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ABSTRACT

Recent advances in RNA structure determination
include using data from high-throughput probing
experiments to improve thermodynamic prediction
accuracy. We evaluate the extent and nature of im-
provements in data-directed predictions for a
diverse set of 16S/18S ribosomal sequences using
a stochastic model of experimental SHAPE data.
The average accuracy for 1000 data-directed predic-
tions always improves over the original minimum
free energy (MFE) structure. However, the amount
of improvement varies with the sequence, exhibiting
a correlation with MFE accuracy. Further analysis of
this correlation shows that accurate MFE base pairs
are typically preserved in a data-directed prediction,
whereas inaccurate ones are not. Thus, the positive
predictive value of common base pairs is consist-
ently higher than the directed prediction accuracy.
Finally, we confirm sequence dependencies in the
directability of thermodynamic predictions and in-
vestigate the potential for greater accuracy im-
provements in the worst performing test sequence.

INTRODUCTION

RNA structure predictions have been advancing molecu-
lar biology research for decades (1,2), in conjunction with
ongoing work (3–5) to improve prediction accuracy.
Comparative methods (6,7) are the current gold
standard for secondary structure determination, but a
suitable set of homologous sequences is too often not
available. Hence, thermodynamic optimization remains
the most widely used approach to predicting RNA base
pairings (8,9).

Thermodynamic optimization methods calculate an
optimal structure for an RNA sequence according to the
current objective function. Two of the best known

prediction programs implementing this approach are
UNAfold (10) and RNAfold (11). At their core, each
takes an RNA sequence as input, and outputs a secondary
structure, which has minimum free energy (MFE), accord-
ing to the nearest neighbor thermodynamic model
(NNTM) (12). Despite the significant utility of these
RNA secondary structure predictions to molecular biolo-
gists, a crucial caveat has always been the ‘fundamental
ill-conditioning of the folding problem’ (13).
One way to understand this issue is through the explo-

sion of suboptimal structures (14); there are an exponen-
tial number of distinct structures (15), and even of more
abstract ‘shapes’ (16), within a small range of the
computed optimum. Equivalently, small perturbations in
the NNTM objective function can result in significant
changes in the optimal structure (17,18). Either way, this
ill-conditioning is one of the reasons why thermodynamic
optimization methods are often insufficient on their own
(19–22) to predict native base pairings accurately.
Nonetheless, NNTM prediction accuracies can be

improved significantly by incorporating auxiliary informa-
tion (13). For example (22,23), additional criteria can be
imposed on the optimization, such as enforcing single-
strandedness in regions of high chemical reactivity or pro-
hibiting base pairs between distant nucleotides. In
optimization parlance, these are ‘hard’ constraints, as
they must necessarily be satisfied in the predicted
structure(s).
In contrast, ‘soft’ constraints direct the optimization

towards greater accuracy by modifying the reward/
penalty structure of the objective function. A notable
example of this is the increasing prevalence of
SHAPE-directed RNA secondary structure predictions
(24–27), including an entire HIV-1 genome (28). These
predictions use data from high-throughput chemical
probing experiments commonly known as SHAPE (29),
for ‘selective 20-hydroxyl acylation analyzed by primer ex-
tension’, as soft constraints on the thermodynamic
optimization. Although SHAPE-directed prediction
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accuracies above 95% have been achieved for large ribo-
somal RNA sequences (25), such marked improvements
have not been universally observed (30).
This discrepancy indicates a need to understand better

the extent and nature of improvements in directed predic-
tion accuracy. The problem is that, unlike hard con-
straints, soft constraints interact with the massive
NNTM objective function in ways which are difficult to
analyse directly. We address this challenge using a sto-
chastic model of SHAPE data to investigate the
accuracy of data-directed predictions for a diverse set of
16S/18S ribosomal sequences.
We find that incorporating this auxiliary data into the

thermodynamic optimization as soft constraints consist-
ently improves the directed prediction accuracy over the
original MFE structure. However, the extent of the im-
provement is sequence dependent and roughly correlated
with MFE accuracy. Notably, the data-directed predictions
for more than 1/3 of our ribosomal test sequences do
not achieve the high accuracy of the other 10 sequences—
which are at the level of previous experimental studies (25).
Investigating the nature of the correlation between

