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targets for osteoarthritis
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Macrophages are the most abundant immune cells within the synovial joints,

and also the main innate immune effector cells triggering the initial

inflammatory responses in the pathological process of osteoarthritis (OA).

The transition of synovial macrophages between pro-inflammatory and anti-

inflammatory phenotypes can play a key role in building the intra-articular

microenvironment. The pro-inflammatory cascade induced by TNF-a, IL-1b,
and IL-6 is closely related to M1 macrophages, resulting in the production of

pro-chondrolytic mediators. However, IL-10, IL1RA, CCL-18, IGF, and TGF are

closely related to M2 macrophages, leading to the protection of cartilage and

the promoted regeneration. The inhibition of NF-kB signaling pathway is

central in OA treatment via controlling inflammatory responses in

macrophages, while the nuclear factor erythroid 2-related factor 2 (Nrf2)

signaling pathway appears not to attract widespread attention in the field.

Nrf2 is a transcription factor encoding a large number of antioxidant enzymes.

The activation of Nrf2 can have antioxidant and anti-inflammatory effects,

which can also have complex crosstalk with NF-kB signaling pathway. The

activation of Nrf2 can inhibit the M1 polarization and promote the M2

polarization through potential signaling transductions including TGF-b/SMAD,

TLR/NF-kB, and JAK/STAT signaling pathways, with the regulation or

cooperation of Notch, NLRP3, PI3K/Akt, and MAPK signaling. And the

expression of heme oxygenase-1 (HO-1) and the negative regulation of Nrf2

for NF-kB can be the main mechanisms for promotion. Furthermore, the

candidates of OA treatment by activating Nrf2 to promote M2 phenotype

macrophages in OA are also reviewed in this work, such as itaconate and

fumarate derivatives, curcumin, quercetin, melatonin, mesenchymal stem cells,

and low-intensity pulsed ultrasound.
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1 Introduction

Osteoarthritis (OA) is a highly prevalent musculoskeletal

disorder characterized by pain, deformity, and functional

deficits. Globally, it is a major medical and socioeconomic

burden (1). Histologically, OA is characterized by cartilage

degeneration, synovial lining thickening, and subchondral

sclerosis (2). In pathophysiology, a low-grade, chronic

inflammation predominantly leads to synovial joint

deterioration as a result of an innate immune response (3). In

vivo imaging evidence in patients with OA indicates a crucial

role for activated macrophages, which is linked to its severity.

Moreover, the disruption of macrophage transition may

contribute to chronic and irreversible inflammatory changes in

OA-affected joints (4). The activation of macrophages with

heterogeneous phenotypes, which can exert pro- and anti-

inflammatory effects on articular tissues during OA, has been

suggested as a potential therapeutic target (5).

The macrophages within synovial joints include resident and

interstitial subsets. The interstitial population of recruited

monocyte-derived macrophages could exert functions of joint

inflammation. While, a tight-junction-mediated shield

composing of the subset of epithelial-like CX3CR1+ tissue-

resident macrophages could restrict the inflammatory response

(6, 7). OA mainly results from innate immune response induced

by macrophages that are marked by CD14 and F4/80 as general

surface antigens (8, 9). Furthermore, the plastic heterogeneous

phenotypes of macrophages include classically activated pro-

inflammatory phenotypes (CD80, CD86, and CD11b as M1

surface markers) and alternatively activated anti-inflammatory

phenotypes (CD163, and CD206 as M2 surface markers) (10–

12). There are several subtypes of M2 macrophages, including

M2a marked by CD206, M2b marked by CD86, M2c marked by

CD163 (13, 14), and M2d marked by CD68 (15–17). Induced by

IL-4 and IL-13, M2a plays a vital role in anti-inflammation

response and wound-healing via up-regulating the expression of

IL-1RA, IL-10, CCL-18, and TGF-b. M2b is the immune

regulator between M1 and M2a, which serves in both pro-and

anti-inflammation responses. Besides, IL-10, TGF-b, or

glucocorticoids can induce M2c activation, which causes the

secretion of IL-10, CCL-18, and TGF-b, and M2c also has a

powerful phagocytosis function (18, 19). While, M2d, also called

tumor-associated macrophages (TAMs), plays a vital role in

potent immunosuppression, angiogenesis, wound healing, and

cancer metastasis (15, 16). However, most experimental

therapies or mechanisms for OA use the balance between M1

and M2 as a key point (5, 20–22). In this review, the polarization

state of macrophages will be dichotomized without discussing

specific subtypes of M2. In addition, synovia in OA patients

has a substantial proportion of M1 macrophages, which is

consistent with CD14 and CD163 expression levels (23).

Macrophage phenotypes are influenced by intracellular redox

metabolism, as evidenced by increasing studies, leading to
Frontiers in Immunology 02
metabolic reprogramming from glycolysis in M1 to oxidative

phosphorylation (OxPhos) in M2 (5, 24–26).

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a

transcription factor expressed in most tissues and cells at a low

level in the cytoplasm under homeostatic conditions through

binding to Kelch-like ECH-associated protein 1 (KEAP1). Nrf2

is released in response to stress signals sensed by KEAP1,

translocates to the nucleus, accumulates, and binds to

antioxidant response elements (AREs) of target gene

promoters (27). Finally, heme oxygenase-1 (HO-1), and

glutathione S-transferase (GST) are transcribed, and reactive

oxygen species (ROS) removal systems are initiated to protect

cells from oxidative stress-induced damages and maintain redox

homeostasis (28). Besides, there is increasing evidence that quite

different metabolic characteristics and inflammation phenotypes

between M1 and M2 macrophages are highly dependent on

Nrf2. The negative regulation of Nrf2-related signalings for

other transcription factors, such as nuclear factor-kB (NF-kB),
may shed light on the link between defense against oxidative

stress and reducing inflammation through Nrf2 signaling (24,

29). For example, cyclooxygenase-2 (COX-2), and hypoxia-

inducible factor-1a (HIF-1a), which are closely related to the

M1 phenotype, could be suppressed via the activation of Nrf2

signaling (30). Moreover, the activation of Nrf2 in macrophage

could increase the levels of cysteine and glutathione (GSH), by

regulating the transporter between cysteine and glutamate, and

the GSH-synthesizing enzyme (31, 32). GSH could suppress

ROS as a major cellular antioxidant via activating HO-1. It has

also been reported that the accumulation of GSH could induce

an increase in inflammatory factors including NO, IL-1b, IL-4,
IL-10, TNF-a, and PGE2, which are related to the M1 phenotype

(33). However, in tubular injury resulting from oxidative stress

and inflammatory response, the deletion of ROS could promote

M2 polarization (34). Similarly, inflammatory response and

oxidative stress could be reduced in the cardiac injury induced

by LPS, during which process the Nrf2/HO-1 pathway is

activated, and the GSH is accumulated (35). Furthermore, it

has been reported that the activated Nrf2 could suppress IL-1b
without NF-kB or GSH in alveolar macrophages (36). In

summary, the relationship is complicated, between the

macrophage polarization and metabolic adaptation of

macrophages upon inflammatory response and oxidative

stress, including OA. As potential mechanisms underlying the

protective effects of Nrf2 activation in macrophages, the Nrf2/

HO-1 signaling pathway, and the negative regulation of NF-kB
signaling will be discussed later.

Furthermore, it has been shown that there is extensive

crosstalk between transcriptional pathways involving Nrf2 and

NF-kB during oxidative stress and inflammation (29, 32).

Generally, Nrf2 signaling negatively regulates NF-kB signaling

in oxidative stress and inflammatory response, especially NF-kB
(P65) pathway (37). That is, through Nrf2 transcriptional

activation, the redox status and metabolism of macrophages
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changes, resulting in an anti-inflammatory phenotype (38).

