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Abstract: Breast cancer is a serious threat to women. Many machine learning-based computer-aided
diagnosis (CAD) methods have been proposed for the early diagnosis of breast cancer based on
histopathological images. Even though many such classification methods achieved high accuracy,
many of them lack the explanation of the classification process. In this paper, we compare the
performance of conventional machine learning (CML) against deep learning (DL)-based methods.
We also provide a visual interpretation for the task of classifying breast cancer in histopathological
images. For CML-based methods, we extract a set of handcrafted features using three feature
extractors and fuse them to get image representation that would act as an input to train five classical
classifiers. For DL-based methods, we adopt the transfer learning approach to the well-known
VGG-19 deep learning architecture, where its pre-trained version on the large scale ImageNet, is
block-wise fine-tuned on histopathological images. The evaluation of the proposed methods is
carried out on the publicly available BreaKHis dataset for the magnification dependent classification
of benign and malignant breast cancer and their eight sub-classes, and a further validation on KIMIA
Path960, a magnification-free histopathological dataset with 20 image classes, is also performed.
After providing the classification results of CML and DL methods, and to better explain the difference
in the classification performance, we visualize the learned features. For the DL-based method, we
intuitively visualize the areas of interest of the best fine-tuned deep neural networks using attention
maps to explain the decision-making process and improve the clinical interpretability of the proposed
models. The visual explanation can inherently improve the pathologist’s trust in automated DL
methods as a credible and trustworthy support tool for breast cancer diagnosis. The achieved
results show that DL methods outperform CML approaches where we reached an accuracy between
94.05% and 98.13% for the binary classification and between 76.77% and 88.95% for the eight-class
classification, while for DL approaches, the accuracies range from 85.65% to 89.32% for the binary
classification and from 63.55% to 69.69% for the eight-class classification.

Diagnostics 2021, 11, 528. https://doi.org/10.3390/diagnostics11030528 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-8154-7195
https://orcid.org/0000-0003-1633-0648
https://orcid.org/0000-0001-5183-9074
https://orcid.org/0000-0002-7408-0803
https://orcid.org/0000-0002-9048-8374
https://orcid.org/0000-0002-9169-863X
https://doi.org/10.3390/diagnostics11030528
https://doi.org/10.3390/diagnostics11030528
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11030528
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11030528?type=check_update&version=2


Diagnostics 2021, 11, 528 2 of 26

Keywords: conventional machine learning; deep learning; transfer learning; breast cancer; histopatho-
logical images; visual explanation

1. Introduction

Breast cancer (BC) continues to be the most prevalent and invasive cancer in women for
decades. Every year, the incidence and death rates are increasing enormously. According
to the World Health Organization (WHO), the number of cancer-related deaths among
women is 2.1 million per year, and in 2008, it was reported that 627,000 people died of
BC [1]. Early detection is crucial for improving BC survival, based on well-known imaging
modalities, such as X-ray mammography, which is considered a reference examination
used by doctors to identify early breast lesions and abnormal changes in breast tissue.
However, it does not allow to know whether the tumor is benign or malignant. As a
result, a biopsy procedure is often carried out where the sample tissue is removed from the
suspected region and sent to the laboratory for examination. The sample is studied under
a microscope by a pathologist and a final report confirms or not the presence of cancerous
cells in the sample. While this approach is the most reliable way to provide a diagnosis
with certainty, it suffers from a subjectivity issue where a separate diagnosis can be made
on the same sample and, in particular, between non-specialized pathologists. There is also
the problem of workforce shortages in the field of histopathology [2], which puts the tissue
sample on hold for up to two months, for example, this often occurs in Norway [3]. Thus,
there is an excess demand to develop computer tools to overcome these limitations.

With the exponential growth of artificial intelligence, the computer-aided diagnosis
(CAD) technique on medical imaging is increasingly becoming one of the effective ways
to automatically detect and diagnose diseases at an early stage. The CAD methods of
BC aim to automatically classify breast findings as benign or malignant, using intelligent
approaches. With the advent of whole slide digital scanners, complete slides can now be
scanned to create and produce high-resolution digital files [4,5]. This opened the door
to researchers and practitioners to carry out a quantitative analysis of histopathological
images through developing reliable CAD tools that facilitate the detection and diagnosis of
different diseases [4,5].

Over the last few years, considerable research efforts have been made for classifying
breast abnormalities based on histopathological images [6–9]. In the CAD frameworks
based on conventional machine learning (CML), a set of handcrafted features of BC images
are extracted and then classified using a standalone classifier. The process of classifying
histopathological BC images is extremely reliant on feature extraction stage. Morphological-
based features, textural-based features, fractal features, color features, and intensity-based
features are the most commonly used features to differentiate between different BC image
classes. However, manual feature extraction is deemed to be extremely time-consuming
and often requires an extensive prior domain knowledge of the disease to define highly
representative features. In addition, handcrafted features are mostly indistinguishable
and suffer from what we call the curse of dimensionality. Such problems hampered their
interpretation and the comprehension of what was learned from the input data.

In histopathology workflow, the advantages of handcrafted features CAD approaches
have not been fully identified. There has been much controversy and debate about whether
CAD is an efficient technique at the present level of performance [10]. The daunting nature
of machine vision tasks gives rise to a key move in a new age of machine learning methods
that will allow computers to learn features as data representatives at multiple levels of
abstraction. These are expressed as low-level features such as margin and edge, middle-
level features such as edge junctions, and high-level object parts [11]. The MIT technology
review [12] has acknowledged the deep learning (DL) methods as one of 10 groundbreaking
developments and breakthrough technologies of recent years. DL-based methods have been
inherently developed to overcome the limitations of CML-based methods. Convolutional
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neural networks (CNNs), a class of deep neural networks, have achieved an unprecedented
performance in the field of biomedical image analysis thanks to their powerful capability
to automatically learn image data representation based on a fully supervised end-to-end
process [13]. However, the large scarcity of very large labeled histopathological image
datasets has hindered the full exploitation of CNNs, posing a major obstacle to a worthy
histopathological image analysis. CNNs are characterized as data-hungry networks with a
high likelihood of over-fitting in the case of limited data. Transfer learning [14,15] has been
introduced as a promising alternative to the full training of CNNs, aiming to transfer the
knowledge between source and target domains from similar or different applications. The
standard way of performing transfer learning with deep CNNs is by using data from the
target task to fine-tune a pre-trained model on the source task. Working with ImageNet [16]
pre-trained models for fine-tuning remains the most common practice for many computer
vision applications [17].

