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Auditory cortex (AC) contains several primary-like, or “core,” fields,
which receive thalamic input and project to non-primary “belt”
fields. In humans, the organization and layout of core and belt audi-
tory fields are still poorly understood, and most auditory neuroima-
ging studies rely on macroanatomical criteria, rather than functional
localization of distinct fields. A myeloarchitectonic method has been
suggested recently for distinguishing between core and belt fields in
humans (Dick F, Tierney AT, Lutti A, Josephs 0, Sereno MI, Weiskopf
N. 2012. In vivo functional and myeloarchitectonic mapping of human
primary auditory areas. J Neurosci. 32:16095-16105). We propose a
marker for core AC based directly on functional magnetic resonance
imaging (fMIRI) data and pattern classification. We show that a
portion of AC in Heschl's gyrus classifies sound frequency more
accurately than other regions in AC. Using fMRI data from macaques,
we validate that the region where frequency classification perform-
ance is significantly above chance overlaps core auditory fields, pre-
dominantly A1. Within this region, we measure tonotopic gradients
and estimate the locations of the human homologues of the core
auditory subfields A1 and R. Our results provide a functional rather
than anatomical localizer for core AC. We posit that inter-individual
variability in the layout of core AC might explain disagreements
between results from previous neuroimaging and cytological studies.
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Introduction

Anatomical and neurophysiological studies have established a
widely accepted model of the structure of auditory cortex (AC)
in non-human primates (Merzenich and Brugge 1973; Imig
et al. 1977; Morel and Kaas 1992; Morel et al. 1993; Rauscheck-
er et al. 1995; Hackett et al. 1998; Kaas and Hackett 1998,
2000). According to this model, primate AC contains 3 primary-
like fields, collectively referred to as “core,” each with a separ-
ate map of sound frequency (tonotopic map). In the macaque,
the core fields are stacked in a posterior-to-anterior direction
and surrounded by secondary fields, referred to as “belt”
(reviewed in Petkov et al. 2006; Baumann et al. 2013). Cyto-
architectonic data from postmortem human brains are consist-
ent with this model of primate AC: they suggest that human AC
also contains 3 primary-like fields, stacked along the long
axis of Heschl’s gyrus (HG), which runs in a posteromedial-
to-anterolateral direction (Morosan et al. 2001). Functional
imaging data, however, have sometimes led to conflicting
interpretations (reviewed in Baumann et al. 2013). Most
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functional imaging studies found evidence for 2 primary-like
fields, which were interpreted as the human homologues of A1
and R; rarely has evidence for a third primary-like field (RT)
been found (see, however, Moerel et al. 2012). However, dif-
ferent studies have reached conflicting conclusions about the
fields’ orientations and tonotopic layouts with respect to
macroanatomical landmarks (reviewed in Baumann et al.
2013). All studies have used tonotopic mapping to detect
borders between fields within core AC. The main difference
between studies that have reached conflicting conclusions is
that some studies have used an independent criterion for dis-
tinguishing between core and belt auditory fields. In visual
cortex, the boundary between the primary field (V1) and non-
primary fields is marked by reversals in the polar-angle com-
ponent of the retinotopic gradient (Engel et al. 1994; Sereno
et al. 1995). Data from non-human primates and other animals
demonstrate that, in AC, the borders between different core
fields run perpendicular to the fields’ tonotopic gradients and
are thus marked by gradient reversals. In contrast, the borders
between core and belt fields run parallel to the tonotopic gradi-
ents. This means that these borders are not associated with gra-
dient reversals (Morel et al. 1993; Rauschecker et al. 1995;
Petkov et al. 2006) and can thus not be detected by tonotopic
mapping. Dick et al. (2012) circumvented this problem by
using a myeloarchitectonic marker for core AC and then
restricting the tonotopic mapping to the core fields so identi-
fied. Building upon earlier findings of higher myelination in
core fields (Hackett et al. 2001), they improved a previously
developed quantitative T1 mapping protocol (Sigalovsky et al.
2000) to estimate myelination across the cortical surface. This
method highlighted a region of high myelination on medial
HG, consistent with the location of core AC in cytoarchitectonic
parcellations in humans (Morosan et al. 2001). The region con-
tained 2 tonotopic gradients oriented along the same axis as
observed in monkeys (Merzenich and Brugge 1973; Imig et al.
1977; Morel and Kaas 1992; Morel et al. 1993). Moerel and col-
leagues found similar results using the independent functional
criterion of frequency selectivity, which has been shown to be
greater in core than belt fields (Rauschecker et al. 1995).