Stimulation inducing inflammatory M1 can simultaneously

initiate NF-kB-dependent transcriptional pathway inducing

the secretion of inflammatory factors quickly, and initiate

Nrf2-dependent transcriptional pathway at the same time to

cytoprotective response slowly (39). In summary, the action of

Nrf2 has a potential role in preventing M1 polarization, and then

promoting chondral protection and inhibiting OA progress. For

example, in OA, Ca2+ influx evoked by transient receptor

potential vanilloid 1 (TRPV1) mediated inhibition of M1

macrophage polarization through the phosphorylation of

calmodulin-dependent protein kinase II (CaMKII), while the

specific inhibitor of Nrf2 counteracted the anti-inflammatory

effect (40).

However, the role of Nrf2 in macrophage reprogramming

for OA treatment is still unclear to a large extent. Therefore, this

review synthesizes evidence of macrophage reprogramming

induced Nrf2 inhibition or activation in the progression or

treatment of OA.
2 Osteoarthritis pathology driven
by macrophages

2.1 M1-induced intra-articular
inflammation

The intra-articular microenvironment is characterized by an

inflammatory infiltrate largely composed of synovial

macrophages. Inflammatory macrophages are believed to be

responsible for the presence of OA (23). Damage-associated

molecular patterns (DAMPs) are molecules or fragments

produced by initial harmful factors that can trigger innate

immunity. The DAMPs could activate pattern-recognition

receptors for macrophage activation, for example, the toll-like

receptor (TLR) 4, and the ligands could be cartilage matrix

fragments, or plasma proteins into the articular cavity in OA (41,

42). In contrast, the production of macrophage-derived pro-

inflammatory cytokines, such as TNF-a and IL-1b, was greatly
reduced by depleting CD14-positive synovial macrophages

specifically from OA synovial cells (43).

M1 macrophages tend to secrete pro-inflammatory

cytokines including TNF-a and L-1b (44). A series of events

triggered by TNF-a and IL-1b can cause cartilage degeneration,

where chondrocyte death and cartilage matrix degradation are

accelerated while synthesis and regeneration are inhibited (45).

Cartilage mainly consists of chondrocytes and extracellular

matrix (ECM). Apoptosis of chondrocytes and degeneration of

aggrecan (ACAN) and type II collagen (COL2) in ECM are

prominent pathological changes in OA (46). It is believed that

autocrine TNF-a and IL-1b trigger the pro-inflammatory events

in chondrocytes and the catabolic cascades in fibroblast

synoviocytes through NF-kB signaling, resulting in the
Frontiers in Immunology 03
production of IL-6, NO, and prostaglandin E2 (PGE2) (3, 47).

The release of IL-6 from macrophages induced by IL-1b can

stimulate STAT3 signaling in macrophages, enhancing

inflammation responses (48). As a result of IL-6 stimulation,

chondrocytes and synovial fibroblasts produce PGE2 and

collagenase (49). The high level of NO can inhibit the

synthesis of ECM and enhance the activity of matrix

metalloproteases (MMPs) (45). By degrading collagen and

digesting matrix proteins, MMP1, 3 and 13 can result in

skeletal cartilage absorption. The metabolic product of

activated COX is arachidonic acid, the substrate of PGE2

biosynthesis (50). PGE2 can also stimulate the release of IL-6

through activating NF-kB pathways (49).

The increase of expression of one of the specific receptor of

TNF-a, called TNF receptor I (TNFRI or p55), has been found

on OA chondrocytes and synovial fibroblasts (47). In fact, TNF-

a plays a central role in the intra-inflammation cascades of OA.

TNF-a can break down the cartilage by inhibiting the synthesis

of proteoglycan and COL2, and also promoting the apoptosis of

chondrocytes. The death domain (DD) in the TNF receptor

superfamily is a cytosolic domain and a cysteine-rich

extracellular domain. The extrinsic apoptosis pathway is

governed by TNF-a, which binds to and interacts with DD,

acting on downstream caspases, ultimately leading to apoptosis

(45). Similarly, the expression of the specific receptors of IL-1b,
called IL-1 receptor type I (IL-1RI), has been found to be

increased in human chondrocytes and synovial fibroblasts

affected by OA (47). Furthermore, NO can decrease the level

of IL-1RA (the antagonist of IL-1R) leading to an increase in IL-

1 production (51). IL-1b can also induce apoptosis of

chondrocytes relying on endogenous NO in reverse (45). In

synovial fibroblasts, IL-1b activates NF-kB (P65) and promotes

transcription of IL-6 and PGE2 (52). In chondrocytes, IL-1b can

up-regulate the expression of IL-6 through phosphorylating

STAT1 and STAT3 (45).

MMPs are a superfamily of proteases that can remodel and

degrade ECM in connective tissues. By stimulating the release of

MMP1, MMP3, and MMP13 in chondrocytes, TNF-a and IL-1b
can affect the synthesis of proteoglycans, connexins, and type II

collagen (47). MMP1 and MMP13 are collagenases, while

MMP3 is matrix lyases. Apart from that, ADAMTS-4 and

ADAMTS-5 belong to the disintegrin and metalloproteinase

with thrombospondin motifs family (ADAMTS), which

destroys ECM independently from MMPs (53). In

chondrocytes, TNF-a and IL-1b can induce an increase in the

release of ADAMTS-4 and ADAMTS-5 (45, 54). In addition,

direct evidence shows the M1 inflammatory secretion due to

interferon-gand TNF-a inhibits chondrogenic differentiation

and cartilage repair by up-regulating IL-1b, IL-6, NO,

MMP13, and ADAMTS5, and down-regulating ACAN and

COL2 (55). To sum up, DAMPs-induced activation of M1

macrophages mainly dependent on NF-kB signaling mediates

intra-articular inflammation and cartilage degeneration in OA.
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2.2 M2-induced intra-articular
anti-inflammation response

The failure in the appropriate proportion of M1 and M2

phenotypes can be the main cause of OA-related low-grade

inflammation (56). After all, M2 macrophages are anti-

inflammatory and help to repair cartilage in contrast to M1

macrophages. In particular, M2 macrophages can secrete anti-

inflammatory factors including IL-10, IL-1RA, chemokine (CeC

motif) ligand (CCL18), and pro-chondrogenic mediators

including transforming growth factor b (TGF-b) and insulin-

like growth factor (IGF) (57). M2 phenotype can be activated by

IL-4, IL-10, IL-13, TGF-b, and CCL18, which lead to a positive

feedback loop to resolute inflammation (58, 59). Besides, M2 can

also regulate collagen turnover pathways in cartilage to

promote collagen remodeling (60). The secretion of M2 type

can promote cartilage repair by up-regulating COL2 and

glycosaminoglycan, inhibiting MMP13, and inhibiting

apoptosis of chondrocytes (57).

The previous evidence indicates that IL-10 can protect and

repair cartilage, and contributes to the regenerative

microenvironment. In patients with OA, IL-10 reduces the

specific receptors for TNF-a, and the effects of TNF-a on the

fibroblasts by down-regulating PEG2, COX-2, and PLA2 (61).

By modulating mitochondrial apoptotic pathways, IL-10 can

also inhibit chondrocyte apoptosis by reducing caspase activity

and the Bax/Bcl-2 ratio (62). Besides, IL-10 can promote the

repairing of chondrocytes and ECM. After IL-10 is administered

to compressed articular cartilage in vitro, the cell death of

chondrocytes, the release of glycosaminoglycans, NO, and

molecules that promote ECM degradation and inhibit its

syntheses, such as MMP3, MMP13, ADAMTS-4, and

inducible nitric oxide synthase (iNOS) are significantly

reduced. Moreover, the subsequent study confirmed that

the ECM protective effects of IL-10 can be time-dependent

(63). Moreover, the overexpression of IL-10 can antagonize

the characteristics of cartilage catabolism (MMP3 and

MMP13) and the down-regulation of COL2 gene expression

induced by TNF-a (64). In addition, the conditioned

medium of M1 macrophages decreased the expression

of COL2 and ACAN genes in mesenchymal stem cells

(MSCs), which are genes associated with chondrogenic

differentiation, while M2 macrophages did not exhibit similar

inhibition (65).

