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Abstract

Baseline plasma electrophoresis profiles (EPH) are important components of overall health

and may aid in the conservation and captive management of species. The aim of this study

was to establish plasma protein fractions for free-ranging Blanding’s turtles (Emydoidea

blandingii) and evaluate differences due to age class (adult vs. sub-adult vs. juvenile), sex

(male, female, or unknown), year (2018 vs. 2019), month (May vs. June vs. July), health sta-

tus, and geographical location (managed vs. unmanaged sites). Blood samples were

obtained from 156 Blanding’s turtles in the summer of 2018 and 129 in 2019 at two adjacent

sites in Illinois. Results of the multivariate analysis demonstrated that age class, sex, year,

month, health status, and geographical location all contributed to the variation observed in

free-ranging populations. Adult females had the highest concentration of many protein frac-

tions, likely associated with reproductive activity. Juveniles had lower protein concentra-

tions. Temperature and rainfall differences between years impacted concentrations

between 2018 and 2019, while May and June of both years saw higher levels in some pro-

tein fractions likely due to peak breeding and nesting season. Individuals with evidence of

trauma or disease also showed increased plasma protein fractions when compared to those

that were considered healthy. The two sites showed a wide/large variation over the two

years. All of these factors emphasize the importance of considering multiple demographic or

environmental factors when interpreting the EPH fractions. Establishing ranges for these

analytes will allow investigation into disease prevalence and other environmental factors

impacting this endangered species.

Introduction

Climate change, habitat destruction, and disease are potentially affecting the sustainability and

conservation of species [1]. Wildlife health surveillance has become a critical component to
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maintain imperiled populations [1, 2], but determining health is complex and involves several

modalities, including physical examination, clinical pathology, pathogen presence, and con-

taminant exposure [3–6]. Protein electrophoresis (EPH), a component of clinical pathology

investigation, has become commonly used in wildlife studies [7]. Reference interval data in

several reptilian species exist and have proven to be valuable in understanding how they handle

stress and disease [4, 7–16].

Plasma proteins are key players in the body’s innate immune response, and fluctuations in

concentrations serve to indicate the presence of inflammation, infection, neoplasia, stress, or

trauma [17]. In head-started red-bellied cooters (Pseudemys rubriventris) and captive-reared

loggerhead sea turtles (Caretta caretta), variations in protein fractions were associated with dif-

ferences in age, diets, immune stimulation, and reproductive stage [18, 19], indicating baseline

differences exist and responses to changes in demographic and environmental variation can be

measured.

The Blanding’s turtle is a semi-aquatic, long-lived species of turtle experiencing population

declines over much of its range in southern and central Canada and northern United States.

Individual turtles can live up to 80 years of age in the wild [20], but urban development, road

mortality events, climate change, illegal poaching, and disease remain the most common

threats to sustainability [21]. The Chiwaukee Prairie–Illinois Beach Lake Plain (Lake Plain)

contains a population of Blanding’s turtles, in which active conservation efforts are aimed at

improving the long-term viability in northeastern Illinois and southeastern Wisconsin [22]. In

the summer of 2015, conservation efforts incorporated physical exam and health assessment

data to aid in a greater understanding of the biological threats these animals face.

The objective of this study was to establish baseline plasma protein fractions for free-rang-

ing Blanding’s turtles and to determine differences between age classes (adult vs. sub-adult vs.

juvenile), sex (male vs. female), years (2018 vs. 2019), months (May vs. June vs. July), health

status, and geographical location. It was hypothesized that total protein levels would be higher

in adults than subadults and juveniles, higher in females than males, higher in May than in

June and July, and higher in unhealthy turtles than healthy turtles.

Materials and methods

Study sites

Blanding’s turtles were sampled from three sites within the Lake Plain including Spring Bluff-

Chiwaukee Prairie (SBCP), the managed site, and the North and South units of Illinois Beach

State Park (IBSP), the unmanaged sites. SBCP consists of approximately 535 acres of high-

quality coastal dune and swale habitat along the coast of Lake Michigan in Illinois and Wiscon-

sin, whereas IBSP consist of 4,160 acres of dune, prairie, oak-savannah, and wetland habitats

along 6.5 miles of coastline [22]. Management of mesopredators is also more robust in SBCP

than IBSP, with studies focusing on camera trap surveillance for predator presence throughout

the year as well as nest predation rates [23].

Capture methods

Turtles were captured with the aid of radiotelemetry, hoop net trap, or incidentally by hand.

Radiotelemetry is a three-part system using a radio transmitter, a radio antenna, and a radio

receiver. The transmitter is attached to the turtle’s shell, which transmits a signal to the

antenna and correlates to a beeping produced by the receiver that gets louder as the animal

gets closer [23, 24]. Hoop traps were placed in marsh waters and areas that were characteristic

of Blanding’s habitat or locations near previous Blanding’s turtle capture sites. These traps

were checked every 24 hours and remained in the same location for up to five days. Telemetry,
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traps, and incidental captures were used in both field sites. Many turtles, especially those

equipped with a radio transmitter, were sampled up to two times per summer.

Physical examination and sample collection

Each turtle was assigned a permanent ID, marking the shell with a notch code unless previ-

ously marked as well as inserting a pit tag (microchip) under the skin, and mass, sex, and age

class were recorded. Sex was classified as male, female, or unknown. Sex of head-started turtles,

which are clutches deposited in captivity from free-range females, was known due to estab-

lished incubation temperatures, as males were incubated at 26.5˚C and females at 31.0˚C [23,

25]. The sex of adults was determined based on plastron concavity [26]. The sex of most sub-

adults and juveniles was estimated based on position of cloacal opening [27]. Wild-born indi-

viduals were classified as unknown sex when a confident determination could not be made.

Age class was characterized as juvenile (<250 grams), sub-adult (250–750 grams), or adult

(>750 grams). Blanding’s turtles were deemed sexually mature at 750 grams and over by the

Lake County Forest Preserve District (LCFPD) based on the lightest fertile female noted. This

methodology is based on a previously published study by Mumm, et al. [24]. Body fat percent-

age (FP) was calculated using a published calculation from the relationship of carapace length

and mass [28]. Physical examinations were performed noting visual appearance of the eyes,

nose, oral cavity, ears, legs, digits, shell, integument, and cloaca. Gravidity was assessed using

digital palpation of the prefemoral fossa. For the purpose of statistical analysis, females were

classified as gravid if they had palpable eggs or if they had nested within one week of sampling.