In the present study, we propose an independent approach
to localize core AC based on functional rather than anatomical
properties. Most previous attempts at localizing core AC from
functional data (e.g., Wessinger et al. 2001; Petkov et al. 20006;
Chevillet et al. 2011; Moerel et al. 2012) exploited the finding
from neurophysiological studies in monkeys that core AC
responds better, and with greater frequency specificity, to pure
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tones and other narrowband sounds than belt AC (Morel et al.
1993; Rauschecker et al. 1995). The current approach is based
on the same general idea but uses multi-voxel pattern classifi-
cation and high-resolution fMRI to maximize sensitivity to the
functional differences between core and belt AC. We independ-
ently validate our method by demonstrating that it correctly
identifies core auditory fields in several macaque monkey fMRI
datasets. We then measure tonotopic gradients to delineate the
borders of the subdivisions of core AC. Previous studies have
assessed tonotopic gradients by manually connecting their
low- and high-frequency endpoints, which involves a degree
of subjective interpretation. Moreover, some of the endpoints
used may have been part of belt AC, which may have skewed
the gradient orientations. Here, we restrict the measurement of
tonotopic gradients to the region identified as core by the
pattern classification procedure, and we use an automated,
and thus objective, method for assessing gradient orientations.
We use these methods to delineate subdivisions of core AC in
several individuals.

Materials and Methods

Participants

Seven human participants (4 males, aged between 25 and 35 years)
took part in the experiment after having provided informed consent.
All were right-handed according to the Edinburgh inventory (Oldfield
1971) and had no history of hearing disorder or neurological disease.
The experimental procedures conformed to the World Medical Asso-
ciation’s Declaration of Helsinki and were approved by the local ethics
committee.

In addition, this paper also presents fMRI datasets from 3 macaque
monkeys. One monkey (Monkey 1) was scanned while anesthetized,
the other 2 (Monkeys 2 and 3) were awake. Two of the monkey data-
sets (Monkeys 1 and 2) were acquired at the Max-Planck-Institute of
Biological Cybernetics, Germany (Logothetis group) and have been
used in a previous study (Monkeys 1 and 2; Petkov et al. 2006). The
third dataset (Monkey 3) is new and was acquired at Newcastle Univer-
sity, United Kingdom (Petkov group). Procedures for animal handling,
anesthesia, and scanning complied with the guidelines of the Euro-
pean Community (EUVD 86/609/EEC) for the care and use of labora-
tory animals and were approved by the local authorities. A detailed
description of all procedures can be found elsewhere (Logothetis et al.
1999; Petkov et al. 2006).

Stimuli

For the human measurements, the sound stimuli consisted of bursts of
pure tones with frequencies centered around 1 of 8 nominal frequen-
cies, logarithmically spaced between 200 and 8000 Hz (200, 338.8,
573.8, 971.9, 1646.2, 2788.4, 4723.1 and 8000 Hz). The bursts were
187.5 ms in duration (including 20-ms squared-cosine onset and offset
ramps) and presented once every 250 ms for 4 s. The stimuli were gen-
erated digitally (24.4-kHz sampling rate, 24-bit amplitude resolution)
using Matlab and Tucker Davis Technologies System 3. In order to min-
imize response adaptation, the frequency of the tone bursts was varied
randomly according to a uniform distribution of 1 semitone around the
nominal frequency. These frequency variations were large enough to
be audible, but, at the same time, small enough to be processed within
the same cochlear channel (Glasberg and Moore 1990). The stimuli were
presented binaurally at a level of 75 dB SPL through MR-compatible
high-fidelity headphones (MR Confon).

In order to minimize the effect of the variation in the normal
hearing threshold across frequency, as well as differences in hearing
threshold between participants and inhomogeneities in the headphone
transfer function, the stimuli were presented in a background of con-
tinuous noise with equal energy per cochlear filter bandwidth (defined
as equivalent rectangular bandwidth, or ERB; Glasberg and Moore

1990) across all frequencies. The noise was presented throughout the
experiment at a level of 35 dB SPL per ERB, 40 dB below the level of
the tones.