Furthermore, the increase in IL-10 and IL-1RA can be

induced by IL-4, causing the M2 activation in macrophages.

The increased IL-10 and IL-1RA, as an anti-inflammatory

response, also contribute to responding to the transcription of

TNF-a induced by IFN-g in macrophages. However, in OA

synovial fluid, the expression of both is inhibited (66). IL-1RA

can be produced by chondrocytes, monocytes, and fibroblasts,

belonging to the IL-1 family, and competes with IL-1b to

combine with IL-1R type I and II, without triggering the IL-
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1b-relative downstream inflammatory responses. Although, the

production of endogenous IL-1RA needs to be 10-1000 times

that of IL-1b to effectively block the binding of IL-1b (67).

Additionally, CCL18 is a T-cell chemokine subset associated

with the Th2 adaptive responses to IL-4, IL-10, and IL-13.

CCL18 has since been identified as a mediator secreted by M2

and an introducer of M2 type (68). Besides, CCL18 can also

stimulate fibroblast proliferation and collagen production

independent of TGF-b (69). The role of CCL18 in OA is not

extremely beneficial, because it has been seen that the relative

higher CCL18 levels in synovial fluid of knee OA patients with

more serious pathological structural changes (70). Besides,

CCL18 can induce the significant enhancement of MMP-3 in

fibroblast-like synoviocytes (71).

IGF-1 is a small polypeptide (~7 kDa) belonging to the

growth factor family, of which the structure is related to

insulin by 50% sequence homology (72, 73). IGF-1 can inhibit

chondrocyte apoptosis induced by IL- 1b in vitro and can reduce

synovitis in OA models (74). Furthermore, IGF-1 inhibits the

degradation of cartilage ECM by down-regulating MMP-1,

MMP-3, IL-1, and TNF-a (75). Notably, IGF-1 can also play a

key role in cartilage anabolism by promoting COL2 and

ECM proteoglycan synthesis and decreasing MMP13 to

protect the cartilage (76). Through NF-kB signaling, IGF-1

can inhibit the pro-catabolism effects of IL-1b on cartilage,

inhibit the apoptosis of chondrocytes (marked by caspase-3),

and suppress inflammation (77–79). Moreover, it has been

observed that IGF-1 promotes chondrogenic differentiation of

adipose-derived MSCs through the expression of COL2, ACAN,

and SOX9 (80). IGF-1 can positively regulate chondrogenesis in

bone marrow-derived MSCs, and the chondroinductive effects of

IGF-1 are independent of TGF-b1 (81). Furthermore, the

combination of TGF and IGF can promote chondrogenesis in

fracture models in vivo (82).

TGF-b family of growth factors and cytokines plays a critical

role in skeletogenesis, and can be divided into two major

subfamilies, the TGF-b/Activin/Nodal family and the bone

morphogenetic protein (BMP) family (83, 84). Signaling by

TGF-b1, 2, and 3 is mediated by membrane-bound receptor

complexes, which are activated by SMAD proteins

intracellularly. Activated type I receptor (also known as ALK5)

phosphorylates SMAD2 and SMAD3, which can regulate the

expression of target genes related to cartilage anabolism, COL2

for example. However, when TGF-b signals through the ALK1

receptor, phosphorylated SMADs 1/5/8 can be targeted to up-

regulate cartilage catabolism genes, like MMP13 (85). The role of

TGF-b in OA seems to have two sides, and the administration of

TGF-b is equally controversial because the choice between

phosphorylation of SMAD2/3 or SMAD5/8 has an unknown

mechanism (86).

The conversion of the phenotype of macrophages in OA

could play a role in treatment because the secreted cytokines

regulate inflammation and cartilage metabolism (Figure 1).
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3 Signaling pathways for
reprogramming macrophages

The polarization of macrophages dynamically adapts to

changes in the microenvironment, and macrophage

reprogramming has a complex mechanism. The most studied

several pathways relative to reprogramming of macrophages

include TGF-b/SMAD, TLR/NF-kB, and JAK/STAT signaling

pathways, with the regulation or cooperation of Notch, NLRP3,

PI3K/Akt, and MAPK signaling (Figure 2).
3.1 TGF-b/SMAD signaling

Collagen, fibronectins, and fibrinoproteins can form

complexes with TGF-b family proteins in the ECM (87).

Under the effects of MMPs and/or serine proteases (for

example, cathepsins), TGF-b proteins are released from the

complex of ECM (86). TGF-b intracellular signaling is

mediated by SMAD family members after interaction with two

membrane receptors (sequentially phosphorylated type II and

type I receptors) (88, 89). Receptor-regulated SMADs (R-

SMADs) consisting of SMAD2 and SMAD3 are activated via

the phosphorylated type I receptor. As a result of the
Frontiers in Immunology 05
heteromeric trimer with SMAD4, activated R-SMADs can

translocate to the nucleus and trigger transcription of target

genes (90), including more than 100 transcriptional/signaling

regulators, immune modulators, and atherosclerosis-related

genes. Dexamethasone-induced M2 polarization is enhanced

by TGF-b/SMAD signaling, as type II receptors are elevated,

which increases TGF-b response in macrophages. Several genes

are associated with the M2 phenotype, including ID3, RGS1,

ALOX5AP, TREM1, IL-17RB, JUNB, ELK3, RUNX3, ELL2,

TLE3, BCOR, and FOS, and these genes encode functional

molecules that are involved in immune responses, inhibiting

apoptosis, and maintaining terminal differentiation (91).

In addition, the negative regulators of signal transduction

(such as SMAD6 and SMAD7) are also the target genes of TGF-b,
which regulates cell homeostasis (92). Of note, A number of

E3 ubiquitin ligases, for example, the SMAD ubiquitin

regulatory factors and the deubiquitinating enzymes, play a

crucial role in recognition and degradation of R-SMADs,

SMAD6, SMAD7, and TGF-b receptors. E3 ubiquitin ligases

can induce proteasomal degradation via the catalysis of

their substrates and self-ubiquitination (93, 94). In contrast,

deubiquitinating enzymes can antagonize the ubiquitination of

E3 ubiquitin ligases, for example USP15 (95). The TGF-b pathway
has been studied in OA since it has the potential to regulate

cartilage anabolism (86).
FIGURE 1

Polarization of macrophages in knee osteoarthritis (OA) pathology and repair. Resident macrophages in the synovium have two general
phenotypes, M1 and M2. Macrophages tend to serve as M1 phenotype under the inflammation responses caused by damage-associated
molecular patterns (DAMPs). M1 subgroups can contribute to OA progression through releasing inflammatory and degenerative molecules
including TNF-a, IL-6, IL-1b, PGE2, MMPs, ADAMTS, which leads to synovitis, the death of chondrocytes, and the degradation of extracellular
matrix (ECM). However, macrophages can be reprogrammed, and the M2 population can contribute to OA treatment via up-regulating anti-
inflammatory and regenerative molecules (IL-4, IL-10, TGF-b, IL-13, IGF-1, and CCL18). And the microenvironment can be constructed, where
the tissues in the osteoarthritic joints can repair. We suggest that reprograming macrophage phenotypes can be therapeutic targets for the
prevention and treatment of OA.
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3.2 TLR/NF-kB signaling

TLRs are prototype pattern-recognition receptors (PRRs)

that recognize pathogen-associated molecular patterns (PAMPs)

from microorganisms or DAMPs from damaged tissue (96).