data-directed and MFE prediction accuracies, we find
that accurate MFE base pairs are typically preserved in
a data-directed prediction, whereas inaccurate ones are
not. Thus, if the similarity between the two structures is
especially low or high, this provides information about the
correlated accuracies of the MFE and data-directed pre-
dictions. Furthermore, we show that the positive predict-
ive value (PPV) of the common base pairs is high, even for
sequences where the prediction accuracy is not.
Finally, we illustrate clear sequence dependencies in the

directability of thermodynamic optimization. Our results
show that soft constraints based on SHAPE data are not
always sufficient to overcome limitations (19–22) in the
NNTM approximation to RNA folding. However, we
also give a proof-of-concept demonstration that auxiliary
data which more clearly distinguishes between the
presence and absence of base pairs can modify
the NNTM sufficiently to consistently achieve high pre-
diction accuracy.

MATERIALS AND METHODS

MFE and SHAPE-directed predictions

For the purposes of thermodynamic optimization, an
RNA secondary structure is defined to be a set of base
pairs without pseudoknots. Two consecutive base pairs
form a stack, and consecutive stacks create a helix.
Unpaired nucleotides belong to a single-stranded loop
substructure.
Each stack and loop is assigned a thermodynamic value

under the NNTM, and the free energy change of the entire
secondary structure is approximated by summing over
these substructure values. RNA molecules fold to
minimize free energy, and an optimal MFE structure
according to the NNTM can be computed efficiently
using dynamic programming.
As a model of RNA base pairing, the NNTM is known

to be more accurate for shorter sequences, including

domains within longer ones (19,22). It is also well-known
that the quality of the thermodynamic approximation has
significant sequence dependencies. In particular, predic-
tion accuracies can vary widely even for sequences that
fold into essentially the same secondary structure (20,21).

To improve thermodynamic prediction accuracy,
SHAPE data can be incorporated into the optimization
as soft constraints. Details of the experimental method are
summarized in (31). For our purposes, it suffices to know
that SHAPE interrogates conformational flexibility at
single nucleotide resolution. Low values are strongly
correlated with base pairing—as well as other stabilizing
interactions (32,33).

This auxiliary information is used to modify the reward/
penalty structure of the thermodynamic objective
function. More specifically, the standard practice (25), im-
plemented in the RNAstructure prediction program (34),
is to convert the SHAPE value for nucleotide i into a
pseudo-free energy term according to the equation:

�GSHAPEðiÞ ¼ m lnðSHAPEðiÞ+1Þ+b ð1Þ

using slope m=2.6 kcal/mol and intercept b=�0.8 kcal/
mol as parameters. The NNTM is then modified by
adding the �GSHAPE(i) term to the free energy change of
each base pairing stack involving nucleotide i. Our work
assesses the extent and nature of accuracy improvements
in such SHAPE-directed predictions using simulated data.

Modeling SHAPE data

We give a probabilistic method for simulating SHAPE
data for sequences with known secondary structures.
Our stochastic model is based on experimental data
(Weeks, personal communication) for two Escherichia
coli ribosomal sequences, 16S rRNA with 1542 nt and
23S rRNA with 2904 nt. Nucleotides without data were
removed, leaving a total of 4187 nucleotides in the experi-
mental data set.

We considered three different divisions of this data set
for our model. Nucleotides were classified into the
categories given below according to the comparative sec-
ondary structures (35) for the two E. coli sequences. All
variation in values within a subdivision was treated as
random. We modeled this uncertainty with empirical
probability density functions obtained by maximum like-
lihood fitting using the Statistics Toolbox in MATLAB
R2010b. In order of increasing complexity, the models
and their subdivision are as follows:

Unary model
No division of the SHAPE data set; one probability
distribution fit to all values.

Binary model
Data set is divided into paired and unpaired nucleotides
with different probability functions.

Ternary model
Paired nucleotides are further subdivided into stacked or
helix-end pairs. The three distinct probability density
functions are shown in Figure 1.
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The first is our null model. The second reflects that
SHAPE chemistry measures conformational flexibility
with clear differences between paired and unpaired nu-
cleotides on average. The third distinguishes ‘stacked’
base pairs (which are bracketed by two other base pairs
within the same helix) from ‘helix-end’ pairs (which are
adjacent to unpaired nucleotides or to a base pair from a
different helix). This resembles the approach in (36), and
ultimately is the chosen model.