Nesting was determined either by observation of nesting behavior or the lack of palpable eggs

after having previously been confirmed gravid. Turtles were classified as either “apparently

healthy” or “unhealthy” based on the presence of clinically significant physical exam abnor-

malities, including open fractures or wounds; ocular, oral or nasal discharge; depressed menta-

tion; missing nails, digits, or appendages; and evidence carapace/plastron damage.

Whole blood was collected from the sub-carapacial sinus via 22-gauge or 25-gauge needle,

subject to the size of the individual. No more than 0.6% of body weight of whole blood was

drawn and placed into lithium-heparinized plasma separator tubes. Blood samples were placed

on ice in a cooler for one to five hours depending on time of collection until returning to the

lab each afternoon. Total protein (TP) was estimated using refractometry. Whole blood sam-

ples were centrifuged at 4,185 g for 10 minutes, stored at -20˚C for one to four months, and

shipped on dry ice to the University of Miami at the end of the field season. All individuals

were released at coordinates of capture. All animal sampling was permitted by the following

organizations: Department of Natural Resources (IDNR) (Scientific Collectors Permits (SCP):

NH17.5065, NH18.5065, and IDNR Endangered and Threatened permits: SBT-16-062, 1199,

14–046, and 1042), the Wisconsin Department of Natural Resources (WIDNR) (SCP:

SCP-SOD-004-2013 and WIDNR Scientific Research License: SRLN-18-026), and the Univer-

sity of Illinois Institutional Animal Care and Use Committee (Protocols: 18000 and 18165).

Protein electrophoresis

Plasma samples were analyzed according to the procedure provided by the Helena SPIFE 3000

system with the use of Split Beta gels (Helena Laboratories, Inc., Beaumont, Texas 77707,

USA). Results were produced after gel scanning and analysis by Helena software. Fraction

delimits were placed as previously demonstrated for other reptiles [10]. Plasma protein frac-

tions were divided into the following six fractions: a fraction migrating in the prealbumin

region ("prealbumin"), albumin, alpha 1 globulins, alpha 2 globulins, beta globulins, and

gamma globulins (Fig 1). Percentages for each fraction were determined by this software,
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which gave the relative value, and absolute values (g/L) for each fraction were obtained by mul-

tiplying the percentage by the TP concentration. The albumin:globulin ratio (A:G) was calcu-

lated by dividing the sum of albumin and prealbumin by the sum of the globulin fractions.

Statistical analysis

All statistical analyses were conducted in R version 3.6.3 [29] at an alpha level of 0.05, unless

otherwise specified. Data distributions were assessed using histograms and the Shapiro-Wilk

test and transformation was pursued, if necessary, to meet modeling assumptions.

Protein electrophoresis fractions were modeled using general linear mixed models with the

lme4 and lmerTest packages [30, 31]. Fixed effects included spatiotemporal variables (year,

month, location), demographic variables (sex, age class, gravidity), and health variables (body

condition, presence/absence of physical exam abnormalities), while turtle ID was included as a

random effect. Post-hoc testing was performed using the lsmeans package with a Tukey cor-

rection to control for multiple statistical tests [32]. Fixed effects with univariable p-

values< 0.15 were considered in multivariable models testing specific biological hypotheses

about the effects of spatiotemporal, demographic, and health variables on EPH values. Vari-

ance inflation factors were evaluated for multivariable models to identify and exclude highly

collinear (VIF > 10) predictor variables (function vif, package car) [33]. Candidate model sets

were constructed for each EPH fraction and ranked using an information-theoretic approach

[34]. Figures were constructed using the ggeffects package [35]. Spatial clustering of EPH frac-

tions was modeled in ArcGIS version 10.6 using hot spot analysis with the Gettis-Ord Gi� sta-

tistic from the spatial statistics toolbox. Hot spots are areas with higher plasma protein

concentrations, while cold spots are areas with lower plasma protein concentrations.

Coefficients of variation were determined for each EPH fraction using data from apparently

healthy turtles evaluated at multiple time points (CVI) and only a single time point (CVG). The

index of individuality (II) was calculated as CVI / CVG and was used to infer the need for sub-

ject-based vs. population-based reference intervals [36, 37]. When the II is < 0.6, subject-

based reference intervals was used, while an II > 1.4 population-based reference intervals were

created (Harris, 1974). When the II was between 0.6 and 1.4, population-based reference inter-

vals were used [37, 38]. Reference change values (RCV) were calculated for each EPH analyte

using a published formula [36, 37].

Population-based reference intervals were also determined for each analyte using the non-

parametric method (referenceIntervals package) [39], according to American Society for

Fig 1. Electrophoretogram comparison of plasma protein fractions. A visual representation of the plasma protein

fraction distribution amongst three representatives from each age classes. The top panel shows the protein as they

appeared on the gel following electrophoresis, and the bottom panel shows a graphic representation of the

concentration differences. Juvenile (A), sub-adult (B), and adult (C).

https://doi.org/10.1371/journal.pone.0258397.g001
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Veterinary Clinical Pathology guidelines [36]. Outliers were identified and excluded using

Horn’s method [40]. Ninety percent confidence intervals were generated around the limits of

each reference interval using nonparametric bootstrapping with 5000 replicates. The popula-

tion-based reference interval dataset included only turtles sampled once, and a randomly-

selected single time point (https://www.random.org/) from serially-sampled individuals.

Results

Two hundred and eighty-five samples were collected from 215 individual turtles. Fifty animals

were sampled two times approximately one year apart, and ten animals were sampled three

times–twice within the 2018 active season and a third time in 2019. One hundred fifty-six sam-

ples were obtained in 2018, while 129 were collected in 2019. One hundred seventy-eight sam-

ples were collected at SBCP, 51 were from IBSP North Unit, 54 were from IBSP South Unit,

and two individuals did not have location data recorded. Samples were collected in May

(N = 129), June (N = 120), and July (N = 36) from 171 adults, 83 sub-adults, and 31 juveniles.