TLRs are highly expressed on immune cells, including

monocytes, macrophages, and dendritic cells, and can also be

up-regulated in response to IL-1 or TLR-4 stimulation in other

cells. Through ligation of TLRs, endogenous molecules produced

during OA, such as glycoprotein, fibronectin, and hyaluronan of

ECM components, have been implicated in activating immune

responses (97). Also, plasma proteins can be recognized as

DAMPs, such as fibrinogen, which signals through TLR4 to

induce inflammatory cytokines (42). There is strong evidence

that synovial macrophages and chondrocytes express TLR2 and

TLR4, while TLR4 senses more DAMPs than TLR2 in both OA

and rheumatoid arthritis (RA). TLR4 plays a key role in the

DAMP recognition and the signaling promotion, in the forms of

homodimerization or heterodimerization (for example TLR4-

TLR6 heterodimers), and the co-receptors, or accessory

molecules (such as CD14 and CD36) (41).

There are five TLR adaptors containing a Toll/IL-1 receptor

(TIR) domain, among which MyD88 and TRIF bind directly to
Frontiers in Immunology 06
TLRs and recruit MAL and TRAM, respectively, while SARM

negatively regulates these pathways. When the MyD88-

dependent TLR4 signaling pathway mediated by TRAM is

activated, TIR-domain-containing adaptor-inducing

interferon-b (dependent on TRIF) can be recruited and then

activates a cascade of proteins including TRAF6, which finally

induces the degradation of IkBs, and the release of NF-kB (P50/

65) and its translocation to the nucleus (98). NF-kB is central to

all macrophage TLR-medicated inflammation responses. IkBs
inhibit NF-kB in the cytoplasm by forming complexes with NF-

kB. Of note, the regulation of TLR/NF-kB signaling is mainly

induced by the ubiquitination/deubiquitination of TRAF6 (99).

Macrophages tend to show M1 polarization secreting TNF-a,
IL-1b, IL-8, and COX-2. It has been seen that the block of TLR4/

NF-kB signaling pathway can inhibit M1 polarization

(100–102).

TLR signaling cascade can also activate NOTCH signaling,

which regulates pro-inflammatory responses via the regulated

transcription of NF-kB (103). The Notch gene family encodes

evolutionarily highly conserved, single-pass, type I

transmembrane heterodimers of 300 kDa called NOTCH

receptors (NOTCH1-4 in mammals) which control

macrophage activation and polarization via TLRs (104). It has
FIGURE 2

The most studied several pathways relative to reprogramming of macrophages. TGF-bcan interact with phosphorylated type II and type I
receptors activating receptor-regulated SMADs (R-SMADs, a heterodimer of SMAD2 and SMAD3) to form the heteromeric trimer with SMAD4.
The nuclear translocation of R-SMAD can promote the M2 polarization, while SMAD6 and SMAD7 as the negative regulators of TGF-b signaling
transduction are also the target genes. Besides, due to the ligation of DAMPs with TLRs, especially TLR4, MyD88 and TRIF, TLR adaptors
containing a Toll/IL-1 receptor (TIR) domain, can bind directly to TLRs and recruit MAL and TRAM, while SARM negatively can regulate the
pathways. TIR-domain-containing adaptor-inducing interferon-b (dependent on TRIF) can be recruited and then activates TRAF6, and IkBs
(especially IkBa) can degrade leading to the release of NF-kB (P50/65) and its translocation to the nucleus, which can promote the M1
polarization. TLR signaling cascade can also activate NOTCH and NLRP3 signaling, which can regulate pro-inflammatory responses via the
regulated transcription of NF-kB. However, NOTCH4 can negatively regulate the TLR/NF-kB signaling. Finally, STAT/JAK signaling pathway start
from tyrosine kinase-associated receptors binding various cytokines and growth factors, followed by the phosphorylation of these receptors and
JAKs, and the initiation of the phosphorylation and activation of STATs. Generally, the activation of STAT6 signaling can promote M2 phenotype,
while STAT1 and STAT3 can perform complicatedly under the effects of various cytokines or growth factors. JAKs can also activate PI3K/AKT
signaling pathway, promoting M2 polarization, which can play a collaborative role in JAK/STAT6 signaling pathway. In addition, STATs can also
be activated by JNK and P38, which belongs to extracellular signal-regulated kinases (ERKs), promoting M1 polarization.
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been shown that macrophages up-regulate NOTCH1 upon the

activation of TLRs, which implies that NOTCH1 mainly

contributes to pro-inflammatory activation (105). In particular,

signaling transduction enhances transcriptional activity by

phosphorylating and degrading IkBa (106). Similarly, the

activation of NOTCH3 by delta-like 4 (Dll4) in macrophages

leads to enhanced responses to LPS or IL-1b via TLR4/NF-kB
pathway (107). Furthermore, NOTCH1 and NOTCH3

cooperate to control the expression of NF-kB-dependent pro-
inflammatory genes following TLR-4 activation, with NOTCH3

dominating for the first hours and NOTCH1 later (104). By

contrast, the inhibition of NOTCH1 can induce a decrease in M1

polarization and an increase in M2 polarization (108). However,

the activation of TLRs/NF-kB pathway in macrophages is

negatively regulated by NOTCH4, depending on the

phosphorylation of STAT3 and the weakness of STAT1, which

activates STAT3/JAK2 signaling (109). Taken together, the

regulation of Notch signaling has roles with two sides in TLR/

NF-kB pathway in macrophages.

Furthermore, the NLRP3 inflammasome can be activated by

DAMPs/TLRs/NF-kB pathway . NLRP3 cons is t s of

microparticles, ATP, cholesterol, and microbial toxins, acting

as a key sensor of tissue damage and activating sterile

inflammation (110). NLRP3 interacts with adapter apoptosis-

associated speck-like protein (ASC), and pro-caspase-1 is

recruited as an effector, resulting in the formation of NLRP3

inflammasome in the cytosol (111). Different from NOTCH, the

role of NLRP3 signaling seems to be pro-inflammation as its

effects on processing interleukin precursors (such as pro-IL-1b
and pro-IL-18) into mature and secreted interleukin

forms (112).

Although the TLR4/NF-kB pathway in chondrocytes has

been emphasized as it induces cartilage catabolism (41, 113), the

signaling pathway in macrophages has also been targeted.

Specifically, chondroitin sulphate inhibits NF-kB and IL-1b
secretion from macrophages through inhibition of TLR4 and

DAMP interactions (114). On the contrary, lumican, a

glycoprotein in adult articular cartilage, has been shown to be

up-regulated in OA, and induce the inflammation related to

macrophages via TLR4 pathway (115).
3.3 JAK/STAT signaling

Signal transducer and activator of transcriptions (STATs)

including STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B

and STAT6 are latent in cytoplasm, and can be phosphorylated

and activated via tyrosine phosphorylation and dimerization,

finally leading to translocation to the nucleus, binding to

promoter sequences and the activation of transcription. The

transformation of STATs from latent to active is dependent on

Janus kinases (JAKs), which belong to the family of tyrosine

kinases (TYKs). JAK1, JAK2, JAK3, and TYK2 have been
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indicated as JAKs, which can act as tyrosine kinase and bind

tyrosine kinase-associated receptors intracellularly. Tyrosine

kinase-associated receptors can bind various cytokines and

growth factors, followed by the phosphorylation of these

receptors and JAKs, and the initiation of the phosphorylation

and activation of STATs (116–118).