However, deep CNNs operate with raw input values and internal neural activations
that humans find difficult to comprehend. Deep CNNs’ black-box decision-making ap-
proach is a deterrent to their use in high-risk everyday activities, where end-users are
generally unfamiliar with deep learning [18]. In real-life practices, physicians rely on partic-
ular regions of an image to assess the class it belongs to and the probability of malignancy.
The network performance and output, on the other hand, can only be explained in terms of
its internal state (i.e., internal layer activations, values of weights, input pixels, etc.), which
is far from the semantics of physicians, who are concerned with the size, shape, and other
related features of the suspicious area [19]. A wide range of techniques were therefore devel-
oped to demystify deep CNNs and eliminate their black box bottleneck. Gradient-weighted
Class Activation Mapping (Grad-CAM) [20] is a state-of-the-art heatmap visualization
technique that generates a localization map using the gradients of any target class relative
to the last convolutional layer. The obtained heatmap is used to visually explain where
in the image the DL model is looking for making a particular prediction. Highlighting
the discriminative regions in histopathological images can make pathologists entrust the
network output while providing them with more clinically interpretable results.

In view of the above, this paper aims to provide an evaluative study with an explain-
able comparison of CML and DL approaches for the classification of histopathological
BC images with respect to their magnification factors using BreaKHis dataset. First, we
describe the proposed CML and DL methods which are used for classification. Second,
we provide the obtained statistical results. Third, we justify the difference in classification
between CML and DL methods through PCA and KPCA image features visualizations.
Ultimately, we explain the decision-making process of the DL method through Grad-CAM
visualizations. The main contributions of our work can be summarized as follows:

• We apply different feature extractors and classifiers to the task of histopathological BC
image classification to make a full comparison. We extract handcrafted features using
three feature extractor techniques (Zernike moments, Haralick, and color histogram),
and the extracted feature vectors are then fused. The obtained feature vector is
subsequently classified using five classical classifiers: KNN, random forest (RF),
multi-layer perceptron (MLP), Adaptive Boosting (AdaBoost), and SVM.

• Based on our previous work [21] where two fine-tuned residual blocks from the
ImageNet pre-trained ResNet-18 model were sufficient to achieve recent state-of-the-
art results for magnification dependent classification, we are motivated to investigate
the block-wise fine-tuning strategy on another deep CNN architecture, VGG-19 [22].
We extend our previous work by fine-tuning VGG-19 block-by-block aiming to figure
out the best proportion of blocks to fine-tune when classifying breast histopathological
images with respect to their magnification factors while examining and discussing
the impact of block-wise fine-tuning on the classification results.

• Along with the comparison of classification performance, we provide a visual inter-
pretation for the compared approaches. We use principal component analysis (PCA)
and kernel-PCA (KPCA) to reduce the deep features and handcrafted features to 2D
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space and then visualize/compare them intuitively. Through the comparison of the
visualization results, the difference in classification performance between CML and
DL methods can be explained.

• We further explore the explanation of the diagnosis decision of the DL method. We
obtain the activation map of the last convolutional layer from the DL model by Grad-
CAM, and then visualize it using a heatmap, showing where in the input image (key
areas), the DL models are looking to settle on a certain class output. Through the
explanation, we can provide the diagnosis decision and the reasons for making such a
decision simultaneously, which inherently helps to improve the pathologist’s trust in
automated DL methods.

• To further test the adaptability and generalizability of the proposed methods, we
interestingly validate them on KIMIA Path960, a more challenging and magnification-
free histopathological image dataset. To our best knowledge, we are the first to provide
such an explainable comparison based on different machine learning methods using
two distinct histopathological datasets. The validation on the KIMIA Path960 dataset
proves the good generalizability of the classification and visualization methods. Such
visual validation on another histopathology dataset can further consolidate clinical
trust in the proposed methods.

The remainder of this paper is organized a follows: In Section 2, we give a succinct
review of related works; in Section 3, a description of our proposed methodology used in
this work is provided; in Section 4, the experimental setup and the comparison and visual-
ization results using the proposed approaches are provided and discussed; in Section 5, we
conclude this work and provide some perspectives and future directions.

2. Related Works

In BC diagnosis, pathologists routinely inspect breast tissues visually which makes
the process challenging, subjective, and time-consuming. To relieve the workload on
pathologists, there has been a huge interest over the last few years for automating this
process through adopting CAD systems. CAD systems based on CML methods rely
essentially on extracting handcrafted features from histopathology images and use them
to train specific classifiers in order to predict the final output labels. Brook et al. [6] used
generic features with support vector machines to classify biopsy images into three classes
using a decent data set. Belsare et al. [7] extracted gray level co-occurrence matrix (GLCM),
graph run-length matrix (GRLM), and Euler number features and then classified them using
linear discriminant analysis (LDA), K-nearest neighbor (KNN), and support vector machine
(SVM) classifiers. The LDA achieved the best classification accuracy, which was 100% and
80% rates for the non-malignant and malignant breast histopathology images, respectively.
Recently, Spanhol et al. [8] released the largest publicly available dataset (called BreaKHis)
containing 7909 histopathological images and assessed the task of classifying the images
into benign and malignant using six algorithms to extract the image texture features, with
help of four classical classifiers. The reported accuracy results were between 80% and 85%.
Sanchez-Morillo et al. [9] extracted KAZE image features along with Bag-of-Features (BOF)
and fed them as inputs to a binary SVM classifier to discriminate between benign and
malignant BC. The reported results were between 71.3% and 85.9%.