Two of the 3 monkeys were presented with 6 pure tones, logarith-
mically spaced in frequency between 500 Hz and 16 kHz. The third
monkey was presented with 2 2-octave-wide noises, centered at 500
Hz and 4 kHz. The stimuli were generated digitally with a 44.1-kHz
sampling rate. They had a 50-ms duration (including 8-ms raised-
cosine onset and offset ramps) and were presented with a 75-ms inter-
stimulus interval and at an intensity of 75 dB SPL. They were presented
through MR-compatible headphones modified to fit the monkeys (MR
Confon, for Monkeys 1 and 2, and NordicNeuroLab, for Monkey 3).

Procedure

In the human measurements, each trial started with the presentation of
a stimulus for 4 s, followed by the functional image acquisition, which
took 1s and then 5 s of silence to yield a 9-s repetition time (TR) in
order for any activation due to the scanner noise to die away before the
next image acquisition. The stimuli were presented in epochs consist-
ing of 2 trials, followed by 2 baseline trials where the stimulus was
replaced by 4 s of silence. The experiment contained 20 trials of each
of the 8 frequencies (see above). Epochs for different frequencies were
presented in pseudorandom order with balanced transition probabil-
ities. The experiment consisted of 324 trials in total (20 trials x 8
frequencies + 160 baseline trials + 4 initial dummy trials). It was split
evenly into 2 runs of equal duration separated by a short break. To-
gether with the structural scans, each session lasted about 60 min. This
was a passive listening experiment; in order to stay alert, participants
watched a silent subtitled movie of their own choice, which was pre-
sented through a projection system with vision-correcting goggles.
While it has been shown that task context can have a strong influence
on AC activity (reviewed in Fritz et al. 2007), there is evidence that at-
tention has little effect on measures of tonotopic organization (Petkov
et al. 2004; Woods et al. 2009).

In the monkey measurements, each trial started with the presenta-
tion of a train of stimuli for 4-8.5 s, followed by the functional image
acquisition, which took 1.5 s to yield a 10-s repetition time (TR; see
Petkov et al. 2006 and Petkov et al. 2009 for details). Trials containing
sounds were alternated with silent baseline trials. The awaken
monkeys were required to maintain visual fixation throughout the
auditory stimulation, and so, the number of repetitions per condition,
as well as the number of conditions depended on fixation perform-
ance. Monkeys 1 and 2 were presented with 12 and 29 repetitions of
each of 6 frequencies, respectively, and Monkey 3 was presented with
60 repetitions of the 2 frequency conditions (see above).

Imaging Protocol

The human measurements were performed in a horizontal 3-Tesla
scanner (Magnetom TIM Trio, Siemens Healthcare) equipped with a
12-channel matrix head-coil (Siemens Healthcare) and using an echo-
planar imaging sequence (gradient echo; acquisition time =1 s, echo
time = 36 ms; flip angle =90°) with sparse sampling (TR =9 s) to min-
imize the effect of scanner noise on the measured activity (Edmister
et al. 1999; Hall et al. 1999). Each functional volume comprised 13
slices with an in-plane resolution of 1.5 x 1.5 mm and a thickness of
2.5 mm. The field of view was 192 mm. The slices were oriented paral-
lel to the average angle of left and right lateral sulci (determined from
the structural scan, described later) to fully cover the superior temporal
plane (STP) in both hemispheres. As a result, the functional volumes
included HG, planum temporale (PT), planum polare, and the superior
temporal gyrus and sulcus. A standard whole-brain T1-weighted struc-
tural scan (magnetization-prepared rapid gradient echo sequence)
with 1-mm? resolution was also obtained for each participant (acquired
before the functional scans).