In macrophages, IL-13 and IL-4 can activate the M2

phenotype by activating JAK2/STAT3 signaling, where IL-4

phosphorylates STAT3 and STAT6, as well as up-regulating

DNA binding activity of STAT3, and IL-13 initiates Tyk2 to

cascade STAT1 and STAT6, and also to increase DNA binding

activity of STAT1 (119). Moreover, STAT6 effects have been

widely elucidated in M2 polarization induced by IL-4 and IL-13

(120, 121). IL-10 can activate STAT3 via JAK1 and Tyk2 (122).

However, LPS and IL-6 can activate the M1 phenotype through

JAK2/STAT3 signaling (123, 124). Besides, IFN-g has an

important role in phosphorylation and dimerization of

STAT1, leading to M1 phenotype of macrophages (122, 125).

Furthermore, STAT1 and STAT3 play antagonistic roles in pro-

and anti-inflammation response in macrophages (126), whereas

they can also cross-regulate each other in some immune

responses, like the additional activation of STAT3 along with

the pro-inflammation activation of STAT1 induced by IFN-

g (127).
Besides STATs, JAKs activate the phosphatidylinositol 3-

kinase (PI3K) signaling pathway, for example, GM-CSF-induced

activation of JAK2 (128). PI3Ks are lipid-signaling kinases that

phosphorylate phosphoinositides to form PIP3, 4, and 5 (129,

130). After PI3K activation, 3-phosphoinositide-dependent

k inase (PDK1) i s recru i ted and ac t iva ted . PDK1

phosphorylates and activates protein kinase B (AKT) (131).

PI3K activation inhibits macrophage programming into M1,

while AKT activation is a critical condition for M2 polarization

(132). LPS induces the M1 phenotype in AKT1 ablation, while

LPS induces the M2 phenotype in Akt2 ablation (133). The

mechanistic target of rapamycin (mTOR) is an evolutionarily

conserved PI3K family member, and contributes to the core of

the downstream target signaling complexes of PI3K/AKT

pathway, called mTORC1 and mTORC2 (130). In LPS-

activated M1 polarization, activation of mTORC1 has been

demonstrated. Furthermore, mTORC1-mediated feedback

inhibition of mTORC2 activity in Akt signaling leads to

inhibition of M2 polarization (134, 135). In addition, specific

destruction of PI3K/AKT signaling pathway has little effect on

JAK/STAT6 signaling, indicating a collaborative role for PI3K/

AKT signaling pathway (136).

STATs can also be activated by serine threonine kinases

other than JAKs, such as extracellular signal-regulated kinase

(ERK) (137). ERK belongs to mitogen-activated protein kinase

(MAPK) modules, which also include c-Jun N-terminal kinase

(JNK) and P38 (also known as stress-activated protein kinases)

(138), and mediate the protein kinase cascades (139). MAPK

activation results in nuclear translocation of a number of
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transcription factors, including activator protein-1 (AP-1),

activating transcription factor (ATF)-2, cAMP-responsive

element binding protein (CBP), and members of the ETS

family (140). In macrophages, the activation of TLR4 is

induced by the phosphorylation cascade of JNK, P38, and

ERK, leading to the transcription of NF-kB and AP-1, the

increase in the expression of TNF-a and IL-6, forming the

activation of M1 polarization (141–143). Among these, pro-

inflammatory effects are mainly due to the signaling mediated by

JNK and p38 (139). However, the activation of ERK1/2 can

inhibit the nuclear translocation of p65 subunit of NF-kB, which
results in anti-inflammation response (144, 145). Likewise, the

activation of CBP/P300 can mediate the serine phosphorylation

of STAT6 induced by IL-4, which can give rise to the M2

phenotype (146, 147).
4 Potential pathways for activating
Nrf2 of macrophages in OA as
therapeutic choices

Nrf2 belongs to the Cap’n’collar basic leucine zipper

transcription factor family, within which the 605 amino acids

act their roles as seven highly conserved functional NRF2-ECH

homology (Neh) domains (148). It is the Neh2 domain in Nrf2

closest to the N-terminal that binds KEAP1 and is responsible

for stabilizing the cytoplasm and degenerating it through

ubiquitination. KEAP1 inhibits Nrf2, resulting in stable Nrf2

localization in the cytosol. A homodimer of KEAP1 can also be a

stress sensor, recruiting and adapting the E3 ubiquitin ligase

cullin-3 (CUL3). In turn, CUL3 can polyubiquitinate Neh2

lysine residues, finally resulting in degradation by ubiquitin

proteasomes (149, 150).

Next, from the N-terminal to the C-terminal, there are Neh4,

Neh5, Neh7, Neh6, Neh1, and Neh3, respectively. Neh4, Neh5,

and Neh3 are transactivation domains that mediate the

interaction of Nrf2 with other coactivators. Neh4 and Neh5

can bind CBP/P300 (151, 152), while Neh3 binds

chromodomain-helicase-DNA binding 6 (CHD6), contributing

to transcription. However, Neh7 and Neh6 are negative

regulatory domains for Nrf2, which can bind a b-transducin
repeat-containing protein (b-TrCP) and retinoic X receptor a
(RXRa), separately (153, 154). The DNA binding domain of

Neh1 is mediated by heterodimerization with transcription

factors, such as small musculoaponeurotic fibrosarcoma

(sMAF) (155).

In cells exposed to stress or electrophilic agents, the

alignment of Nrf2 lysine residues is disrupted by the specific

thiol residues, leading to the lysine residues being modified by

electrophiles within the weak interaction with KEAP1,

preventing ubiquitination, and ultimately releasing Nrf2 (156,

157). Nrf2 can translocate to the nucleus after dissociating from
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KEAP1. With the accumulation of Nrf2 in the nucleus, it forms a

heterodimer with sMAF, which binds ARE, a trans-acting DNA

enhancer motif. The Nrf2 binding ARE promotes genes

encoding cytoprotective proteins, such as GSH-related

enzymes, NAD(P)H dehydrogenase quinone 1 (NQO1), and

HO-1, to prevent oxidative stress, electrophilic toxicity,

and inflammation, and to maintain mitochondrial function

and metabolism (158).

Furthermore, polarized macrophages can be used to target

synovial inflammation caused by OA (5, 20). There is evidence

that Nrf2 activation can inhibit M1 macrophage polarization in

OA, which indicates that Nrf2 has a protective role in OA

synovitis (40). To a large extent, however, the mechanism

linking Nrf2-activation in macrophages remains unknown in

the condition of OA. In addition to the existing macrophage

polarization mechanism and the treatment strategy of OA,

several possible pathways of Nrf2 activation controlling

macrophage reprogramming will be discussed (Figure 3).
4.1 Nrf2/HO-1 signaling pathway

Heme oxygenase (HO) is a microsomal enzyme that

degrades heme to carbon monoxide (CO), iron, and biliverdin,

which plays a protective role in intracellular detoxification

during tissue injury. HO regulates a range of anti-

inflammatory, antioxidant, and anti-apoptotic pathways

through heme degradation, and HO-1 is responsible for most

intracellular detoxification among all the HO members (159,

160). The transcription of HO-1 is regulated by the Nrf2/

KEAP1/ARE pathway (161), transcription repressor BACH1,

AP-1, and several protein kinase signalings (162). Furthermore,

HO-1 expression plays a key role in M2 polarization in

macrophages (163). For example, activating HO-1 after

myocardial infarction can switch M1 macrophages into M2

macrophages (164).

BACH1 plays an important role in Nrf2/HO-1

transcriptional activity (165). BACH1 is a negative regulator of

the inducible HO-1 gene expression, that binds sMAF to inhibit

HMOX1 transcription by Nrf2, while losing its function in high

concentrations of heme (166). BACH1 and Nrf2 competed with

each other to regulate ARE-mediated gene expression (167).