Sex distribution included 174 females, 75 males, and 36 turtles of unknown sex. Twenty-two

females were gravid.

Blood samples were collected from the subcarapacial sinus due to its relative ease of access

and minimal restraint requirement in a field setting. Grossly hemolyzed or lymph contami-

nated samples were removed from the study, although microscopic hemolysis cannot be ruled

out. The timing of sampling relative to food consumption is unknown, so post-prandial

changes, such as lipemia, could impact results. Physical examination was largely unremarkable

for most individuals. Clinical signs of upper respiratory disease (URD), including oculonasal

discharge, blepharoedema, and/or oral plaques were present in eleven turtles. Integumentary

abnormalities including abrasions, lacerations, and/or nodules were present in 28 turtles.

Appendicular abnormalities including abnormal nails and/or missing digits, feet, limbs, or tail

tips were present in 42 animals. Cloacal abnormalities consisting of erythema, swelling, and/or

discharge were present in 15 animals. Shell abnormalities involved the carapace (erosions– 25,

predator injury—8) and plastron (erosions– 99, predator injury—12). In total, 30 turtles had

active physical exam abnormalities significant enough to compromise health, and these indi-

viduals were excluded from the reference interval dataset.

All absolute EPH parameters varied by year, with TP (effect size = 3.70g/L, 95% CI = 1.60–

5.90g/L, p = 0.01), albumin (effect size = 1.20g/L, 95% CI = 0.70–1.70g/L, p< 0.01), alpha 1

globulins (effect size = 0.86g/L, 95% CI = 0.60–1.10g/L, p< 0.01) alpha 2 globulins (effect

size = 0.63g/L, 95% CI = 0.26–1.00g/L, p = 0.01), and gamma globulins (effect size = 4.30g/L,

95% CI = 3.70–4.80g/L, p< 0.01) higher in 2018 than 2019, and A:G (effect size = 0.02, 95%

CI = 0.01–0.03, p = 0.02), prealbumin (effect size = 0.67g/L, 95% CI = 0.58–0.77g/L, p< 0.01),

and beta globulins (effect size = 2.60g/L, 95% CI = 1.60–3.60g/L, p = 0.01) higher in 2019 than

2018. The relationships between relative EPH fraction and year were similar, except there was

no significant association between relative alpha 2 globulins and year (p = 0.34).

The effects of location on absolute EPH parameters depended on year (significant

Year�Location interaction, p< 0.05) for TP, A:G, prealbumin, albumin, and gamma globulins

(Fig 2). A significant year�location effect was also identified for relative prealbumin (Fig 3).

Location influenced absolute alpha 2 globulins (p = 0.02), absolute beta globulins (p = 0.04),

and relative gamma globulins (p = 0.01) independent of year, while it was not a statistically sig-

nificant predictor of absolute alpha 1 globulins, relative albumin, relative alpha 1 globulins, rel-

ative alpha 2 globulins, or relative beta globulins (p> 0.05). In addition to the site-level effects

identified using general linear models, finer-scale clusters of high and low absolute EPH values

were identified using spatial modeling (Fig 4). The location of these spatial clusters varied
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Fig 2. Model predictions for plasma protein electrophoresis values based on year and location. Model predictions

with 95% confidence intervals for plasma protein electrophoresis values in free-living Blanding’s turtles (Emydoidea
blandingii) based on year and location. Model estimates were produced by top-ranking general linear mixed models

(see Table 2). SB = Spring Bluff-Chiwaukee Prairie, IB-N = Illinois Beach North, IB-S = Illinois Beach South.

https://doi.org/10.1371/journal.pone.0258397.g002

Fig 3. Model predictions for plasma protein electrophoresis values based on year, location, month, and BCI.

Model predictions with 95% confidence intervals for plasma protein electrophoresis values in free-living Blanding’s

turtles (Emydoidea blandingii) based on year, location, month, and body condition index (BCI). Model estimates were

produced by top-ranking general linear mixed models (see Table 2).

https://doi.org/10.1371/journal.pone.0258397.g003
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between years, and differences occurred both between and within study sites, especially in tur-

tles sampled at SBCP in 2019 (Fig 4).

A:G (p< 0.01), absolute albumin (p = 0.01), relative albumin (p< 0.01), and relative

gamma globulins (p = 0.02) differed by month, while the effects of month on absolute and

Fig 4. 2018 and 2019 spatial clusters of plasma protein electrophoresis values in free-living Blanding’s turtles (Emydoidea blandingii). Study site map

displaying hot and cold spots for each analyte in 2018 and 2019. Hot spots are areas with higher plasma protein concentrations, while cold spots are areas with

lower plasma protein concentrations. SBCP, the managed site, is the northernmost territory on the map followed by the North unit of IBSP as the central

territory and the South unit of IBSP as the southernmost territory. Evaluated using Gettis-Ord Gi� models. Map obtained from USGS National Map Viewer.

TP = total protein (g/L), PreALB = prealbumin (g/L), ALB = albumin (g/L), Alpha1 = alpha 1 globulins (g/L), Alpha2 = alpha 2 globulins (g/L), Beta = beta

globulins (g/L), Gamma = gamma globulins (g/L), A:G = albumin / globulin.

https://doi.org/10.1371/journal.pone.0258397.g004
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relative prealbumin concentration depended on year (significant Month�Year interaction)

(Fig 2, Tables 1 and 2). Specifically, relative gamma globulins were significantly higher in May

compared to June while A:G, absolute albumin, and relative albumin were significantly higher

Table 1. Protein electrophoresis values that vary by month and the presence of plastron abnormalities in free-living Blanding’s turtles (Emydoidea blandingii).

Model estimates were produced by top-ranking general linear mixed models (see Table 2).