The monkey measurements were performed in vertical primate
scanners (Bruker Medical) at 4.7 T (Monkeys 1 and 3) and 7 T (Monkey
2). A primate chair was used for positioning the animals within the
magnet bore. Functional and structural volumes were acquired using
surface radiofrequency coils of 70- (Monkey 1) or 80-mm (Monkey 2)
diameter, positioned over AC of 1 hemisphere, or a whole-head coil
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(Monkey 3). Only the right AC was measured with the surface coils
(Monkeys 1 and 2), whereas both the left and right ACs were measured
with the head coil (Monkey 3). Functional volumes were acquired
using a gradient-recalled echo-planar imaging sequence (TE =16 ms,
acquisition time=1.5s, TR=10s). They consisted of 6-12 slices, or-
iented parallel to the relevant lateral sulcus. Each slice consisted of
128 x 128 voxels and was 2 mm thick. The field of view was set indi-
vidually for each animal and measured between 6.4x6.4 and
12.8x 12.8 cm, corresponding to an in-plane resolution of between
0.5x0.5 and 1x1mm. Structural volumes were acquired with a
3-dimensional, modified driven-equilibrium Fourier transform se-
quence (TE =4 ms, TR =22 ms, 256 x 256 x 128 voxels, with an FOV of
9.6%9.6%6.4 cm).

Data Analysis

The functional data from both the humans and the monkeys were cor-
rected for motion artifacts and spatially smoothed with a 2-mm Gauss-
ian kernel. Statistical analysis was based on a general linear model
(GLM) implemented in BrainVoyagerQX and performed on the origin-
al 3D (“volume”) data. Regions of significant activation were deter-
mined by comparing the responses to the sound conditions with the
silent baseline. The GLM was applied both to the individual and
fixed-effects group data. For the group analysis and for comparison of
individual datasets, the functional volumes were co-registered to the
symmetric ICBM152 template. Further analyses were performed in
Matlab after importing the data using BrainVoyager’s Matlab toolbox
BVQXtools.

First, we extracted frequency tuning curves for each voxel by plot-
ting the response size (compared with baseline) to the different fre-
quency conditions. In previous studies, the voxels’ preferred (or
“best”) frequencies have been estimated as the frequency yielding the
largest response, or by fitting the voxel frequency tuning curves with a
bell-shaped function (e.g., Formisano et al. 2003). The function-fit
method has the advantage of utilizing the responses to all frequencies,
rather than to just 1 frequency. This reduces susceptibility to noise.
However, fitting can become unpredictable when the voxel tuning
curves are multi-peaked. Here, we propose a simpler, non-parametric,
method, which also utilizes the responses to all frequencies, but
without the unpredictability of fitting. Our method involves calculating
the centroid of each voxel’s tuning curve according to:

1 n
Centroid = —
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where 7 is the number of presented frequencies (8 in the current ex-
periment), f; is the frequency value, and 7; is the respective response
amplitudes in percent signal change. 7 is the average response ampli-
tude across frequencies. We then estimated the widths of the voxel
tuning curves by calculating the spread about their centroids. This in-
volved multiplying the normalized responses, 7;/(n-7), with the
squared distances of the respective frequencies from the centroid,
summing across frequencies, and taking the square root. The tuning-
curve spreads were then multiplied by 2-+v2-1n 2 to derive the
full-width-at-half-maximum (FWHM).

For comparison, we also fitted the voxel tuning curves with a
rounded exponential (roex) function (the roex function is bell-shaped
and is commonly used for fitting cochlear filters from notched-noise
data; Rosen and Baker 1994). The fit was constrained so that the
maximum of the function fell in the frequency range covered by the
stimuli. The best frequencies and tuning-curve widths were taken as
the peak and FWHM of the fitted functions.