As described further in the Results section, the appro-
priate granularity of the model was evaluated in two ways.
First, we verified with MATLAB that each subdivision

generates two new probability functions with statistically
significant differences. Second, each model was used to
simulate SHAPE data for the E. coli ribosomal 16S
sequence by the method described next. The improvement
in prediction accuracy for 1000 trials using values
generated under the ternary model, but not the other
two, was consistent with the experimental data (25).

Simulating SHAPE-directed predictions

Our study is based on a diverse set of 16S/18S ribosomal
sequences with secondary structures available through the
Comparative RNA Web (CRW) site (35). The 16 test se-
quences represent a variety of organisms over a wide range
of lengths and MFE prediction accuracies. Additional
details are provided in Supplementary Table S1.
For simplicity, we refer to the pseudoknot-free compara-

tive structure from the CRW site as the native base
pairings. For our purposes, any nucleotides involved in
stabilizing interactions, such as pseudoknots or base
triples, belonging to the tertiary or quarternary RNA struc-
ture were treated as unpaired. However, known non-canon-
ical base pairs were classified in the same manner as the
Watson–Crick and wobble base pairs.
Given a sequence and its native structure, each nucleo-

tide was assigned to the appropriate category (distinguish-
ing unpaired from paired, subdivided into stacked or
helix-end) for the current model. The corresponding prob-
ability density functions were then used to generate a
random value from the appropriate distribution for each
nucleotide. This produced a single simulated SHAPE data
set for the given sequence. Unless otherwise specified, 1000
trials were run for each sequence.
To minimize simulation run times, secondary structures

were predicted using GTfold (37), a parallelized multi-core
thermodynamic optimization program. Like UNAfold (10)
and RNAfold (11), GTfold implements the standard Turner
NNTM energy model (22,23). Like RNAstructure (34),
GTfold provides integrated support for SHAPE-directed
predictions. When comparing prediction results across
programs, it is well understood [see for instance (37) or
http://rna.urmc.rochester.edu/GUI/html/Introduction.html
(26 October 2012, date last accessed)] that small implemen-
tation differences can result in noticeable differences in pre-
dicted optimum structures.
Unless otherwise specified, Equation 1 as implemented

in GTfold uses the default parameters (m=2.6,
b=�0.8). Default options were used, and there were no
additional constraints on the thermodynamic optimiza-
tion other than the simulated SHAPE data.
When the thermodynamic optimization is modified by

soft constraints from simulated SHAPE data, we refer to
the resulting optimal base pairings as the data-directed or
simply directed secondary structure. When discussing the
average data-directed prediction accuracy for 1000 trials,
we will usually refer simply to the directed accuracy.

Prediction accuracy and structure similarity

The accuracy of predicted MFE and data-directed second-
ary structures was determined against the native base
pairings. As seen in Table 1, using the experimental

(a)

(b)

(c)

Figure 1. Ternary model distinguishing (a) unpaired, (b) helix-end and
(c) stacked nucleotides. Maximum likelihood probability density functions
fit to the experimental data set are given. SHAPE data for E. coli 16S and
23S ribosomal sequences are shown in normalized histograms. Vertical
scale on the two paired distributions is four times that of the unpaired.
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SHAPE data as soft constraints improves the prediction
significantly.
The numbers are lower than previously reported (25)

because we used a simpler method for calculating
accuracy. In this work, only a base pair (i, j) occurring
in both the native and a predicted structure was counted
as a true positive (TP). In particular, ‘slipped’ base pairs
(22,38) are not considered correctly predicted. Base pairs
in the predicted but not native structure were classified as
false positives (FP), whereas false negative (FN) base pairs
occur in the native but not predicted structure.
Predicted structures were scored for both PPV, the

fraction of true positives in the predicted structure, and
sensitivity, the fraction of true positives in the native struc-
ture. When comparing RNA secondary structures, the
Matthews correlation coefficient can be approximated by
the arithmetic mean of the PPV and sensitivity (6). Hence,
the overall prediction accuracy was evaluated as the
average of these two values:

accuracy ¼
1

2

TP

TP+FP
+

TP

TP+FN

� �
ð2Þ

For comparison purposes, Table 1 also lists the
accuracy for the same computation performed with
RNAstructure (34). The highest accuracy (96.2% by our
measure) reported earlier in (25) required expert curation
of the RNAstructure prediction to account for factors
such as local refolding. Without manual adjustment, we
considered 70% to be a reasonable threshold for high pre-
diction accuracy under our measure.
Finally, the accuracy measurement given above is sym-

metric in the choice of reference (native) and object (pre-
dicted) structure. Hence, we used the same symmetric
measure when comparing two predicted structures, and
we define the similarity of two secondary structures as
the accuracy of one with reference to the other.