Analyte Level Model Estimate SE Contrast Difference 95% CI P—value

Month

Albumin/Globulin May 0.27 0.01 May vs. June -0.04 -0.06, -0.02 < 0.01

June 0.31 0.01 June vs. July 0.04 0.01, 0.06 0.01

July 0.27 0.01 May vs. July -0.01 -0.03, 0.02 1.00

Albumin (g/L) May 6.00 0.40 May vs. June -1.40 -2.20, -0.60 0.01

June 7.40 0.40 June vs. July 1.33 0.20, 2.30 0.01

July 6.10 0.50 May vs. July -0.10 -1.10, 0.90 1.00

Albumin (%) May 19.00 0.64 May vs. June -2.10 -3.30, -0.95 0.01

June 21.10 0.44 June vs. July 1.80 0.33, 3.20 0.01

July 19.40 0.68 May vs. July -0.36 -1.70, 0.98 0.80

Gamma Globulins (%) May 17.20 0.41 May vs. June 1.31 0.20, 2.40 0.02

June 15.90 0.39 June vs. July -0.81 -2.30, 0.70 0.40

July 16.70 0.58 May vs. July 0.51 -0.97, 2.00 0.70

Plastron

Beta Globulins (g/L) Normal 11.30 0.70 N vs. E -1.60 -2.90, -0.40 0.01

Erosions 12.90 0.70 E vs. I -2.10 -4.90, 0.70 0.15

Injury 15.00 1.40 N vs. I -3.70 -6.60, -0.90 0.01

Beta Globulins (%) Normal 35.60 0.80 N vs. E -0.27 -1.64, 1.10 0.70

Erosions 35.90 0.90 E vs. I -3.33 -6.40, -0.28 0.03

Injury 39.20 1.50 N vs. I -3.60 -6.60, -0.61 0.02

SE = standard error. N = normal. E = erosions. I = injury.

https://doi.org/10.1371/journal.pone.0258397.t001

Table 2. Top models for predicting protein electrophoresis values in free-living Blanding’s turtles (Emydoidea blandingii) based on Akaike’s information criterion,

corrected for sample size (AICc).

Analyte Model N K AICc wi

Total Protein (g/L) Y � L + BCI + Integ + App 265 11 748.00 0.98

Albumin / Globulin Y � L + M + Sex + Age + Cloaca 279 15 -825.40 0.98

Prealbumin (g/L) Y � L + Y � M + URD 279 13 -995.90 0.80

Prealbumin (%) Y � L + Y � M + URD 279 13 -1534.60 0.69

Albumin (g/L) Y � L + M + App + Gravid 278 12 -7.70 0.57

Albumin (%) Y + M + Age + Sex + Gravid 279 11 -1154.10 0.94

Alpha 1 Globulins (g/L) Y + Age + Carapace 279 10 -423.10 0.58

Alpha 1 Globulins (%) Y + Age + Carapace 279 10 -1232.30 0.80

Alpha 2 Globulins (g/L) Y + L + Age 283 8 -157.30 0.76

Alpha 2 Globulins (%) Sex + Age + Gravid 280 8 -1207.10 0.95

Beta Globulins (g/L) Y + L + Sex + BCI + Integ + Plastron + App 265 15 307.80 0.99

Beta Globulins (%) Y + Age + Sex + Plastron + Gravid 280 13 -891.00 0.99

Gamma Globulins (g/L) Y � L + Age + BCI + App 266 12 -34.80 0.99

Gamma Globulins (%) Y + L + M + Age 283 10 -1129.80 0.86

Y = year, L = location, M = month, BCI = body condition index, Integ = integument, App = appendages, URD = upper respiratory disease.

https://doi.org/10.1371/journal.pone.0258397.t002
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in June compared to both May and July. Relative and absolute prealbumin followed a similar

trend to A:G and albumin in 2019, but values were not significantly different by month in

2018.

Age class influenced A:G and all relative EPH fractions except prealbumin; it was also

found to be an important predictor of absolute alpha 1 globulins, alpha 2 globulins, and

gamma globulins (Table 3). Juvenile turtles had the highest values for A:G, relative albumin,

relative alpha 1 globulins, and absolute alpha 1 globulins. Subadults had the highest values for

relative and absolute alpha 2 globulins. Adults had the highest values for relative beta globulins,

relative gamma globulins, and absolute gamma globulins.

Sex influenced the A:G, relative albumin, relative alpha 2 globulins, relative beta globulins,

and absolute beta globulins (Table 4). Specifically, male turtles had higher A:G, relative albu-

min, and relative alpha 2 globulins, while females had higher absolute and relative beta globu-

lin values. Gravid females had higher relative beta globulins and lower A:G, absolute and

relative albumin, and alpha 2 globulins.

Multiple EPH fractions were associated with health predictors. Body condition was nega-

tively associated with TP, absolute beta globulins, and absolute gamma globulins (Fig 2).

Table 3. Protein electrophoresis values that vary by age class in free-living Blanding’s turtles (Emydoidea blandingii). Model estimates were produced by top-ranking

general linear mixed models (see Table 2).