Due to the complexity and computational burden associated with extracting mean-
ingful handcrafted features, the classification results reported from the above-mentioned
studies were unsatisfactory and quite far from the need. To address such limitations,
many researchers exploited CNNs due to their strong ability in automatic global feature
learning directly form raw data images. Bardou et al. [23] proposed the classification
of breast cancer into benign and malignant and into benign and malignant sub-classes
using CNNs. The authors designed a CNN model and also tried an alternative approach
where they fed a set of encoded features into CNN instead of the histopathological images.
Bayramoglu et al. [24] also used CNNs for the classification of breast cancer into benign
and malignant. The authors developed two architectures: (1) A single task CNN which
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is used to predict malignancy, and (2) A multitask CNN to simultaneously predict both
malignancy and image magnification factor. The accuracy of the single task CNN model
was 83.25% while for the multitask CNN model was 80.10%. Spanhol et al. [25] used
deep network architectures which are variants of the AlexNet model [26] and LeNet to
classify benign and malignant histopathological images. The authors used the BreaKHis
dataset to train the CNN models where 70% of the data are used for training and 30%
for testing. The highest accuracy achieved based on these models was 85%. In [27], a
deep learning model with a single convolutional layer is designed with a poor accuracy
of 70%. Li et al. [28] proposed a better version of the CNN model with multi-layers that
allowed reaching an accuracy of 90%. In [29], Nahid et al. used a restricted Boltzmann
machine along with a deep CNN, while in [30], they proposed a combination of CNN and
recurrent neural networks. In [31], the same authors also built various CNN models that
consider both deep learning features and handcrafted features. Baltres et al. [32] proposed
a deep learning-based approach to predict an alternative recurrent score of Oncotype DX
using histopathological characteristics. Zemouri et al. [33] proposed a new joint variable
selection and constructive deep neural network “ConstDeepNet”-based approach. The
authors applied the variable selection method to improve the training of the deep learning
model. In [34], the same authors proposed another approach based on the constructive
deep neural network to address the same task. Some recent studies exploited transfer
learning to remedy the data scarcity while addressing this task such as in [21,35–41]. In [35],
a combination of deep learning, transfer learning, and generative adversarial network is
proposed to improve the classification performance. In [36], Song et al. represented the
images by Fisher Vector encoding of the local features extracted from a pre-trained CNN
model on ImageNet. The accuracies reached by the models were 87% and 90%, respectively.
In [37], a similar approach was proposed with an accuracy of 90%. Double transfer learning
was also tested in [38]. Boumaraf et al. [21] optimized the weights of the pre-trained
ResNet-18 model [42] on BreaKHis dataset by fine-tuning the last two residual blocks to
make them more task-specific. They have strengthened the performance of the proposed
model by using global contrast normalization based on the target’s task image values and
three-fold data augmentation. Their results outperform recent state-of-the-art methods
for both magnification dependent and independent binary and eight-class classifications
by a fair margin. Shallu et al. [39] fine-tuned three deep pre-trained models (VGG-16,
VGG-19, and ResNet-50) to classify BC benign and malignant histopathological images.
The best-reported result was 92.60% accuracy using the VGG-16 model. Saxena et al. [40]
used a pre-trained CNN model as a feature extractor for the classification of breast cancer
histopathological images. The process consists of dividing the images into non-overlapped
segments. Then, extracting a set of features using the pre-trained CNN model. Finally,
using SVM as the output classifier, Gour et al. [41] designed a model named ResHist. The
model is composed of a residual learning-based 152-layered CNN.

Despite their near-human-level performance in histopathology BC diagnosis, however,
DL models are frequently assumed to be a “black box” lacking sufficient interpretability
to explain the human-like decision-making prediction mechanisms [43]. Hence, several
methods have been recently proposed aiming to make DL models more transparent to
users, to provide a deeper insight into their working strategies, and to clarify why a specific
decision has been made for a particular input [44,45]. For instance, saliency maps [46],
image captioning [47,48], and visual attention map [49,50] techniques are used for de-
mystifying DL models in whole-slide histopathological image (WSI) analysis. However,
we noticed that there were insufficient research studies on the visualization and interpre-
tation of CNNs in histopathological BC diagnosis, which restricted their use in routine
histopathology workflow.

3. Methods

Our approaches involve extracting features from histopathological images and then
classifying them into their respective classes using both CML and DL approaches. The same
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pre-processing stage is first applied to both CML and DL methods. For the CML methods,
we utilized different handcrafted feature extractors and multiple classifiers. Herein, we
extract Zernike moments features, Haralick features, and color histogram features to represent
histopathological image data, then the resulting features are fused and the obtained feature
vector is further classified using KNN, RF, MLP, AdaBoost, and SVM classifiers. For the
DL-based approach, we investigate the pre-trained VGG-19 model with transfer learning
to automatically extract deep features and conduct classification using a softmax classifier.
More details of the proposed methods are shown below.

3.1. Image Pre-Processing

In this stage, we pre-process the datasets by normalizing the stain-color of images and
prepare them for subsequent stages.

Histopathological images are usually acquired using different microscopes or scanners.
The visualization of microscopic structures is enabled by the coloring of the tissue by chem-
ical stains from diverse manufacturers. Consequently, a significant color variation between
images can be unavoidable, which undermines the efficient development of automatic
histopathological imaging techniques. To cope with this issue, many stain normalization
algorithms have been introduced. In this paper, we investigate the approach proposed
by Vahadane et al. [51] which changes the color of one image (source) to match that of
another (target or reference) image. It integrates a regularized stain separation which is
incorporated using a non-negative matrix factorization. This color normalization technique
preserves the structural information of the source image after color normalization, which is
very important for subsequent image analysis stages. To normalize our images, we first
asked an experienced pathologist to pick a reference template image from the experimental
dataset. Then we normalize the images in the dataset using the same method used in [51].
Figure 1 illustrates the effect of stain normalization on a few histopathological samples from
the BreaKHis dataset. The reference template image was chosen from 40×magnification
data. The first two rows are benign images in 40× and 100× magnifications, while the last
two rows below show malignant images in 200× and 400×magnifications, respectively.

Before Normalization After Normalization

Reference Template 

Image

40×

100×

200×

400×

Figure 1. Examples of images before (left column) and after (right column) color normalization.
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3.2. Conventional Machine Learning (CML) Approaches

The framework of CML methods for image classification usually involves different
stages: image acquisition, pre-processing, feature extraction, and classification. Figure 2
shows our proposed CML pipeline used for histopathological image classification.

Histopathological 
Image Dataset

Vahadane Stain-color 

Normalization 

Normalized 
Histopathological Images

Pre-processing Stage

Haralick Features

Zernike moments 

Features

Color Histogram 

Features

Handcrafted Image Feature 

Extraction

Feature Vectors

Train the Fused Feature 

Vector  

Fused Feature Vector

Classification

KNN AdaBoost RF MLP SVM

Feature Extraction Stage Classification Stage

Class Output

Figure 2. The pipeline of conventional machine learning (CML) classification methods used in
our work.

3.2.1. Feature Extraction-Based CML Approaches

Extraction of features is a critical stage in classification pipelines. To better represent
the images from different feature aspects, we exploit three different feature extractors and
merge the obtained features to form a fused feature vector of 550 dimensions.

• Zernike Moments Features: Morphological features are essential to represent the
shape and margin (smooth or irregular) of cancer cells. To quantify morphological features,
we use Zernike moments [52,53] as descriptors of shape and margin which are substantially
robust to noise, invariant to scale and rotation, and provide a fast and efficient computation,
particularly in large image datasets. The calculation of Zernike moments from an input
image includes three steps: calculation of radial polynomials, calculation of Zernike basis
functions, and calculation of Zernike moments by projecting the image onto the Zernike
basis functions [54]. Zernike polynomials are continuous orthogonal polynomials defined
in polar coordinates over a unit disk [55]. The discrete form of the Zernike moments for an
image with the size N × N is defined as follows:

Zn,m =
n + 1

αN

N−1

∑
c=0

N−1

∑
r=0

f (x, y) V∗n,m (x, y)

=
n + 1

αN

N−1

∑
c=0

N−1

∑
r=0

f (x, y)Rn,m (pxy)e−jmθcr

(1)

where, 0 ≤ pxy ≤ 1 and αN is a normalization factor. n is a non-negative integer
representing the order of the radial polynomial. m is an integer satisfying constraints
n− |m| = even and |m| ≤ n representing the repetition of the azimuthal angle. Rn,m is a
radial polynomial and Vn,m is a 2-D Zernike basis function. As a feature, Zernike moments
are built using a set of polynomials and are defined inside the unit circle and the radial
polynomial vector which is calculated with order n and repetition m. More details on
Zernike moment computation can be found in [56]. In our work, we extract a total of 25
Zernike moments from orders 0-8 from each histopathological image.