RESULTS AND DISCUSSION

Choice of simulation model

The appropriate level of granularity for our stochastic
model was determined by two criteria. To begin, we con-
firmed that each subdivision of the experimental data set is

necessary to distinguish nucleotides with different SHAPE
behavior. We then verified that the ternary model was
sufficient to recapitulate the improvement in prediction
accuracy for E. coli 16S rRNA using experimental
SHAPE data.

Each subdivision of the experimental SHAPE data set
yields probability distributions with statistically significant
differences. The two-sample Kolmogorov–Smirnov test
rejected the hypothesis that the paired and unpaired nu-
cleotides had the same distribution (P=2.03� 10�199,
5% significance). Likewise, the hypothesis that the
stacked and helix-end nucleotides had the same distribu-
tion was rejected (P=1.08� 10�40, 5% significance). This
justifies distinguishing at least the unpaired, stacked and
helix-end nucleotides with different distributions in any
stochastic model of SHAPE data.

Next, we computed the directed prediction accuracies
for E. coli 16S rRNA for 1000 simulations under each
model. As shown in Table 1, the directed (i.e. the
average data-directed prediction) accuracy decreased
using the null model. Although the directed accuracy
increased under the binary model, only 10% of the pre-
dictions were at least as good as the one using experimen-
tal data. However, when stacked and helix-end nucleotides
are distinguished, the accuracy improvement with experi-
mental data is no longer an outlier. Hence, the ternary
model is sufficient to simulate SHAPE data, and all
further results were produced using this model.

Data-directed predictions vary in accuracy

Using the stacked/helix-end/unpaired model, we
investigated the effect of soft constraints on prediction
accuracy for 1000 trials for each of our 16 test sequences.
In general, the directed accuracy improved over the MFE
prediction for each 16S/18S ribosomal RNA sequence; as
seen in Figure 2, all boxes lie above the diagonal line.
However, our results indicate that the high accuracy and
significant improvement seen in the E. coli data-directed
predictions, from 41.1% to 74.35% on average, is not
always achieved.

By the 70% accuracy threshold, our test sequences
group into three categories. When the MFE accuracy is
moderate-to-high (over 50%, e.g. for Haloferax volcanii),
the directed accuracy is consistently above 70%. When the
MFE accuracy is particularly low (under 25%, e.g. for
Encephalitozoon cuniculi), the directed accuracy is consist-
ently well below 70%. In between (e.g. for E. coli), the
behavior is variable, with four of the sequences perform-
ing well but three significantly less so.

These results indicate a rough correlation between MFE
and directed accuracy. However, they also demonstrate
that the ‘directability’ of the NNTM optimization, like
MFE predictions, has some critical sequence depend-
encies. Both points are addressed in more detail in
subsequent sections.

In terms of improving thermodynamic predictions
through soft constraints, all but one of the middle group
of seven sequences exhibited significant gains over their
MFE accuracy. In contrast, the six sequences with
moderate-to-high MFE accuracy had average

Table 1. Data-directed prediction accuracy for E. coli 16S rRNA

Prediction details Accuracy, % Proportion

Undirected MFE, GTfold 41.1 –
Undirected MFE, RNAstructure 34.6 –
Experimental SHAPE data, GTfold 76.4 –
Experimental SHAPE data, RNAstructure 72.8 –
Simulated data, no division 20.94 (mean) 0.00
Simulated data, paired/unpaired 69.03 (mean) 0.10
Simulated data, stacked/helix-end/unpaired 74.35 (mean) 0.37

Data-directed predictions were computed with GTfold; accuracy is
averaged for 1000 trials for each model. Proportion (above 76.4
threshold) is the fraction of simulated data with prediction accuracy
at least as good as the GTfold SHAPE-directed one.
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improvements well below+30%. This suggests that attain-
ing high accuracy requires additional information and/or
expert curation, even for sequences with good
data-directed predictions.

Finally, all sequences including E. coli exhibited a range
of accuracies, with the amount of variation broadly but
inversely correlated with the average. This raises some ques-
tions for further study. On the one hand, SHAPE data have
been reported to be ‘highly reproducible’ across several in-
dependent replicants (29), with standard deviations on the
order of 0.1 normalized SHAPE unit or less. On the other,
MFE predictions can be sensitive even to small perturb-
ations in the thermodynamic parameters (17,18). Hence,
further analysis is needed to reconcile these results.