Analyte Level Model Estimate SE Contrast Difference 95% CI P—value

Albumin/Globulin Adult 0.25 0.01 Ad vs. Juv -0.07 -0.11, -0.04 < 0.01

Sub-Adult 0.28 0.01 Ad vs. SA -0.04 -0.06, -0.01 0.01

Juvenile 0.32 0.02 SA vs. J -0.04 -0.07, -0.01 0.03

Albumin (%) Adult 17.90 0.41 Ad vs. Juv -3.80 -5.80, -1.80 <0.01

Sub-Adult 19.80 0.63 Ad vs. SA -1.80 -3.10, -0.56 0.01

Juvenile 21.80 0.87 SA vs. J -2.00 -4.00, 0.02 0.05

Alpha 1 Globulins (g/L) Adult 1.60 0.10 Ad vs. Juv -2.40 -2.90, -1.80 < 0.01

Sub-Adult 2.70 0.10 Ad vs. SA -1.00 -1.40, -0.70 < 0.01

Juvenile 4.00 0.20 SA vs. J -1.30 -1.90, -0.80 < 0.01

Alpha 1 Globulins (%) Adult 5.20 0.30 Ad vs. Juv -9.30 -10.60, -8.00 < 0.01

Sub-Adult 8.70 0.40 Ad vs. SA -3.50 -4.40, -2.60 < 0.01

Juvenile 14.50 0.60 SA vs. J -5.80 -7.20, -4.40 < 0.01

Alpha 2 Globulins (g/L) Adult 5.10 0.20 Ad vs. Juv 0.10 -0.70, 0.90 1.00

Sub-Adult 5.80 0.30 Ad vs. SA -0.70 -1.30, -0.20 0.01

Juvenile 5.00 0.40 SA vs. J 0.80 0.04, 1.70 0.04

Alpha 2 Globulins (%) Adult 14.30 0.37 Ad vs. Juv -1.10 -2.90, 0.60 0.30

Sub-Adult 16.40 0.50 Ad vs. SA -2.10 -3.20, -1.00 < 0.01

Juvenile 15.50 0.78 SA vs. J 1.00 -0.90, 2.80 0.40

Beta Globulins (%) Adult 41.70 0.79 Ad vs. Juv 9.61 6.40, -12.83 < 0.01

Sub-Adult 34.40 0.97 Ad vs. SA 7.28 5.40, -9.16 < 0.01

Juvenile 32.10 1.50 SA vs. J 2.33 -0.98, 5.65 0.20

Gamma Globulins (g/L) Adult 7.00 0.30 Ad vs. Juv 2.00 0.60, 3.40 0.01

Sub-Adult 6.60 0.40 Ad vs. SA 0.30 -0.80, 1.40 0.85

Juvenile 5.00 0.50 SA vs. J 1.70 0.60–3.00 0.01

Gamma Globulins (%) Adult 19.00 0.31 Ad vs. Juv 6.00 4.37, 7.63 < 0.01

Sub-Adult 18.00 0.45 Ad vs. SA 0.98 -0.22, 2.20 0.13

Juvenile 13.00 0.65 SA vs. J 5.00 3.36, 6.68 < 0.01

SE = standard error. Ad = adult. SA = sub-adult. Juv = juvenile.

https://doi.org/10.1371/journal.pone.0258397.t003
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Turtles with predator injuries or erosions of the plastron had higher relative and absolute beta

globulins than those with normal plastrons (Table 1). Abnormalities of the appendicular sys-

tem were associated with higher TP and absolute albumin, beta globulins, and gamma globu-

lins (Table 5). Integumentary abnormalities were associated with lower TP and absolute beta

globulins (Table 5). Turtles with upper respiratory disease had lower absolute and relative pre-

albumin than those without (Table 5). Finally, cloacal abnormalities were associated with a

lower A:G (Table 5). Top models for each EPH fraction tended to include spatiotemporal,

demographic, and health predictors, highlighting the influence that each of these components

has on the distribution of blood proteins in Blanding’s turtles (Table 2).

Reference intervals were constructed in both a subject-based and population-based manner

for each EPH analyte (Table 6). Based on the index of individuality, subject-based reference

intervals are superior for absolute and relative alpha 1 globulins, absolute beta globulins, and

relative albumin in Blanding’s turtles. The remainder of the II values fell between 0.6 and 1.4,

indicating that population-based reference intervals were employed and interpreted with cau-

tion for all other fractions.

Discussion

We set out to describe baseline plasma protein fractions in a well-studied population of Bland-

ing’s turtles in northeastern Illinois and southeastern Wisconsin and observed EPH fractions

varied significantly based on spatiotemporal, demographic, and health factors. Understanding

Table 4. Protein electrophoresis values that vary by sex and gravidity in free-living Blanding’s turtles (Emydoidea blandingii). Model estimates were produced by

top-ranking general linear mixed models (see Table 2).

Predictor Analyte Level Model Estimate SE Difference 95% CI P—value

Sex Albumin (%) Male 20.40 0.60 1.21 0.31–2.11 0.01

Female 19.20 0.50

Albumin/Globulin Male 0.30 0.01 0.02 0.01–0.04 0.01

Female 0.27 0.01

Alpha 2 Globulins (%) Male 16.20 0.50 1.60 0.72–2.40 0.01

Female 14.60 0.43

Beta Globulins (g/L) Male 12.30 0.90 1.80 0.50–3.20 0.01

Female 14.10 0.80

Beta Globulins (%) Male 34.50 0.97 3.04 1.56–4.53 < 0.01

Female 37.60 0.92

Gravidity Albumin/Globulina Non-Gravid 0.31 0.01 0.03 0.02–0.06 0.04

Gravid 0.27 0.02

Albumin (g/L) Non-Gravid 7.10 0.30 1.20 0.03–2.30 0.04

Gravid 6.00 0.60

Albumin (%) Non-Gravid 21.00 0.32 2.42 0.88–3.95 0.01

Gravid 18.60 0.84

Alpha 2 Globulins (%) Non-Gravid 16.40 0.28 1.90 0.63–3.24 0.01

Gravid 14.40 0.70

Beta Globulins (%) Non-Gravid 34.40 0.73 3.40 1.07–5.71 0.01

Gravid 37.80 1.30

SE = standard error.
a Gravidity was not included in the top-ranking model for Albumin/Globulin due to confounding with the “cloaca” variable, but considered separately it is significantly

associated with Albumin/Globulin.

https://doi.org/10.1371/journal.pone.0258397.t004
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how reptile clinical pathology values correlate to landscape changes is important for contextu-

alizing health assessments and evaluating ecosystem wellness [1, 2, 5, 6].

We documented several statistically significant inter-annual differences in Blanding’s turtle

total protein and EPH fractions. These changes may be attributable to fluctuation in climactic

variables that influence turtle metabolism and resource availability. Temperature is a key

determinant of metabolic rates in ectotherms, including reptiles [41, 42], and previous studies

in loggerheads (Caretta caretta) and green turtles (Chelonia mydas) observed a negative corre-

lation with the A:G and environmental temperature [16]. In Lake County, the average air tem-

peratures in May (60.4˚F/15.8˚C) and June (66.4˚F/19.1˚C) of 2018 were warmer than those in

May (54.7˚F/12.6˚C) and June (64.2˚F/17.9˚C) of 2019 [43]. Similar to the temperature-associ-

ated protein changes in sea turtles, Blanding’s turtle TP, albumin, alpha 1 and alpha 2 globu-

lins, and gamma globulin concentrations were greater in 2018, while prealbumin, beta

globulin, and A:G were greater in 2019. It is plausible that turtles would be more active, con-

sume more food items, initiate reproductive activity, and mount immune responses more effi-

ciently at higher temperatures, all of which may increase circulating protein concentrations

and contribute to the observed inter-annual variability in EPH fractions [41].