BACH1-deficient peritoneal macrophages express HO-1 and

Arginase-1, Fizz-1, Ym1, and MRC1, which are M2

macrophage markers (168). Nrf2/KEAP1-BACH1 equilibrium

has been identified in pulmonary emphysema patients, whereby

high levels of BACH1 and KEAP1 result in reduced stress

response, mediated by MAPKs, including JNK and ERK (169,

170). The evidence indicates that HO-1 expression mediated by

Nrf2 can be regulated strictly by KACH1 in macrophages, and

several signaling cascades can control the balance between both,

for example MAPKs (171).
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The promoter regions of HO-1 genes contain many AP-1

functional sites (163). AP-1 is made up of heterodimers of

members of c-Fos and c-Jun (172). Classical AP-1 is located in

the consensus sequence of ARE, and the region of ARE is also

the main site for Nrf2 to interact with the HMOX1 promoter

(173). A growing body of evidence suggests that inhibition of

activated AP-1 helps induce HO-1 expression through Nrf2

(174, 175), which is induced by inhibiting c-Fos (176). It is not

clear exactly what role AP-1 plays in Nrf-2 activity, but after all,

AP-1’s interaction with c-Jun can activate the transcription of

GSH-related enzymes and NQO1 (177).

Anti-inflammatory responses in monocytes/macrophages

are mediated by an increase in HO-1. Activation of STAT3

and p38/PI3K signaling is necessary to induce HO-1 expression

by LPS and IL-10 in rodents (178). LPS-induced activation of

HO-1 in M1 phenotypes induces the production of IL-10, as well

as the down-regulation of COX-2, iNOS, TNF-a, and IL-6 (179,

180). Inhibition of M1 phenotype with down-regulation of TNF-

a induced by globular adiponectin is dependent on IL-10/

STAT3/HO-1 pathway in Kupffer cells (181). However, the

increase in IL-10 and the decrease in HO-1 have been

observed in macrophages stimulated by LPS in humans (182).

M1 polarization can be inhibited by HO-1, although this

dichotomy suggests that HO-1 controls IL-10 expression in a
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complex way. Additionally, HO-1 is known to promote M2

phenotype via anti-inflammation response and cell protection.

HO-1 expression induced by sphingosine-1-phosphate in the

supernatant derived from apoptotic cells has been indicated to

play a vital role in M2 polarization of macrophages, via the

STAT1/STAT3 heterodimer (183). Full-length adiponectin

induces an M2 phenotype via IL-4/STAT6/HO-1, with a

decrease in macrophage sensitivity to stimulation by TLR4

ligands, and an increase in M2 markers (184).
4.2 Nrf2 and NF-kB signaling

Transcription factor NF-kB has a central role in

inflammation, responsible for the promotion of pro-

inflammatory mediators and cytokines (281). Nrf2 and NF-kB
signaling regulate the redox homeostasis and inflammation

responses, that is, the activation of Nrf2 has been identified to

functionally couple the inhibition of NF-kB transcriptional

activity (29, 185). For example, the up-regulated HO-1 is also

a mediator induced by Nrf2 activation with negative regulatory

effects on NF-kB (186). On the one hand, HO-1 can inhibit the

degeneration of IkB-a leading to the stabilization of NF-kB in

cytoplasm (187). On the other hand, CO induced by HO-1 can
FIGURE 3

The expression of HO-1 and the negative regulation of NF-kB transcription as the possible pathways of Nrf2 activation controlling macrophage
reprogramming. Under the stress or electrophilic agents, Nrf2 can translocate to the nucleus after dissociating from KEAP1. With the accumulation
of Nrf2 in the nucleus, it forms a heterodimer with sMAF, which binds ARE, a trans-acting DNA enhancer motif. The Nrf2 binding ARE promotes
genes encoding cytoprotective proteins, such as GSH-related enzymes, NAD(P)H dehydrogenase quinone 1 (NQO1), and HO-1. BACH1 is a negative
regulator of the inducible HO-1 gene expression, that binds sMAF to inhibit HMOX1 transcription by Nrf2.HO-1 can regulate the polarization of
macrophages via the STATs signaling pathway. Besides, HO-1 also has negative effects on the transcription of NF-kB. Furthermore, the up-regulated
NOX1/2 and NOQ1 by Nrf2 activation can suppress NF-kB transcription via eliminating ROS and inhibiting NLRP3 inflammasome, respectively. In
addition, IkBb can stabilize KEAP1, while IkBb can activate IkBa. Likewise, the competitive or antagonistic relationships also exist in the binding of
IkBa and KEAP1 to the common activator CBP/P300.
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inhibit the TLR/NF-kB signaling via binding downstream

transcription factor IRF3 and interfering in the downstream

pathway (188). Besides, NF-kB family consists of two types,

among which p65 has RelA, RelB, and c-Rel transactivation

domains, while p50 and p52 do not have transactivation

domains. And for transcription, P50 and P52 need to form

heterodimerization with the Rel proteins (189). Notably, novel

treatments for inflammatory diseases can inhibit NF-kB and

activate Nrf2 to alleviate inflammation (190, 191).

The highly electronegative oxygen can accept electrons

generated by normal oxidative metabolism within cells, and

ROS are produced, which include superoxide anion (O2 -.),

hydrogen peroxide (H2O2), hydroxyl radical, and singlet oxygen.

ROS generated in cytoplasm and mitochondria act their key

roles as signaling molecules to regulate physiological processes of

macrophages. The ROS generated in cytoplasm and

mitochondria serve as important signaling molecules to

regulate macrophage physiological processes. NADPH

oxidases (NOXs) transfer one electron from NADPH to

oxygen to produce cytosolic ROS. Besides, the production of

mitochondrial ROS is higher under the biochemical activities of

ETC, monoamine oxidases, and P66shc (192). Macrophages

could undergo pro-inflammatory cycles promoted by ROS.

The targets of ROS include ROS/p38/NF-kB signaling (193),

and ROS/p38/STAT1 axis (194), leading to M1 characteristics.

And ROS can exacerbate inflammatory response related to NF-

kB (p65) (195). However, the role of ROS has two sides. After all,

it has been reported that ROS plays a critical role in M2

polarization, during which process the ROS produced by

NOX1/NOX2 could contribute to monocyte-to-macrophage

differentiation via activating of ERK and JNK (196).

Additionally, the activation of Nrf2 can regulate the

antioxidant response by controlling the expression of

detoxifying enzymes to buffer ROS. Thereby, the decreased

ROS results in the inhibition of the activation of NF-kB
mediated by oxidative stress (193, 197). Additionally,

removing ROS also inhibits STAT1 phosphorylation and

conversely activates STAT6 (198, 199). By reducing ROS levels

within cells, Nrf2 inhibits oxidative stress-mediated activation,

leading to an anti-inflammatory M2 phenotype. Additionally,

given the NLRP3 inflammasome signaling as another NF-kB
activator, Nrf2 can negatively regulate NLRP3 inflammasome

activation (200, 201), especially in the regulative process of ROS.

Similarly, Nrf2 can increase NQO1 production and lead to

negative effects on NLRP3 inflammasome activation (200). In

addition, Hippo-yes-associated protein signaling can also be

viewed as a mechanism of Nrf2 activation alleviating

inflammation related to NLRP3 inflammasome activation (202).