Diagnostics 2021, 11, 528 8 of 26

•Haralick Features: Cancer cells are also characterized by their textures which reflect
the pattern distribution of nuclei inside the breast tissue. To quantify the textures of
histopathological images, we utilize Haralick features [57] computed from GLCM. To do
so, we first convert the input color images into gray-scale. To represent different texture
scales in histology images, we opt for multiple distances d and eight angles α, same as
in [58,59]. Then, we extract the same 13 Haralick features (we only removed maximal
correlation coefficient due to its instability). To minimize the number of derived features
arising from the various values of d and α, we simply took the mean of them.

• Color Histogram Features: In histopathology, visualization or recognition of micro-
scopic structures is facilitated by histological staining of cancer tissues, which is typically
accomplished with Hematoxylin and Eosin. Hematoxylin colors the nuclei cells with a pur-
ple/blue color while Eosin gives pink color to other structures. Hence, the distribution of
colors in an image is an important feature that needs to be quantified for the differentiation
of different cancer classes. To do so, we compute the image color features based on color
histogram, which represents the number of pixels in each bin that have the same color for a
fixed list of color ranges. Since we have RGB histopathological images, we used histograms
of 8 bins in each channel which produces a 512 feature vector. The stain-color normalization
carried out at the pre-processing stage makes the color histogram features much more
discriminatory due to the unified appearance of the resultant stain-normalized images.

3.2.2. Classification-Based CML Approaches

In this stage, the obtained three feature vectors are first fused and the resulting fused
feature vector is then trained and classified using five classical classifiers: KNN, RF, MLP,
AdaBoost, and SVM. KNN is a type of learning algorithms that stores all available training
data and classifies the testing data based on a similarity measure (e.g., Manhattan distance).
RF is an ensemble approach for classification and regression that consists of a large number
of decision trees predictors. Each decision tree in the RF outputs a class prediction and
the class with the most votes becomes the model’s prediction. MLP is a special type of
feed-forward artificial neural network consisting of many nodes called neurons organized
in layers, namely: input layer, one or more hidden layers, and an output layer. Each layer
is composed of a pre-defined set of neurons and every neuron in a layer is fully connected
to the next layer. AdaBoost is an ensemble of learning approaches which uses an iterative
method to learn from the errors of weak and inaccurate classifiers, and turn them into strong
ones. SVM is a well-known discriminative classifier that creates a separating hyperplane in
a high-dimensional space that can be used for classification and regression tasks.

3.3. Deep Learning (DL)-Based Approach

Recently, Deep CNNs have demonstrated an impressive performance in many com-
puter vision applications. In our work, we exploited the transfer learning technique on
one of the most state-of-the-art architectures: Visual Geometry Group Network (VGGNet)
which is pre-trained on ImageNet, aiming to transfer the knowledge from natural images
to BC histopathological images. VGGNet has been proposed in 2014 by Simonyan and
Zisserman [22] from Oxford University. The authors investigated the assumption of getting
better performance with much deeper networks. VGGNet outperforms AlexNet [26] by
adding more convolutional layers and was able to get 7.3% top-5 error on 2014 ImageNet
challenge. In our work, we investigated VGG-19, a successful variant of VGGNet. VGG-19
has 19 layers sequentially stacked on top of each other. It mainly consists of five VGG
blocks, five max-pooling layers, and three fully-connected layers (i.e., a dense block). Each
VGG block involves several standard convolutional layers having solely very small 3 × 3
filters, and each followed by a 2 × 2 max-pooling layer.

Deep learning models such as VGG-19 work best for a very large image dataset such as
ImageNet, but for smaller datasets, their efficiency is typically hampered by common issues
such as over-fitting. Data augmentation is the most common way to tackle the over-fitting
problem during the model’s training, in which our normalized image dataset obtained
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after pre-processing is artificially increased in size. Here, we applied five augmentation
techniques to the training input images: random horizontal flip, random vertical flip,
random rotation with 90 degrees, random rotation with 180 degrees, and random rotation
with 270 degrees.

Then, the augmented dataset is used to train the DL models. For training, we exploited
transfer learning. We followed the same strategy proposed in our previous work [21],
where we fine-tuned two residual blocks of a pre-trained ResNet-18 model to achieve
recent state-of-the-art results for magnification dependent classification. Here, we extend
our previous work in [21] by investigating the block-wise fine-tuning strategy on another
deep CNN architecture, VGG-19 [22]. The difference here is that we tend to fine-tune
VGG-19 block-by-block aiming to figure out the best proportion of blocks to fine-tune
when classifying breast histopathological images with respect to their magnification factors
while examining and discussing the impact of block-wise fine-tuning on the classification
results. The motivation behind this sort of fine-tuning is two-fold: firstly, if we fine-tune
the VGG-19 deep model (19 layers in total) with the commonly used layer-wise fine-tuning,
it will require 19 per-layer fine-tuning which is a dull and time-intensive process if we
consider the time required for training each fine-tuned architecture; secondly, to our best
knowledge, this block-by-block fine-tuning strategy has never been tried, examined, or
discussed previously in BC histopathological image classification methods, except for other
imaging modalities such as brain tumor classification in MRI images [60].

The proposed DL approach and the followed block-wise fine-tuning strategy are
illustrated in Figure 3. As can be seen, we proceed with the block-wise fine-tuning as
follows: we first removed the last fully-connected layer that was originally devoted to
output 1000 class categories in the ImageNet dataset and we replaced it with our customized
fully-connected layer with the neuron number corresponding to the class number in our
dataset. Secondly, we divided the VGG-19 architecture into six distinct blocks (B1, B2, B3,
B4, B5, and B6), where the first five blocks are VGG blocks of regular 3 × 3 convolutional
layers with periodic 2× 2 max-pooling layers, and the sixth block is a dense block with three
fully-connected layers. We then retrain the pre-trained deep VGG-19 model by starting
fine-tuning by a block from block B6 and keeping all other VGG blocks (B1, B2, B3, B4,
and B5) untrainable by freezing their learning. We progressively go deeper into the earlier
blocks of the deep model, gradually resume backpropagation on them, and accordingly
track the performance improvement. Finally, a softmax layer is inserted on top of the deep
block-wise fine-tuned model to serve as a classifier for the desired classification tasks.
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Figure 3. The proposed DL-based architecture and block-wise fine-tuning strategy on histopathologi-
cal images.
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4. Performance Comparison and Visual Explanation
4.1. Setup
4.1.1. Datasets

In our work, two histopathological image datasets were considered. We first used the
BreaKHis dataset to build and evaluate the proposed BC classification approaches and then
investigated the KIMIA Path960 dataset to validate them based on the obtained results.