Taken together, our simulation results address the
extent of improvements in SHAPE-directed prediction
accuracy. Foremost, 3 of 16 test sequences (E. cuniculi,
Caenorhabditis elegans, Mus musculus) have a directed
accuracy well below 60% and an average improvement
over MFE below 15%. From this, we conclude that directed
predictions are a complex interplay between RNA sequence,
auxiliary data and thermodynamic optimization which do
not always result in high accuracy or large improvements.
Although this conclusion remains to be confirmed by ex-
periment, it is in full agreement with other results
investigating the limitations of SHAPE data (30).

Data-directed predictions preserve accurate MFE pairs

Having demonstrated variability in the extent of accuracy
improvements, we investigate their nature, namely the

rough correlation observed in Figure 2. Our hypothesis
was that MFE base pairs which are accurately predicted
tend to remain optimal in a directed prediction whereas
incorrect ones do not.
Indeed, Figure 3 shows a surprisingly strong correlation

between the similarity of each directed prediction to the
MFE and the MFE accuracy. From this, we conclude that
if the former is especially low or high, then the latter is
likely to fall outside the typical range (30–60%). In these
cases, our previous results indicate that the data-directed
prediction accuracy is likely to also be correspondingly
low or high.
This is highlighted in Figure 4c, for E. cuniculi and

H. volcanii, the test sequences with the lowest and
highest MFE accuracies (below 20% and above 70%),
respectively. As expected, the directed prediction
accuracy for these sequences is very low/high, as seen by
the predominantly blue/red native base pairings annotated
with directed frequency in Figure 4c.
Further analysis at the base pair level for these se-

quences and for E. coli confirmed our initial hypothesis,
and provides a means of identifying sets of base pairs with
high PPV. We found that the majority of MFE base pairs
exhibited one of two behaviors: either occurring in nearly
all directed predictions or in close to none of them.
Moreover, the former were generally correctly predicted,
whereas the latter were not.
As seen in Figure 4b, almost all MFE base pairs are

colored either orange/red or aqua/blue, according to
their frequency in the directed structures. Those occuring

Figure 2. Boxplots of data-directed prediction accuracy versus accuracy of the undirected (MFE) prediction. In each box, the midline marks the median
accuracy for 1000 predictions, and notches show the 95% confidence interval of the median. Non-overlapping notches indicate the medians are different
at 5% significance. The box boundaries mark the 25th and 75th percentiles, and the whisker length shows predictions within 1.5 times the inter-quartile
range. Outliers are marked as individual points. The line x= y represents no improvement over the undirected prediction. Points above this line are
predictions where the addition of simulated SHAPE data has improved prediction quality. The legend is ordered after increasing MFE accuracy.
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at high frequency are correctly predicted in the MFE struc-
ture [red in column (b) correlates with red in column (a)].
Conversely, MFE pairs occuring at low frequency in
directed structures tend to be incorrectly predicted [blue
in column (b) correlates with blue in column (a)]. Similar
patterns were observed for all 16 test sequences. Hence,
the accuracy of directed structures is correlated with the
accuracy of the undirected MFE prediction.
This correlation is clearly not perfect, however, as

indicated by the high frequency with which E. coli native
base pairs occur in the directed structures [red in column
(c) middle]. However, it does suggest using auxiliary data
to identify MFE pairings with high PPV—independent of
the data-directed prediction accuracy.
For our test sequences, the PPV of the MFE structure

M has a broad range from 0.165 to 0.726 with a median of
only 0.3785. However, these values improve dramatically
for base pairs, which are common to both M and a single
data-directed structure D.
For each test sequence, we computed the PPV of the

subset M \D, that is the fraction of true positives, for
each of the 1000 directed structures. As given in Table 2,
these values are high overall, with averages ranging from
0.532 to 0.909 with a median of 0.871. Likewise, the
average PPV of the remaining MFE base pairs M nD is
low, ranging from 0.245 down to 0.026 with a median of
0.079. Finally, these values are remarkably stable for 1000
trials. Hence, MFE base pairs that are preserved in a
directed structure are significantly more likely to be accur-
ately predicted than those that are not preserved. Thus,
any base pairs common to both the MFE and a
SHAPE-directed structure should have high PPV.