The mechanisms at a molecular level underlying Nrf2

inhibiting NF-kB are complex. On the one hand, IkB-a is the

main inhibitor of NF-kB, which can be phosphorylated by IkB

kinase (IKK) b resulting in the release of NF-kB in the pro-

inflammation micro-environment. IKKb can bind KEAP1 via
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the ETGE motif to mediate the ubiquitin and proteasome

degradation. KEAP1 is the main inhibitor of Nrf2. When

IKKb is stabilized, KEAP1 can be inhibited, while IkB-a can

be phosphorylated, which results in the inhibition of Nrf2 and

the activation of NF-kB (203–205). On the other hand, the p65

subunit of NF-kB has been indicated as a partner of KEAP1, and

the interaction between the both can inhibit Nrf2-ARE pathway

(206). NF-kB (p65) also exerts negative effects on Nrf2 signal

transduction by competing for binding with CBP/P300 between

p65 and Nrf2. CBP/p300 is not only a co-activator of NF-kB and

Nrf2, but also can negatively regulate the biological activity of

ARE in the process of transcription under the action of p65 (207,

208). Conversely, the interaction between p65 and KEAP1, and

the role of CBP have also been reported as the mechanisms by

which Nrf2 negatively regulates NF-kB (209, 210). As a result,

the Nrf2 activation can inhibit the production of pro-

inflammatory cytokines induced by NF-kB (39, 211). The

activated Nrf2 can decrease the release of IL-6 and IL-1b from

macrophages by blocking pro-inflammatory cytokine

transcription in macrophages (211). Furthermore, M2

polarization induced by the activation of Nrf2 has been

reported to treat OA (212).
4.3 Potential treatment strategies for OA
linking Nrf2 activation

4.3.1 Itaconate and fumarate derivatives
Fumarate is a mitochondrial metabolite acting as the

terminal electron acceptor in the ETC of mammalians (213).

In the Krebs cycle, succinate dehydrogenase (SDH) catalyzes the

oxidation of succinate to fumarate (214). SDH-induced

succinate oxidation can switch the production of ROS and the

activation of M1 macrophages (215). And then, the isocitrate

dehydrogenase in the Krebs cycle is blocked, inhibiting the

canalization of cis-aconitate to isocitrate (216). The

accumulated cis-aconitate binding to immune-responsive gene

1 can generate itaconate via decarboxylation (214, 217).

Itaconate is an endogenous metabolite produced during the

TCA cycle, which activates Nrf2 via the alkylation of KEAP1

to influence macrophage function (218).

4-octyl itaconate (OI) is an esterified itaconate derivative

that can be converted into itaconate by a direct modification of

intracellular cysteines (219, 220). Dimethyl fumarate (DMF) is

an esterified fumarate derivative, which can be rapidly

metabolized into monomethylfumarate (MMF) in vivo (220,

221). In macrophages, OI and DMF inhibit pro-IL-1b and

NLRP3 signaling pathways activated by TLR4 binding DAMPs

(222). However, different from OI, the promoting effect of DMF

on KEAP1 alkylation and Nrf2 nuclear accumulation comes

from its metabolite MMF (223).

OI and DMF have protective effects on the cartilage in OA.

More specifically, OI-induced transcription of Nrf2 in
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chondrocytes results in the high expression of HO-1, NQO1,

and GCLC, and the low secretion of IL-6, IL-10, MCP-1, and

TNF-a, which can switch the prevention from cell death and

apoptosis of chondrocytes via decreasing oxidative stress and

inflammation responses, and put a brake on the progress of OA

in vivo (224, 225). Similarly, dimethyl fumarate (DMF) can

suppress the production of MMP-1, MMP-3, and MMP-13 and

the destruction of COL2 induced by TNF-a in OA, which

appears to work by inhibiting JAK/STAT3 signaling (226).

Moreover, recent evidence shows that exogenous itaconate

promotes polarization of M2 macrophages and reduces

apoptosis in chondrocytes, a process in which Nrf2 activation-

induced stimulator of interferon genes (STING) suppresses

transcription of NF-kB (212).

4.3.2 Curcumin
Curcumin is a yellow-colored lipid-soluble polyphenol that

is the main active ingredient extracted from the rhizome of

Curcuma longa (also known as turmeric) (227). Curcumin has

been shown to reduce inflammation and alleviate oxidative

stress, where Nrf2 plays a vital role (228). By increasing

Nrf2 transcription and HO-1 synthesis, curcumin protects

cells from ROS-induced damage and reduces COX-2

production (229, 230). Of note, macrophage COX-2 is

an inflammatory enzyme catalyzing the formation of

prostaglandins and thromboxane, which is upregulated during

pro-inflammatory conditions (231).

The effects of curcumin in OA can also be independent of

the Nrf2/HO-1 axis in reducing inflammation, preventing ECM

degradation, and promoting cartilage synthesis (232, 233). The

effects on inflammation can be induced by suppressing the

expression of pro-inflammatory mediators, such as TNF-a, IL-
1b, IL-6, IL-17and TGF-b (233–236), which are mainly

regulated by NF-kB signaling. Besides, the degeneration of

IkBa and the expression of COX-2 in macrophages are

reduced by curcumin, resulting in the reduced transcription of

NF-kB lower responses to LPS and M1 polarization (236),

implying the activation of Nrf2. Curcumin can upregulate the

expression of COL2 and downregulate MMP1, MMP3, and

MMP13 in ECM protection (235, 237). In addition, the higher

level of mRNA related to cartilage anabolism, including

COL2A1 and ACAN, can characterize the effect of curcumin

on cartilage regeneration (232).

4.3.3 Quercetin
Similar to curcumin, quercetin is one of the most studied

and abundant flavonoids found in tea, vegetables, and fruits

(238). Quercetin has a high antioxidant activity due to its

capacity to up-regulate the transcription of Nrf2, via

promoting the degeneration of KEAP1 (239). Quercetin can

induce the conversion of macrophages from M1 to M2,

characterized by lower levels of iNOS-positive cells and
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inflammatory mediators, and higher levels of CD206-positive

cells in diabetic wound healing (240). By scavenging ROS,

quercetin-loaded ceria nanocomposite can also increase the

M2/M1 ratio of macrophage polarization in periodontal

inflammation models (241). Besides, quercetin has been

suggested to suppress the expression of iNOS and COX-2, as

well as the secretion of IL-6, TNF-a, and IL-1b of M1

macrophages with the decrease in ROS and chemokines

related to M1 polarization, including CCL2 and CXCL10,

while IL-10 of M2 macrophages has been found up-regulated,

with the increase in HO-1 and NQO1 via AMPK and AKT

signaling pathways (242). Notably, potential mechanisms

underlying the effects of quercetin in the immunoregulation of

macrophages can also involve the inhibitive effects on the

activity of NLRP3 inflammasome via TLR2/Myd88/NF-kB and

ROS/AMPK pathway (243).

In OA, the effects of quercetin on anti-inflammation

response and cartilage protection have been addressed (244).

Quercetin can act its anti-inflammatory role in suppressing NO,

TNF-a, and IL-1b through inhibiting the NLRP3 signaling

pathway, p38 activation, and endoplasmic reticulum stress

(245–247). In addition, the activated SIRT1/AMPK signaling

pathway can not only suppress the apoptosis of chondrocytes

related to endoplasmic reticulum stress, but can also mediate the

reversion of mitochondrial dysfunctions and the elimination of

ROS in chondrocytes (246, 248). Along aside with anti-

inflammation response, the inhibition of cartilage degeneration

and the promotion of cartilage regeneration can be characterized

by the down-regulation of MMP3, MMP9, MMP13, and

ADAMTS-5, while the up-regulation of COL2 (247, 249). Of

note, it has been implied that the effects of quercetin can be

better loaded by Nano-materials (249, 250). Furthermore, the

synovial level of TGF-b1 and TGF-b2 has been found up-

regulated after the administration of quercetin due to the

increase in M2 macrophages, which can also promote the

production of IGF and build a microenvironment promoting

chondrogenesis (248).
4.3.4 Melatonin
N-acetyl-5-methoxytryptamine, also known as Melatonin

(Mel), is an indolamine with numerous functions in neural,

endocrine, and immune physiological activities, playing a

versatile role in the regulation of circadian rhythms, the

defense against oxidative and inflammation, and the

modulation of mitochondrial homeostasis. Mel is synthesized

from tryptophan under 5-hydroxytryptamine in multiple

extrapineal tissues (251, 252). In OA, Mel has been considered

a novel treatment for OA due to its effects on the protection of

chondrocytes from apoptosis, the promotion of anabolic

metabolism, and the suppression of catabolic metabolism in

cartilage, the restoration of redox balance, and the regulation of

sirtuin signaling pathways (253).
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The role of Mel in the immunoregulation of macrophages

has not been verified, however, several studies support this idea.