BreaKHis dataset is created by Spanhol et al. [8] and is publicly available at: (https:
//web.inf.ufpr.br/vri/databases/breast-cancer-histopathological--database-breakhis/, ac-
cessed on 10 February 2019). It contains 7909 histopathological images acquired on 82 pa-
tients. Images in this dataset have been roughly categorized into benign BC and malignant
BC. Benign BC has 4 sub-classes: adenosis (A), fibroadenoma (F), phyllodes tumor (PT),
and tubular adenoma (TA). Malignant BC has 4 sub-classes: ductal carcinoma (DC), lobular
carcinoma (LC), mucinous carcinoma (MC), and papillary carcinoma (PC). All the images
are acquired with different magnification factors, including 40×, 100×, 200×, and 400×
(see Figure 1). The distribution of images in BreaKHis is shown in Figure 4. During our
analysis of BreaKHis dataset sub-classes, we noticed an image replication of the patient
with ID number: 13412 in the malignant sub-classes: ductal carcinoma (DC) and lobular
carcinoma (LC). This is evident and clinically intelligible because it could be a result of tu-
mor growth inside the whole breast tissue involving different annotated lesions in the same
region. However, this replication will certainly confuse the proposed CAD-based models
and complicate the classification tasks. Accordingly, we have omitted the misleading
images from the dataset.
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Figure 4. Distribution of images in the BreaKHis dataset.

KIMIA Path960 [61] is a collection of histopathological images from more than 400 WSI
images of muscle, epithelial and connective tissue, etc. It is a magnification-free dataset,
containing 960 histopathological images divided over 20 classes, which is also publicly
available at: (https://kimialab.uwaterloo.ca/kimia/index.php/pathology-images-kimia-
path960/, accessed on 5 April 2019). The dataset contains 20 histology scans that “visually”
represent different texture/pattern types. The classes in the dataset are arranged in alpha-
betical letters from A to T. Forty-eight regions of interest of the same size from each WSI
are down-sampled to 308 × 168 patches yielding a dataset of (20 × 48) = 960 TIF images.
Figure 5 shows sample images from the KIMIA Path960 dataset.

For training CML approaches, we conduct 10-fold cross-validation where both datasets
(BreaKHis and KIMIA Path960) were randomly divided into 10 subsets of the same size.
Each time a subset is taken as the test set, and the remaining 9 subsets are retained as the
training set, 30% of which is used as the validation set. The cross-validation process finishes

https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological--database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological--database-breakhis/
https://kimialab.uwaterloo.ca/kimia/index.php/pathology-images-kimia-path960/
https://kimialab.uwaterloo.ca/kimia/index.php/pathology-images-kimia-path960/
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when all the 10 subsets are evaluated once. The results of the 10-fold cross-validation
are averaged to arrive at the final performance evaluation. For DL-based approach, we
randomly split both datasets into training and testing sets. We used 70% of the data for
training and we reserved the remaining 30% for testing.

Figure 5. Sample images for 20 classes from the KIMIA Path960 dataset.

4.1.2. Parameter Setting

For both approaches, the images in the datasets are first resized to 224 × 224-pixel
size (as required by the original VGG-19 model) before feeding them to the models. For
CML approaches, we used the following parameters in all our experiments to train the five
standalone classifiers: for the KNN classifier, we fixed the number of neighbors to 3 and
let the other parameters in their default values. For the RF classifier, we set the number
of trees to 100. For the MLP classifier, we used the default parameter values including
the number of hidden layers equal to 100, the rectified linear unit (Relu) as activation
function, the stochastic gradient-based optimizer (Adam) [62] as an optimizer, an L2
penalty (regularization term) parameter set to 0.0001, and an initial learning rate equal to
0.001. We also expanded the maximum number of iterations to 2000. For the AdaBoost
classifier, we set the maximum number of estimators at which boosting is terminated to
50 and shrank the contribution of each classifier by a learning rate of 1. For the SVM
classifier, we tested out different kernels and we kept the best parameters that provided
us the highest classification results (i.e., the linear kernel with a regularization parameter
C = 5).

For the DL-based approach, we optimized the weights by stochastic gradient descent
(SGD) with a momentum value of 0.9. We set the learning rate to a small value of 0.001
to prevent distorting the already learned weights. To tackle over-fitting, we applied both
dropout with a probability of 0.5 and weight decay regularization with a reasonable lambda
value of 0.001. We set the batch size to 32 and we trained all the block-wise fine-tuned
architectures for 70 epochs.

4.1.3. Evaluation Criteria

To evaluate the proposed approaches, we used multiple statistical evaluation metrics,
namely accuracy, recall, and precision. The accuracy measures the overall performance of
the model on the testing data. The recall, also known as sensitivity, is the proportion of
positives that are correctly classified. The precision, however, is the positive predictive rate.

4.2. Classification Performance Results
4.2.1. Comparison on BreaKHis Dataset

• Results of CML Methods: The obtained classification accuracies using the CML
approach on the BreaKHis dataset are given in Table 1.
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We can see from Table 1 that: (1) different classifiers produced different accuracies
for various magnification factor images; (2) binary classifications show higher accuracies
than eight-class classifications; (3) for magnification dependent binary classification, the RF
classifier yielded the highest classification results for 40×, 200×, and 400× data with 87.69%,
89.82%, 85.65% accuracies, respectively, except for 100× where it has been outperformed
by the KNN classifier which produced 89.32% classification accuracy. SVM classifier has
shown the lowest accuracy for all magnification factors except for 400× data where MLP
and AdaBoost yielded the same poorest accuracy 85.31%; (4) for magnification dependent
eight-class classification, the RF classifier dominates all other classifiers in all magnification
factors followed by KNN, MLP, SVM, and lastly AdaBoost, respectively. Except for 400×
data, where MLP showed higher classification than KNN with 62.28% accuracy.

The corresponding recalls and precisions for different classifiers are shown in Figure 6.

Table 1. The classification accuracy results (%) using the CML approaches on the BreaKHis dataset.