Temperature, however, is not the only environmental factor that differed between years.

Rainfall was also greater during May and June of 2018 (30.2 inches total) compared to the

same time period in 2019 (18.76 inches total), while humidity was a bit more consistent

between years (77.2% average relative humidity in May and June of 2018 and 80.75% average

relative humidity in May and June of 2019) [43]. Water availability and humidity both influ-

ence behavioral thermoregulation in ectotherms and can modify their activity levels in com-

plex ways [44]. Increased activity secondary to rainfall may create more opportunities for

antigenic stimulation and contribute to changes in food consumption, reproductive behaviors,

Table 5. Protein electrophoresis values that vary based on the presence of physical examination abnormalities in free-living Blanding’s turtles (Emydoidea blandin-
gii). Model estimates were produced by top-ranking general linear mixed models (see Table 2). Top models for relative and absolute alpha 1 globulins contained “cara-

pace”, however no contrasts for this predictor were significant therefore not reported.

Predictor Analyte Level Model Estimate SE Difference 95% CI P—value

Appendages Total Protein (g/L) Normal 31.90 1.10 5.30 1.90–8.06 0.01

Abnormal 37.10 1.80

Albumin (g/L) Normal 6.10 0.30 9.00 0.10–1.70 0.03

Abnormal 7.00 0.50

Beta Globulins (g/L) Normal 12.10 0.70 2.20 0.50–3.80 0.01

Abnormal 14.20 1.00

Gamma Globulins (g/L) Normal 5.50 0.30 1.40 0.60–2.10 0.01

Abnormal 6.80 0.40

Integument Total Protein (g/L) Normal 31.90 1.10 4.60 0.70–8.50 0.02

Abnormal 27.20 2.00

Beta Globulins (g/L) Normal 14.10 0.70 2.00 0.20–3.80 0.03

Abnormal 12.20 1.10

Upper Respiratory Disease Prealbumin (g/L) Absent 0.58 0.03 0.27 0.03–0.52 0.03

Present 0.31 0.12

Prealbumin (%) Absent 1.88 0.13 1.04 0.11–1.97 0.03

Present 0.84 0.48

Cloaca Albumin/Globulin Normal 0.31 0.01 0.04 0.01–0.07 0.01

Abnormal 0.26 0.02

SE = standard error.

https://doi.org/10.1371/journal.pone.0258397.t005
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and other physiologic processes with a resultant increase in plasma protein concentrations

[44]. While the effects of some climactic variables on ectotherm physiology have been at least

partially characterized, many other environmental variables may also impact resource avail-

ability and overall wellness. Additional research is needed to determine the underlying envi-

ronmental causes of temporal variability in reptile protein electrophoresis values. It is likely

that inter-annual differences in protein electrophoresis values also exist for other reptiles [45].

Unfortunately, direct comparison to existing literature is difficult, because although some

multi-year chelonian EPH studies exist [4, 10, 16, 18, 46–52], the possibility of inter-annual

variation in EPH values is infrequently assessed. Our findings indicate that future EPH studies

in reptiles should consider the potential for significant inter-annual effects.

TP and absolute EPH fractions differed by location in Blanding’s turtles, similar to eastern

box turtles (Terrapene carolina carolina) [4], alligator snapping turtles (Macrochelys tem-
minckii) [46] and green turtles [45]. SBCP and IBSP vary significantly in their habitats despite

their close proximity. SBCP offers a coastal dune and swale habitat that has been managed and

preserved since 2004, whereas IBSP includes adjacent north (N) and south (S) units containing

dune, prairie, oak-savannah and wetland habitats, with limited management prior to 2017

[22]. The effect of location on EPH parameters depended on the year; and the differences in

EPH values between the study sites and years were rarely consistent. The only consistent loca-

tion-related differences between 2018 and 2019 were the cold spots at the northern end of

SBCP, potentially indicating a more consistent health status for turtles occupying this area.

Inter-annual fluctuation in TP and EPH fractions between and within the different study sites

Table 6. Summary data including data distribution, measure of central tendency (mean for normally distributed variables, median for non-normally distributed

variables), measure of dispersion (standard deviation for normally distributed variables, 10th– 90th percentiles for non-normally distributed variables), and refer-

ence intervals for plasma protein electrophoresis in free-living, apparently healthy Blanding’s turtles (Emydoidea blandingii).

Analyte N Dist CT Disp Min Max Reference Interval 90% CI LB 90% CI UB II RCV (%) Sub vs. Pop

Total Protein (g/L) 193a NG 31.00 18.00–47.50 13.00 56.00 15.70–52.30 15.40–17.60 48.60–53.60 0.68 62.70 Pop

Albumin/Globulin 195b G 0.29 0.07 0.14 0.46 0.17–0.43 0.16–0.19 0.40–0.46 0.66 41.20 Pop

Prealbumin (g/L) 196 NG 0.40 0.05–1.20 0.00 2.30 0.00–2.00 0.00–0.10 1.80–2.30 0.90 237.00 Pop

Albumin (g/L) 196 NG 6.30 3.40–9.90 1.90 15.60 2.50–13.40 2.10–3.00 12.90–15.00 0.66 74.40 Pop

Alpha 1 Globulins (g/L) 196 NG 1.90 1.00–4.30 0.70 11.60 0.80–5.70 0.70–0.80 4.10–6.10 0.54 88.40 Sub

Alpha 2 Globulins (g/L) 196 NG 4.70 2.70–7.40 1.70 11.20 2.10–10.00 1.90–2.50 9.60–10.70 0.67 70.80 Pop

Beta Globulins (g/L) 196 NG 10.80 5.04–17.90 3.40 30.00 4.00–25.70 3.30–4.40 21.80–29.90 0.56 66.70 Sub

Gamma Globulins (g/L) 195c NG 5.60 2.80–10.70 1.40 16.50 1.70–14.10 1.30–1.90 12.30–15.70 0.99 144.00 Pop