In macrophages, the administration of Mel can induce the

activation of Nrf2 and the increased expression of HO-1, while

the expression of iNOS and COX-2, and the production of TNF-

a, IL-1b and IL-6 can be reduced through the inhibition of NF-

kB transcription (254, 255). Besides, the reduced activation of

STAT1 and the increased STAT3 can drive the transformation

from M1 to M2 phenotype (256). Five potential mechanisms

underlying shaping polarization of macrophages have been

implied by the review, including through cellular pathways of

JAK/STAT, cellular metabolism, miRNAs, mitochondrial

dynamics, and mitophagy (257). Furthermore, the most recent

study indicates that the interaction of Mel and MT1 receptors

can activate PI3K/Akt and ERK signaling pathways in synovial

fibroblasts leading to the up-regulation of microRNA-185a,

which can reverse OA-induced pathology in animal models

through reducing the secretion of TNF-a, IL-8, and vascular

endothelial growth factors (258).

4.3.5 Mesenchymal stem cells
Mesenchymal stem cells (MSCs) are heterogeneous stromal

cells commonly sourced from adipose tissue, bone marrow and

umbilical cord blood. MSCs have the capacity of differentiating

into adipocytes, chondrocytes, and osteoblasts. Except for the

capacity of multidirectional differentiation, MSCs exert broad

immunoregulatory abilities, which can induce the specific

polarization (M1 to M2) of macrophages to promote the

repair of damaged tissues via cell-to-cell contact and paracrine

actions (259–262). The mechanisms and evidence of MSCs

mediating the alterations of macrophage phenotypes have been

reviewed. Furthermore, the Hippo pathway activating Yes-

associated proteins was pointed out as a new mechanism of

inhibiting NLRP3 signaling underlying MSCs regulating

macrophages (263).

In OA, several studies have revealed the potential effects of

MSCs on regulating intra-articular inflammation via M2

macrophage polarization. MSCs derived from bone marrow,

which are labeled by iron oxide nanoparticles, can induce the

increase in CD206-positive cells out of F4/80-positive

macrophages, while can also induce the decrease in iNOS-

positive cells out of F4/80-positive macrophages in animals

experiencing OA due to destabilization of medical meniscus

(264). Besides, the cell-free fat extract as a derivative of adipose-

derived stem cells, which is rich in cytokines and nutrients, has

been reported to be dose-dependently effective in relieving pain

(tested by behavioral tests of rats), protecting cartilage, and

increasing the ratio of M2 phenotype in the synovium

(CD206-positive macrophages) in rat models with sodium

iodoacetate-induced OA. The same study also revealed that

the cell-free fat can decrease the ratio of CD86-positive cells,

and reduce iNOS and COX-2 induced by LPS and IFN-g in Raw
Frontiers in Immunology 12
264.7. And then IL-6 and ADAMTs-5 were reduced, while the

expression of SOX-9 was promoted in chondrocytes

administrated by the cell-free fat. In addition, ROS can be

regulated in these processes (265).

Notably, specifically pre-conditioned MSCs seem to show

better regulation of macrophages. MSCs-derived extracellular

vesicles (EVs) with antioxidative characteristics via over-

expressing Nrf2 in adipose MSCs have effects on anti-

inflammation and antioxidation. These EVs can induce

increased levels of M2 macrophages, and decreased IL-6 and

TNF-a (266). According to the International Society for

Extracellular Vesicles, EVs are lipid bilayer membrane

particles naturally released by the cells. EVs contain proteins,

lipids, and nucleic acids, while without a functional nucleus

(267). For MSCs, the production of EVs contributes to

regulating the activation states of macrophages. The main

active substances that play a regulatory role are miRNA and

mitochondria transferred through EVs. miRNAs could target

various transcription factors (for example, NF-kB) and adaptor

proteins (for example, IL-1b) at the post-transcriptional level.

Besides, the mitochondrial transfer could be related to the

promotion of oxidative phosphorylation and the repair of

oxidative stress function (268, 269). The acute lung injury has

been ameliorated by MSC-derived small EVs (MSC-EVs) via

activating Nrf2, during which process the increase in immune

and redox mediators, including TLR4, Arg1, and HO-1 could be

revealed (270). Besides, in a recent study, nanoparticles

simulating EVs are effective for OA by promoting the

polarization from M1 to M2. The structure of these EVs is

oxidative stress-responsive bilirubin grafted polylysine

biomaterial vesicles containing immunoglobulin IgG and

berberine (271). However, there is still a knowledge gap in

MSC-EVs regulating macrophage polarization via Nrf2 in OA

treatment. Besides, the expression of Nrf2 in MSCs was

promoted by hypoxic preconditioning, while the expression of

NF-kB was reduced. And the intrarenal transplantation of these

hypoxic preconditioned MSCs was more effective in the

activation of HIF-1a/VEGF/Nrf2 signaling to reduce

glomerular apoptosis, autophagy, and inflammation (272).

However, the evidence of the Nrf2 activation in macrophage

has been clearly pointed out in another study. Bone marrow-

derived MSCs pre-conditioned by FNDC5, a transmembrane

protein acting a crucial role in inflammation diseases, have been

found to produce more exosomes. These pre-conditioned

exosomes have shown the effects of promoting M2

macrophages and anti-inflammation response in myocardial

infarction via the inhibition of NF-kB signaling pathway and

the activation of Nrf2/HO-1 axis (273).

4.3.6 Low-intensity pulsed ultrasound
Low-intensity pulsed ultrasound (LIPUS) outputs in a pulse

wave mode of ultrasound with a non-thermal effect, at an
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intensity lower than 3 W/cm2 (274). The use of LIPUS in OA

treatment has been reported as an effective manner in protecting

cartilage from degeneration via reducing the expression of

MMP3, MMP13, and TGF-b1 (275). LIPUS has been

considered an effective strategy for patients with OA, which

was verified by a recent randomized clinical trial (276).

Besides, LIPUS can promote the cartilage differentiation of

bone marrow-derived MSCs due to promoting the nuclear

localization of SOX9 dependent on the phosphorylation of

ERK1/2 (277). The combination of nanoparticles and LIPUS

has been implied to have better effects on OA through inhibiting

the degeneration of cartilage (278, 279). Of note, the effects of

LIPUS on immunoregulation in macrophages have been

reviewed as a potential mechanism of treating OA (20),

however, there was little direct evidence. A most recent study

has revealed that LIPUS can significantly suppress the secretion

of IL-1b, IL-6, and TNF-a induced by LPS in macrophages

derived from bone marrow, which can be attributed to

increasing the level of intracellular itaconate and the

expression of Nrf2 (280).
5 Concluding remarks

In this review, we reviewed the role of macrophage phenotypes

in driving and relieving inflammation due to OA and summarized

how NF-kB, Nrf2, and their crosstalk shape macrophage

polarization. As Nrf2 signaling is believed to impact cellular

metabolism, studying the effects of activators of Nrf2 on

macrophage metabolism and phenotype related to inflammation

could reveal how OA can be treated through reprogramming

macrophage functions. Furthermore, studying the effect of Nrf2

activation on macrophages in the OA microenvironment may

suggest a potential anti-inflammatory therapy target. Therefore, it
Frontiers in Immunology 13
is imperative to identify the relationship between Nrf2, macrophage

function, and the progression of inflammatory diseases.
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