Classification
Scheme

Magnification
Factor

KNN RF MLP AdaBoost SVM

Binary

40× 87.04 87.69 85.85 85.67 85.26

100× 89.32 88.94 87.18 86.86 86.51

200× 89.75 89.82 88.26 88.16 87.97

400× 84.53 85.65 85.31 85.31 85.38

Eight-class

40× 65.28 68.44 64.41 56.98 58.16

100× 65.59 68.17 65.08 56.90 58.37

200× 67.02 69.69 66.42 59.02 60.44

400× 60.40 63.55 62.28 55.10 56.46

8
3

.8
5

8
5

.4
6

8
4

.0
1

8
7

.0
5

8
1

.3
5

8
5

.0
1

8
1

.1
6

8
4

.5

8
1

.1
7

8
3

.7
9

8
7

.1
1

8
7

.7
4

8
5

.6
6

8
8

.1
5

8
3

.4
3

8
5

.9
3

8
3

.2
9

8
5

.4
1

8
2

.9 8
4

.9
4

8
7

.7
3

8
8

.2
5

8
7

.3
7

8
8

.6
5

8
5

.0
6

8
5

.9
8

8
5

.1
1

8
6

.7
1

8
4

.9
4

8
6

.4
4

8
1

.8
3

8
2

.5
3

8
2

.6
9

8
4

.2
3

8
2

.0
8

8
3

.9
8

8
2

.2
7

8
3

.8
5

8
2

.4
9

8
3

.8
6

5
2

.1

6
3

.0
7

5
4

.4
2

6
9

.5
9

4
7

.2
6

6
1

.7

4
3

.5
1

5
4

.1
1

4
4

.0
7

5
4

.8
6

5
2

.0
4

6
1

.3
3

5
3

.9

6
7

.2
1

4
8

.1
5

6
1

.0
6

4
3

.2
9

5
2

.4
7

4
4

.1
5

5
3

.7
7

5
2

.3
4

6
0

.2
5

5
3

.6
8

6
5

.1
2

4
7

.2
3

5
8

.9
8

4
3

.0
8

5
1

.6
7

4
4

.1
7

5
3

.6
6

4
7

.2
1

5
6

.8
1

4
8

.4
1

6
2

.7
1

4
5

.5
9

6
0

.5
7

4
1

.7
7

5
2

.8
1

4
2

.5
6

5
3

.9
7

RECA L L PREC I S I ON RECA L L PREC I S I ON RECA L L PREC I S ION RECA L L PREC I S ION RECA L L PREC I S ION

KNN RF MLP ADABOOST SVM

Binary 40x Binary 100x Binary 200x Binary 400x Eight-class 40x Eight-class 100x Eight-class 200x Eight-class 400x

RECALLS AND PRECISIONS OF THE PROPOSED CML  APPROACHES

Figure 6. Recall and precision results (%) using the CML approaches on the BreaKHis dataset.

• Results of the DL Method: The obtained classification accuracy using the DL
approach with a block-wise fine-tuning strategy on the BreaKHis dataset are given in
Table 2.

We can see from Table 2 that for both classification schemes, different performances
are obtained with different fine-tuned blocks in the deep VGG-19 model. We can notice
that the shallow block-wise fine-tuning (i.e., B6 and B6-B5) are not the optimal options
for classifying breast histopathological images. The reason is that shallow block-wise
fine-tuning is more beneficial in the case where the source data (ImageNet) and the target
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data (Histopathological images) are similar, which is not the case in our study (natural
images vs medical images). Moreover, the earlier layers in CNNs learn low-level and
generic image features such as color blobs and edges, while by going deeper into the
network, the image features become more task-specific to the input data by learning more
complex features. Hence, the best results in our study are obtained using a deep block-wise
fine-tuning. Block-wise fine-tuning with B6-B3 and B6-B2 options provided us the highest
results in both classification schemes. Block-wise fine-tuning with VGG-19 blocks B6-B3 is
the best choice for classifying border magnification factor images (40× and 400×), while
B6-B2 VGG-19 blocks are the ideal choice when conducting transfer learning for classifying
in-between magnification factor images (100× and 200×), except for 100× eight-class
classification, where B6-B1 yielded the highest classification result. Note that fine-tuning
with B6-B1 is the optimization of all the parameters of the whole pre-trained network on
the target dataset.

Table 2. The classification accuracy results (%) using the DL approach on the BreaKHis dataset (Bi
means the fine-tuned blocks).

Classification
Scheme

Magnification
Factor

Accuracy Based on Block-Wise Fine-Tuning Strategy

B6 B6-B5 B6-B4 B6-B3 B6-B2 B6-B1

Binary

40× 53.23 88.27 94.56 98.13 97.96 97.45

100× 74.27 88.76 94.79 94.95 97.39 96.09

200× 73.74 85.52 93.10 94.95 96.63 94.95

400× 68.03 83.27 89.03 94.05 92.38 91.64

Eight-class

40× 31.80 74.83 80.95 88.95 88.27 85.88

100× 44.79 65.96 79.15 79.80 83.22 83.71

200× 49.49 60.44 76.94 79.63 80.64 79.12

400× 47.03 56.69 67.29 76.77 72.49 76.39

The corresponding recalls and precisions for the different fine-tuned blocks are shown
in Figure 7.
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Figure 7. Recall and precision results (%) using the DL approach on the BreaKHis dataset.

Another important thing to highlight here is that higher recall values are always
preferable in the case of diagnosing BC, which has a great significance in the diagnostic
histopathology practice. That is because the harm resulting from a false negative (patient
remains without a diagnosis) is much more detrimental than a false positive (patient
undergoes additional procedures and treatments such as chemotherapy). Hence, in case
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of equivalence in the accuracy results between different classifiers in CML approaches or
between different blocks in block-wise fine-tuned architectures, the decision of the most
appropriate classifier/architecture is based upon their corresponding recall values. The
classifier/architecture with a higher recall value is selected as the most suitable one as it
renders the model more sensitive to make predictions.

• Comparison of CML and DL Methods: From the comparison of the CML (Table 1)
and DL (Table 2) methods, it can be noted that: (1) the best classification accuracies achieved
using CML approaches are between 85.65% and 89.32% for binary classification and be-
tween 63.55% and 69.69% for eight-class classification. The highest obtained classification
accuracies using DL approach ranges from 94.05% to 98.13% for binary classification and be-
tween 76.77% and 88.95% for eight-class classification. Obviously, the DL method achieved
higher classification accuracies than the CML methods; (2) from Figure 6, we can see that
the highest recall and precision values obtained using CML approaches are from binary
classification of 200× data with 87.73% and 88.65% based on KNN and RF classifiers,
respectively; (3) similarly, Figure 7 reveals that the best recall and precision values with DL
method are from binary classification of 400× data (with B6 block fine-tuning) and 40×
(with B6-B3 fine-tuning), yielding 98.62% and 98.52%, respectively.