Prealbumin (%) 196 NG 1.00 0.00–4.20 0.00 10.10 0.00–6.70 0.00–1.00 4.90–7.80 0.93 266.00 Pop

Albumin (%) 195d G 20.30 3.80 13.00 31.00 14.00–29.00 13.00–15.00 27.00–31.00 0.59 29.90 Sub

Alpha 1 Globulins (%) 196 NG 6.00 4.00–14.00 2.70 28.00 3.00–23.00 2.90–3.30 19.00–28.90 0.34 51.80 Sub

Alpha 2 Globulins (%) 195e NG 16.00 11.00–19.70 9.00 24.00 10.00–21.70 9.70–11.00 20.50–23.30 0.62 31.20 Pop

Beta Globulins (%) 196 NG 35.80 25.00–49.10 18.00 59.10 20.00–55.20 19.00–21.00 51.90–57.70 0.82 59.20 Pop

Gamma Globulins (%) 196 NG 19.00 11.30–28.00 8.00 37.00 9.700–32.10 9.40–10.00 31.20–34.10 1.20 114.00 Pop

Dist = distribution, NG = Non-Gaussian, G = Gaussian, CT = measure of central tendency, Disp = measure of dispersion, CI = confidence interval, LB = lower bound of

reference interval, UB = upper bound of reference interval, II = index of individuality, RCV = reference change value, Sub = subject-based refence interval

recommended, Pop = population-based reference interval recommended.
a Outliers removed: 10.00, 71.00, 74.00 g/L.
b Outliers removed: 0.51.
c Outliers removed: 22.6 g/L.
d Outliers removed: 11%.
e Outliers removed: 26%.

https://doi.org/10.1371/journal.pone.0258397.t006
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may indicate transient, localized changes in health status with unclear management implica-

tions. Focused, longitudinal assessment of telemetered individuals within these areas will be

useful to identify biotic and abiotic factors associated with acute changes in EPH parameters.

Our findings indicate that it is important to consider both location and time at multiple differ-

ent scales in order to obtain a nuanced understanding of the drivers of turtle health status.

Several Blanding’s turtle plasma protein values were affected by month; specifically, A:G,

absolute albumin, relative albumin, and both absolute and relative prealbumin values peaked

in June, while relative gamma globulins were highest in May. Similar patterns have been docu-

mented in other chelonians including Hermann’s tortoises (Testudo hermanni) [53], alligator

snapping turtles [46], and eastern box turtles [4]. These changes may be attributed to increased

interactions with other turtles during the mating season and/or reproductive physiology. In

the Lake Plain, Blanding’s turtle mating season occurs from March to May, while nesting sea-

son typically begins in June. Turtles are more likely to interact with each other and potentially

transmit pathogens such as Emydoidea herpesvirus 1 during mating season [54], which may

contribute to an increase in gamma globulins (i.e. immunoglobulins). Alternatively, the

increased gamma globulin concentration in May could be secondary to vitellogenesis, as the

release of estrogen stimulates hyperglobulinemia in chelonians [55, 56]. Elevated albumin con-

centrations in June may be attributable to dehydration associated with prolonged overland

trips and nesting-associated exertion, similar to previous reports in sea turtle species [48, 57–

59]. Studies in other chelonian and lizard species have documented elevations in albumin and

total proteins during the summer months and have correlated these elevations to the increased

food consumption and reproductive activity in this time period [4, 60, 61].

Gravid females had higher relative beta globulins and lower A:G, absolute and relative albu-

min, and alpha 2 globulins. As reviewed above, gravid reptiles can develop hyperglobulinemia

during vitellogenesis in response to estrogen [62]. A study conducted in pond sliders (Tra-
chemys scripta) demonstrated that estrogen also downregulates albumin, which may be a factor

in the lower albumin concentrations observed in gravid female Blanding’s turtles [63]. Higher

globulins and lower albumin secondary to estrogen production would also support the lower

A:G in gravid females. In birds, elevated beta globulins are attributed to egg production [64].

In leatherbacks, alpha 2 globulins decrease over the nesting season due to inanition [65]. Our

findings are important to provide context for future studies on EPH in gravid chelonians, as

several of the changes associated with gravidity (elevated beta globulins, lower albumin and A:

G) can also be interpreted as indicative of inflammation and poor health [17].

Male turtles had higher A:G, relative albumin, and relative alpha 2 globulins while females

had higher absolute and relative beta globulin values. Many of these findings differ from those

in other chelonians. Relative albumin was higher in female red-eared sliders (Trachemys
scripta elegans) and map turtles (Graptemys geographica) [66], and absolute albumin was

higher in female eastern box turtles [4]. Male loggerhead sea turtles had higher absolute and

relative beta globulin concentrations, although there was a great deal of beta-gamma bridging

indicating possible underlying disease processes in those individuals [10]. Male radiated tor-

toises had higher relative alpha 2 globulins during winter sampling, and female eastern

box turtles and radiated tortoises had higher absolute and relative beta globulin concentrations

[4, 67]. Consistent with a previous study in this population of Blanding’s, but contrary to sev-

eral other studies in chelonians, there was no difference in total protein between the sexes [24].

Many of these findings may be confounded by the timing of our sampling, since it was concen-

trated during the breeding and nesting season. It is possible that if these turtles were sampled

later in the year we would find that sex-based differences in Blanding’s turtles are more in line

with what is reported for other species. Blanding’s turtles have some unique sex-associated
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EPH patterns compared to other chelonians, underscoring the need for studies like this to

understand species differences in clinical pathology values.

Protein fraction concentrations varied across age groups, with juvenile turtles having the

highest values for A:G, relative albumin, relative alpha 1 globulins, and absolute alpha 1 globu-

lins. Similar trends are seen in juvenile loggerheads [16], juvenile Kemp’s ridley sea turtles

(Lepidochelys kempii) [68, 69], and juvenile gopher tortoises (Gopherus polyphemus) [70].