Another method for improving confidence in thermo-
dynamic predictions uses base pair probabilities computed
from the partition function (39) or by stochastic sampling
(40). It is known (38) that high probability MFE base
pairs also have a significantly increased PPV. We con-
firmed that base pairs in M \D are not simply the high
probability ones. This was true particularly for sequences
with low MFE accuracy, when a SHAPE-directed predic-
tion may also be less accurate (See Supplementary Table
S2 for details).

Directability of NNTM optimization

The purpose of soft constraints is to direct the optimiza-
tion towards a more accurate solution. However, like the
undirected MFE prediction, the ability of auxiliary data to
improve thermodynamic prediction accuracy has sequence
dependencies. We illustrate the differences in NNTM
directability by parameterizing the slope m and intercept
b in Equation 1 against three test sequences: E. cuniculi,
E. coli and H. volcanii.

The default parameters (m=2.6, b=�0.8) were
chosen by identifying a ‘sweet spot’ maximizing both sen-
sitivity and PPV of E. coli 23S rRNA using experimental
SHAPE data (25). Under the same procedure using a
random simulated data set, Figure 5 shows the parameter-
ization space for each of our three 16S sequences.

Our results for E. coli 16S recapitulate the 23S experi-
mental ones. Namely, there is a large optimal region with
a maximum PPV of 86.2% when m=3.2, b=�0.4 and a
maximum sensitivity of 78.8% when m=1.2, b=�0.6.
The average of these values (m=2.2, b=�0.5) is close to
the default parameters.

Figure 3. Boxplots of similarity between the undirected (MFE) and a data-direction prediction versus MFE accuracy. In each box, the midline
marks the median accuracy for 1000 predictions, and notches show the 95% confidence interval of the median. Non-overlapping notches indicate the
medians are different at 5% significance. The box boundaries mark the 25th and 75th percentiles, and the whisker length shows predictions within 1.5
times the inter-quartile range. Outliers are marked as individual points. The legend is ordered after increasing MFE accuracy.
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The situation with E. cuniculi is markedly different. The
optimal region is small, and the maximum obtainable PPV
is 58% and sensitivity is 47.5%, when m=6.2, b=�1.0
and m=4.2, b=�1.0, respectively. Repeating the
process with other randomly chosen data sets did not
qualitatively change the outcome (data not shown). We
conclude that no choice of Equation 1 parameters would
improve the E. cuniculi directed predictions to the level of
E. coli.

In contrast, the optimal region for H. volcanii is larger
than E. coli and contains more high sensitivity/PPV com-
binations of parameters. What is especially striking is the
gradual degradation in accuracy as the parameters are
varied away from optimal. Hence, the NNTM is a good
model for the base pairing of H. volcanii, a reasonable one

for E. coli, as it can be directed to high accuracy predic-
tions using SHAPE data, and a poor one for E. cuniculi.
In view of this unsatisfactory situation with E. cuniculi,

we further explored its directability. As a conceptual
exercise, we increased the separation between the
unpaired and two paired probability distributions in our
ternary model. (Recall that all three distributions have a
peak at low values.) The original unpaired distribution
Porig was modified to be a convex combination with a
normal distribution Pnorm of higher mean;

PwðxÞ ¼ wPnormðxÞ+ð1� wÞPorigðxÞ ð3Þ

where 0 � w � 1 and Pw(x) denotes the new probability of
SHAPE value x. The normal distribution used had a mean
of 3.51 and standard deviation of 1.78 obtained by

(a) (b) (c)

Figure 4. Circular arcplots of E. cuniculi, E. coli and H. volcanii 16S secondary structures. Sequence is drawn as a circle, and each arc denotes a base
pair. Column (a) shows an overlay of MFE (blue) and native (green) structures with common base pairs in red. Column (b) shows the MFE structure
with base pairs annotated by the fraction of data-directed structures also containing that pair, as indicated by the color bar at the bottom. Column
(c) show the native structure likewise annotated.
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hypothesizing a 6-fold increase in reagent reactivity for a
Gaussian model of SHAPE chemistry kinetics (41).

Under this modified model, as the normal component of
the unpaired distribution increased to 80%, the directed
prediction accuracy for E. cuniculi increased above 70%.
(see Supplementary Figure S1.) In fact, when the normal
component is 100% of the unpaired distribution, then 15
of 16 of our chosen sequences have a directed prediction
accuracy at least this high (see Supplementary Table S3).