4.2.2. Validation and Comparison on the KIMIA Path960 Dataset

In this section, we further validate and compare the same CML and DL approaches
on the KIMIA Path960. The obtained accuracy results for CML- and DL-based approaches
are shown in Tables 3 and 4, respectively. For CML approaches, RF classifier yielded the
best classification accuracy with 93.45% followed by KNN classifier with 88.54%, while
AdaBoost classifier provided 68.34% as the lowest reported accuracy. Moreover, same as
in the BreaKHis dataset, the block-wise fine-tuning with B6-B3 and B6-B2 options have
provided the highest results in the classification of the twenty-class KIMIA Path960 dataset
with the same accuracy rate 98.26%, followed by the full fine-tuning (B6-B1) with 97.92%
accuracy. Since there are two block-wise fine-tuned architectures that yielded exactly
the same classification accuracy (B6-B3 and B6-B2) and based on what we have already
stated, the selection of the best architecture is based on the highest recall value. Hence,
B6-B2 is the best proportion to fine-tune as it has produced a 98.31% recall value. These
reported results on the twenty-class KIMIA Path960 dataset validated the previous results
obtained on BreaKHis dataset and prove the effectiveness and generalizability of both
proposed approaches.

Table 3. The classification accuracy results (%) using the CML approaches on the KIMIA
Path960 dataset.

Classification
Algorithm Accuracy Recall Precision

KNN 88.54 87.25 88.49

RF 93.45 92.89 93.47

MLP 83.19 82.64 80.50

AdaBoost 68.34 68.02 64.77

SVM 74.37 74.19 71.62
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Table 4. The classification accuracy results (%) using the DL approach on the KIMIA Path960 dataset
(Bi means the fine-tuned blocks).

Block-Wise Fine-Tuning
Strategy Accuracy Recall Precision

B6 68.06 68.00 74.51

B6-B5 89.58 90.13 91.17

B6-B4 96.53 96.49 96.37

B6-B3 98.26 97.96 98.12

B6-B2 98.26 98.31 98.48

B6-B1 97.92 98.02 98.23

4.3. Visual Explanation
4.3.1. Classification Performance Explanation

In this section, we visualize the image features utilized by both CML and DL meth-
ods, and explain the difference in classification performance between them through the
visualization. For the CML method, the fused handcrafted features of 550 dimensions are
collected for each image. For the DL method, we extract the deep features from the best
VGG-19 models corresponding to each image data. Thus, for each image, a feature vector of
4096 dimension is derived from the last fully-connected layer of the deep fine-tuned model.
Then, we use principal component analysis (PCA) and kernel PCA (KPCA) to reduce the
dimensionality of both handcrafted and deep feature vectors and further visualize and
compare them.

PCA is a linear dimensionality reduction technique that selects only the most mean-
ingful features (in the form of components) that capture the maximum variability (i.e.,
statistical information) about the data. The new principal components are new variables
that are linear functions of those in the original data, which successively maximize the
variance and are uncorrelated with each other [63]. By this way, high-dimensional data can
be projected onto a smaller 2D subspace while preserving the variance of included features
as much as possible. The KPCA aims to address the drawback of the classical PCA algo-
rithm by generalizing to a non-linear dimensionality reduction [64]. In our work, the KPCA
version is used with different kernels including (linear, polynomial, rbf, and sigmoid). The
PCA results of handcrafted features and deep features for magnification dependent binary
classification on BreaKHis dataset are shown in Figures 8 and 9, respectively. Similarly,
the visualizations of features for eight-class classifications are shown in Figures 10 and 11,
respectively. While, the visualizations of the twenty-class KIMIA Path960 dataset are
shown in Figure 12. Through the visualizations, we can notice the distribution of different
classes of the reduced features. Although handcrafted features have a certain degree of
separability, a huge overlap can be observed for certain classes. On the other side, the
extracted deep features are much more discernible and show a promising separability
between the classes (each class is grouped). Moreover, for both classification schemes of
BreaKHis dataset, the 400× data are the most complex data for classification, even with the
DL approach. This has been already illustrated in the previous results of Table 2 and the
PCA visualizations where there is a much significant overlap between the classes of 400×
compared to other datasets. The visualization based on KIMIA Path960 also validate the
effectiveness and generalizability of the proposed methods. Overall, these visualizations
demonstrate that DL-based features are more potent than those of CML approaches for
distinguishing breast cancer histopathological images. The visualizations of the features
explain the superiority of DL method over CML methods in the classification performance
described in Section 4.2.
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Figure 10. PCA and KPCA visualizations (rows) of handcrafted features extracted using CML
approaches for eight-class classification at each magnification factor (columns) using the BreaKHis
dataset, classes from 0 to 7 stands for A, DC, F, LC, MC, PT, TA, and PC classes, respectively.
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Figure 11. PCA and KPCA visualizations (rows) block-wise deep fine-tuned features extracted from the best DL VGG-19 

models for eight-class classification at each magnification factor (columns) using  BreaKHis dataset, classes from 0 to 7 stands 
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Figure 11. PCA and KPCA visualizations (rows) of block-wise deep fine-tuned features extracted
from the best DL VGG-19 models for eight-class classification at each magnification factor (columns)
using BreaKHis dataset, classes from 0 to 7 stand for A, DC, F, LC, MC, PT, TA, and PC classes,
respectively.
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Figure 12. PCA and KPCA visualizations (rows) of handcrafted features extracted using CML approaches (left) and block-

wise deep fine-tuned features extracted from the best DL VGG-19 model (right) for the twenty-class KIMIA Path960 

classification, classes from 0 to 19 stands for A to T classes, respectively. 

Figure 12. PCA and KPCA visualizations (rows) of handcrafted features extracted using CML
approaches (left) and block-wise deep fine-tuned features extracted from the best DL VGG-19 model
(right) for the twenty-class KIMIA Path960 classification, classes from 0 to 19 stand for A to T classes,
respectively.
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4.3.2. Classification Decision Explanation of the DL Approach

In this section, we explore the explanation of the decision-making process of the
DL method using the Gradient-weighted Class Activation Mapping (Grad-CAM) tech-
nique [20]. Grad-CAM allows to visually understand how each pixel area in the input
image contributes most to the critical feature maps in the final classification output. It
mainly utilizes the gradients flowing into the final convolutional layer in the network in or-
der to produce a heatmap highlighting the key regions in the image that the model focuses
for making a particular prediction. Figures 13 and 14 illustrate the output obtained with
different histopathological images using Grad-CAM from BreaKHis and KIMIA Path960
datasets, respectively. Note that these results are based on the best block-wise fine-tuned
VGG-19 models (the ones that provided the highest performance). It can be observed
from Figures 13 and 14 that the morphological characteristics of the nuclei cells are the
key factor influencing the output classification of the proposed models. The heatmaps
generated using Grad-CAM mainly focus on the nuclei cells incorporating various and
complex shape and margin features. For the BreaKHis dataset, localizing the key region in
the malignant classes (e.g., DC or LC) involves looking for the nuclei cells with irregular
shapes, speculated margins, and larger sizes with distinctly identifiable nucleoli and het-
erogeneous chromatin distribution. Compared to malignant tumors, the nuclei of benign
tumors are smaller in size and tend to have round or oval shapes with well-defined or
circumscribed margins. These complex patterns and structures with overlapping nuclei
clusters in BC histopathological images, especially in 400× data, may sometimes mislead
the DL models, resulting in a considerable number of false positive/negative outcomes
that have undesirable implications for future patients’ treatment.

