 inhibitors used as benchmark for docking methodology validation,
including both experimental and calculated pKi binding affinities, Figure S1: Linear regression plot of experimental
vs. calculated pKi values reported in Table S1, Figure S2: Docking binding pose of 5339, Figure S3: Docking binding
pose of 14123, Figure S4: Docking binding pose of 13575, Figure S5: Docking binding pose of 7846, Figure S6:
Docking binding pose of 3164, Figure S7: Docking binding pose of 2076, Figure S8: Docking binding pose of
1534, Table S2: Chemical structures of the marine dataset that passed the first statistical filter including the
ligand- (pIC50) and structure-based (pKi) calculated binding affinity.
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