These ‘proof-of-concept’ results indicate that, even for
sequences like E. cuniculi whose base pairing are not
modeled well by the NNTM, auxiliary information has
significant potential for improving prediction accuracy.
However, a critical factor in directing the thermodynamic
optimization towards the native base pairings may be the
strength of the ‘unpaired’ signal.

Conclusions and future directions

We introduced a stochastic model for experimental
SHAPE data, and evaluated data-directed RNA second-
ary structure prediction accuracy for a diverse set of 16S/
18S ribosomal sequences. Using this auxiliary data as soft
contraints consistently improved thermodynamic opti-
mization accuracy. However, there was significant vari-
ation in the average data-directed prediction accuracy
between sequences, correlated with the undirected
(MFE) accuracy. Thus, although many of our test se-
quences achieved the high accuracy reported for experi-
mental SHAPE-directed predictions, this level of accuracy
was by no means universally attained.

When accuracy cannot be evaluated by direct compari-
son with a known structure, our results still yield helpful
insights. In particular, the similarity between the undir-
ected and a data-directed prediction is highly correlated
with the MFE accuracy, which in turn is roughly
correlated with the data-directed prediction accuracy.
Hence, if the similarity is particularly low (below 30%),
it is likely that the directed prediction accuracy is corres-
pondingly low—as illustrated by the E. cuniculi example.

Table 2. PPV of MFE base pairs

Organism PPV (M) PPV ðM \DÞ PPV ðM nDÞ

E. cuniculi 0.165 0.532±0.143 0.065±0.026
Vairimorpha necatrix 0.177 0.648±0.100 0.026±0.016
C. elegans 0.186 0.609±0.152 0.059±0.039
Emericella nidulans 0.267 0.770±0.076 0.062±0.026
Nicotiana tabacum 0.303 0.862±0.077 0.063±0.029
Cryptomonas.sp 0.333 0.909±0.032 0.044±0.020
M. musculus 0.381 0.751±0.080 0.130±0.051
Mycoplasma gallisepticum 0.377 0.872±0.037 0.077±0.030
Synechococcus.sp 0.380 0.887±0.046 0.081±0.033
E. coli 0.399 0.875±0.038 0.055±0.028
Bacillus subtilis 0.500 0.880±0.039 0.102±0.036
Desulfovibrio desulfuricans 0.517 0.885±0.034 0.136±0.050
Chlamydomonas reinhardtii 0.526 0.874±0.032 0.133±0.051
Thermotoga maritima 0.541 0.868±0.034 0.125±0.044
Thermoproteus tenax 0.589 0.870±0.029 0.150±0.053
H. volcanii 0.726 0.903±0.017 0.245±0.064

PPV(M) is the number of native base pairs in the MFE structure M. For each directed prediction D, the PPV of the set of common base pairs
ðM \DÞ and the set of remaining MFE base pairs ðM nDÞ was computed. Values are the mean for 1000 trials± standard deviation.

(a)

(b)

(c)

Figure 5. Variation in PPV and sensitivity as a function of the
Equation 1 parameters for a random simulated SHAPE data set for
(a) E. cuniculi, (b) E. coli and (c) H. volcanii 16S rRNA. The color bar
indicates percentage measurements for PPV and sensitivity.
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Even in these cases, though, the PPV of base pairs
common to both the MFE and a directed prediction
should be much higher.

The lack of directability for the E. cuniculi predictions
suggests several potential directions for further investiga-
tion. For instance, no systematic study of more than three
sequences has yet been done on the effects of varying the
slope and intercept parameters for the current implemen-
tation of soft constraints. It would be interesting to
analyse more completely this variable aspect of thermo-
dynamic optimization and to characterize its sequence
dependencies. Furthermore, although the current method
of soft constraints works well in many circumstances,
it is not the only one (27). Hence, it is possible that alter-
native methods of incorporating SHAPE data into sec-
ondary structure predictions may address this issue in
the future.

Finally, these results demonstrate the importance of
statistically reproducible results in SHAPE-directed sec-
ondary structure predictions. An alternative method for
simulating SHAPE reactivities, particularly when a known
secondary structure is not available, would use a structural
alignment to map nucleotides back to a related sequence
with an experimental data set. In a small, exploratory in-
vestigation of this approach, we found that it generated
similar results to the stochastic model presented here, and
hence should be investigated further in the future.
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