40x 100x 200x 400x

Malignant 
(sub-class: LC)

Benign 
(sub-class: F)

Benign 
(sub-class: 

PT)

Malignant 
(sub-class: 

DC)

Benign 
(sub-class: A)

Figure 13. Heatmap visualizations using Gradient-weighted Class Activation Mapping (Grad-CAM)
with different image samples from BreaKHis dataset. For each image row, the class and sub-class are
also provided. Red regions mean high activations and blue regions mean low activations.



Diagnostics 2021, 11, 528 22 of 26

E26 N11 P4 S33 T48

Figure 14. Heatmap visualizations using Grad-CAM with different image samples from the KIMIA
Path960 dataset. For image column, the class is also provided. Red regions mean high activations
and blue regions mean low activations.

4.4. Classification Comparison with Other State-of-the-Art Methods

In this section, we compare the classification accuracy results obtained by each of
our approaches with similar state-of-the-art methods. Note that our main purpose in this
paper was not to achieve the current state-of-the-art performance results but to prove the
applicability of various machine learning techniques for BC diagnosis and analyze their
efficiencies while providing a visual explanation/interpretability of classification/decision-
making in a comparative and conclusive manner. Nevertheless, our results still show a
superiority over similar methods in the literature for the magnification dependent classifi-
cation of BreaKHis dataset (Tables 5 and 6) as well as for the twenty-class classification of
the KIMIA Path960 dataset (Table 7). Note that for binary classification of the BreaKHis
dataset (Table 5), our proposed CML approach outperforms those of Spanhol et al. [8]
and Sanchez-Morillo et al. [9], and our DL-based approach outperforms the deep learning
architectures proposed by Bayramoglu et al. [24] and Spanhol et al. [25]. Similarly, For
eight-class classification (Table 6), both of our CML and DL-based approaches outperform
different counterparts introduced by Bardou et al. [23]. For the twenty-class KIMIA Path960
classification (Table 7), our proposed CML approach outperforms the CML approach pro-
posed by Kumar et al. [61], while our proposed DL approach shows superiority over those
proposed by Kumar et al. [61] and Dif and Elberrichi [65].

Table 5. Comparison with state-of-the-art methods for benign and malignant classification of BreaKHis dataset.

Reference Method Used
Accuracy Performance (%)

40× 100× 200× 400×
Spanhol et al [8]. Completed LBP features with SVM classifier. 77.40 76.40 70.20 72.80

Sanchez-Morillo et al [9]. KAZE features combined with Bag-of-Features
with binary SVM classifier. 85.90 80.40 78.10 71.30

Bayramoglu et al [24]. A deep CNN model which is variant of AlexNet 89.60 85.00 84.00 80.80

Spanhol et al [25]. Single task architecture based on a deep CNN model
with a softmax layer on top. 83.00 83.10 84.60 82.10

This work

Zernike moments, Haralick, and color histogram features
all fused and classified with five standalone classifiers. 87.69 89.32 89.82 85.65

Block-wise fine-tuned VGG-19 model with
softmax classifier on top. 98.13 97.39 96.63 94.05
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Table 6. Comparison with state-of-the-art methods for eight-class classification of BreaKHis dataset.

Reference Method Used
Accuracy Performance (%)

40× 100× 200× 400×

Bardou et al [23].

SURF features encoded with bag of words (BoW)
and classified with SVM. 49.65 47.00 38.84 29.50

SURF features encoded with locality constrained linear
coding and classified with SVM. 55.80 54.24 40.83 37.20

Deep CNN features (trained from scratch) with
KNN classifier on top. 70.48 68.00 70.08 66.38

Deep CNN features (trained from scratch) with
Linear SVM classifier on top. 72.35 67.68 66.45 64.95

This work

Zernike moments, Haralick, and color histogram features
all fused and classified with five standalone classifiers. 87.69 89.32 89.82 85.65

Block-wise fine-tuned VGG-19 model with
softmax classifier on top. 98.13 97.39 96.63 94.05

Table 7. Comparison with state-of-the-art methods for twenty-class classification of KIMIA Path960 dataset.

Reference Method Used Accuracy Performance (%)

Kumar et al [61].

LBP features with two types of distance measures (Chi-squared
and Euclidean distance). 90.62

Bag of visual words (BoVW) features with histogram
intersection kernel SVM classifier. 96.50

Deep features based on pre-trained AlexNet and VGG-16
models. 94.72

Dif and Elberrichi [65]. Transfer learning based on Inception-v3 CNN architecture, six
histopathological source datasets, and four target datasets. 98.18

This work

Zernike moments, Haralick, and color histogram features
all fused and classified with five standalone classifiers. 93.45

Block-wise fine-tuned VGG-19 model with
softmax classifier on top. 98.26

5. Conclusions

In this paper, we have provided a comparative study with visual explanation of con-
ventional machine learning and deep learning approaches for magnification dependent
histopathological breast cancer image classification. The DL-based approach based on
transfer learning with deep block-wise fine-tuning shows a remarkable performance su-
periority compared to CML approaches. The highest classification results achieved using
CML approaches were between 85.65% and 89.32% for binary classification and between
63.55% and 69.69% for eight-class classification, while the best obtained classification accu-
racies using the DL approach range from 94.05% to 98.13% for binary classification and
between 76.77% and 88.95% for eight-class classification. The PCA and KPCA visualization
results of handcrafted and deep features explained and demonstrated the superiority of
DL-based methods in classification accuracy. Furthermore, the visualized attention maps
with Grad-CAM provided supporting regions for the diagnostic decisions and explained
the decision-making process of DL-based methods. It has been shown that morphological
features of nuclei cells are the main factor influencing the DL model’s predictions in BC
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histopathological images. We hope that our results will be clinically useful for the develop-
ment of innovative diagnostic histopathology approaches not only for the diagnosis of BC,
but also for different forms of tumors in different organs of the human body.

In the future work, we will investigate much deeper pre-trained architecture such as
GoogleNet, ResNet, DenseNet, Inception V3 along with the block-wise fine-tuning strategy
to demonstrate the obtained results of the current study and build more robust classifiers
with better generalization abilities. Future investigations will be also on clinically interpret-
ing the model’s misclassifications aiming at demystifying deep CNNs and eliminating the
black box bottleneck of deep learning in BC histopathology.
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