Adults had the highest values for relative beta globulins, relative gamma globulins, and abso-

lute gamma globulins, which are similar to findings in other chelonians. Adult loggerheads

[10], eastern box [4], and green turtles [49] all had higher absolute beta globulin levels, and

adult Kemp’s ridley sea turtles [69] had higher absolute beta and gamma globulins compared

to their juvenile counterparts. In general, the changes found can be attributed to increased

antigenic challenge as turtles age and become reproductively mature, a consistent finding in

other chelonian studies [16, 19, 46].

The overall health status of individuals also contributed to variations in plasma protein con-

centrations. Higher absolute beta and gamma globulins were found in turtles with lower body

fat percentage, which both increase in the presence of acute and chronic inflammation. BCS is

a reliable measure of health status in other reptiles, with a good body condition score equating

to better immune function and capability to fight periodic bouts of disease [71]. The elevated

relative and absolute beta globulins in turtles with plastron injuries and erosions might be due

to the plastron constantly being in contact with either unclean water or the ground, increasing

the potential for chronic antigenic stimulation when injuries or abnormalities are present.

Appendage abnormalities were associated with higher TP and absolute beta and gamma

globulins, indicating the presence of possible chronic inflammation. The loss of nails or digits

from a variety of causes results in open wounds where infections may develop. Missing nails

and digits might also have an impact on the turtle’s overall health, making tasks like swimming

and foraging more difficult [72]. In eastern box turtles, microvascular problems and primary

microbial infections can cause the loss of digits and nails, indicating that even apparently

minor anatomical abnormalities may have physiologically significant impacts on these turtles

[73]. Integument abnormalities were associated with lower TP and absolute beta globulin con-

centrations. A study conducted in green and loggerhead sea turtles with traumatic wounds to

their carapace, head, and/or flippers showed similar trends, with those experiencing trauma

having lower beta globulin concentrations than their healthy counterparts [16].

Turtles with evidence of upper respiratory disease had lower relative prealbumin concentra-

tions. Like albumin, prealbumin is a negative acute phase protein and decreases in the pres-

ence of inflammation [74]. Prealbumin concentrations can also be lower in cases of protein

malnutrition [74]. These turtles may have lower concentrations because they are ill with upper

respiratory infection, and this illness could be preventing them from taking in an adequate

amount of protein. It is important to note, however, that prealbumin has not yet been validated

in chelonian species, so it is unclear if prealbumin is truly what is represented in the prealbu-

min region of the electrophoretogram. The lower A:G in turtles with cloacal abnormalities

likely consistent with inflammation associated with infection, inflammation, or stress, with a

lower ratio usually indicating hyperglobulinemia [75].

The population of Blanding’s turtles that was studied showed a high degree of within-indi-

vidual variability in EPH parameters at different points in time. This was also identified for

hematologic and plasma biochemical parameters in the same population [24]. Reptile clinical

pathology parameters are widely variable, and it is important to understand the many factors

come together to influence the absolute value of each analyte. Our findings in Blanding’s tur-

tles indicate that the index of individuality and subsequent need for subject-based reference
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intervals should be investigated in other reptile species in order to improve the interpretation

of clinical pathology testing.

There are a few limitations in this study that could be addressed in future research. Due to

radiotelemetry strategy in the Lake County location, there was a bias towards adult female tur-

tles, which are followed closely to identify nest location. Additionally, a limited number of

overtly unhealthy turtles were identified, with only a few individuals having physical examina-

tion abnormalities. While this is recognized as a positive finding considering that it indicates

the population is doing well, it does limit the ability to determine how EPH values change in

states of poor health. Furthermore, turtles that could be identified more than once over the

course of the sampling period were sampled every three to six weeks, which could indicate the

fluctuation of an inflammatory response or antigenic stimulation over time.

All blood samples were obtained from the subcarapacial sinus. Blood and lymphatic vessels

are very closely associated with one another at this site, making it possible that blood samples

could become contaminated with lymphatic fluid during venipuncture [76]. While samples

with obvious lymph contamination were discarded, undetectable lymph contamination could

have negatively impacted results. Lymph contamination has been known to falsely decrease

PCV and hemoglobin concentrations and may have similar affects on plasma protein concen-

trations [77]. For those turtles that were collect and sampled from traps, the stress of trapping

could ultimately play a role in affecting plasma protein fractions [50], but the significance has

not been studied in Blanding’s turtles. Timing samples to be collected pre- or post-prandial to

account for lipemia is difficult to control in wildlife research, but a study conducted in Kemp’s

ridley and green sea turtles revealed that feeding had very minimal effects on plasma biochemi-

cal values and are therefore unlikely to alter clinical interpretation [78].

There is a discrepancy between the use of TS verses total protein (TP). A refractometer is an

efficient way to measure TS in a field research setting, but TS includes both plasma proteins as

well as additional plasma solutes [79]. While there have been multiple studies conducted in

other chelonian species that show a significant correlation between TS and TP [19, 80], a direct

relationship in Blanding’s turtles has not been previously identified. Following separation, the

collected plasma was frozen until protein electrophoresis could be run. Studies conducted in

other reptile species have identified EPH differences in fresh plasma compared to frozen/

thawed samples, and some of those studies recommended using fresh samples for best results

[13, 81]. In our circumstances, it would have been impractical and cost-prohibitive to ship

over 200 fresh plasma samples for analysis separately, underscoring the need for us to freeze

and batch-run our samples. Hemolysis also has the potential to affect EPH values, but no

grossly hemolyzed samples were use in this study [82].

The baseline plasma protein reference intervals generated in this study will be useful in

defining the health status of this population. There is some overlap in the top models for pre-

dicting relative and absolute EPH fractions; however there also instances where the values

vary, with absolute values being high while relative values are low for the same variable. This

variation demonstrates the importance of considering both relative and absolute fractions

when interpreting EPH values because they might be driven by different processes. Results of

this study validate that month, location, sex, age class, and health status should be considered

when interpreting EPH fractions. Although EPH does not provide details on specific diseases

or stressors, it is a helpful tool that can aid in identifying when intervention and treatment

might be needed. With the increased use of protein electrophoresis to evaluate the health status

of animals in the veterinary medical field, the application of this tool in conservation of wild

populations is becoming more widely accepted and studied. With baseline concentrations

established and evaluated for variation, future studies can aim to validate and expand upon the

normal reference intervals in this species.
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