The multi-voxel pattern classification analysis of the human data
was conducted with a type-2 linear-kernel Support Vector Machine
(SVM, Cortes and Vapnik 1995), implemented in the PyMVPA Python
toolbox (Hanke et al. 2009), and applied to the volume data of each
participant separately. Support vector machines are supervised learn-
ing methods that construct 2-category boundaries in sets of training
items, each marked as belonging to 1 of the 2 categories. Based on the
learned category boundaries, the SVM then predicts whether a new
item falls into one category or the other. SVMs only solve binary
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(2-category) classification problems. Our 8-category frequency classifi-
cation problem was solved by partitioning into a complete set of pair-
wise binary problems with a majority voting strategy to determine the
overall classification. This partitioning procedure is part of the
PyMVPA toolbox. Prior to the classification analysis, the voxel time
series were detrended by robust locally weighted least-squares regres-
sion (Cleveland and Devlin 1988), mean-corrected, and normalized by
their standard deviation. No spatial smoothing was used in this case.
The training and test phases of the SVM analysis were performed using
a 5-fold cross-validation procedure, whereby the dataset is randomly
divided into 5 equal parts and each part is used as test data, with the re-
maining 4 parts used for training. Classification accuracy was estimated
by taking the average across the 5 parts. The SVM analysis was per-
formed within a 4-mm sphere of all voxels that showed a significant re-
sponse to at least 1 of the 8 frequency conditions (searchlight
procedure; Kriegeskorte et al. 2006). Thus, the classification accuracy
for each voxel is based on the activity pattern within the voxel's
34-voxel neighborhood. Group average accuracy was calculated by
averaging the co-registered individual classification accuracy volumes.
The classification results were visualized on slices through AC, pitched
by ~30° from the line connecting the anterior and posterior commis-
sures to run parallel to the lateral sulcus. In addition, they were also
mapped onto the 2-dimensional cortical surface reconstructions for
better visualization. Brain surfaces were extracted from the human
structural volumes using BrainVoyagerQX (BrainInnovation). Individ-
ual brain surfaces were registered to an iterative group average surface
(as implemented in BrainVoyager). Surface mapping involves interpol-
ation. The classification analysis was performed on the original
volume, rather than the interpolated surface, data, because interpol-
ation introduces correlation between data points, which decreases the
power of the classification procedure. Classification accuracies
(percent correct classification; the chance level was 12.5%) were trans-
formed to z-scores using a binomial distribution and the resulting
maps were thresholded at P=0.01 (uncorrected). A cluster-size thresh-
old based on random field theory as implemented in FMRIstat
(Worsley et al. 2002) was applied to achieve a threshold of P<0.05,
corrected for multiple comparisons. To verify that the classification
results were stable and not specific to the particular classification algo-
rithm used, we repeated the analysis with type-1 SVM and k-nearest
neighbor classifiers. For each classifier, we performed a basic manual
grid search for suitable values of its free parameter (k in case of the
k-nearest neighbor classifier and a regularization parameter in case of
the SVM). The results were similar between the 2 classifiers and robust
across a wide range of parameter values.

The monkey data were analyzed in a similar way as the human data,
except that we collapsed multiple frequency conditions into a binary,
low versus high, classification problem (with a chance level of 50%).
This allowed us to use the same classification problem for all 3
monkeys, 1 of which was presented with only 2 frequency conditions.
For Monkey 1, the SVM did not achieve above-chance performance
due to the lower number of repetitions relative to the other 2 monkey
datasets. For this animal, we used a k-nearest neighbor (with k=1)
classification algorithm. The k=1 nearest neighbor algorithm uses all
training data for classification, rather than only the data at the decision
border, as in the case of the SVM. For Monkey 2, we conducted both a
2-category (low vs. high) and a 6-category (corresponding to the 6 pre-
sented frequencies; see above) classification analysis to assess the
effect of collapsing different frequencies into a 2-category classification
problem.

The classification accuracies were used to define “core” AC by
thresholding to significantly above-chance classification performance.
In order to validate this classification-based method for delineating
core AC, the classification results for the monkeys were compared with
the results from an independent method proposed by Petkov et al.
(2006). They identified macaque core AC as that portion of the STP that
(1) responds most strongly to narrowband sounds such as pure tones
and (2) contains 3 tonotopic gradients with layouts compatible with
those of Al, R, and RT, the locations of which have been verified in
previous anatomical studies (Hackett et al. 2001). As the animals were
not sacrificed after the fMRI session, no direct cytoarchitectonic parcel-
lation of auditory areas was available.



Results

Delineation of Core Auditory Fields

A crucial prerequisite for parcellating core AC is to delineate
core from belt AC. The current approach was based on the hy-
pothesis that, as neurons in core AC respond with greater fidel-
ity and frequency specificity to narrowband sounds than
neurons in the auditory belt and parabelt (Rauschecker et al.
1995), fMRI activity in core AC would be more informative
about the presented frequency than activity in non-core AC.
We tested this hypothesis using pattern classification analysis.
Pattern classification analysis assesses the relationship between
multi-voxel activity patterns and the stimulus input and is,
under certain circumstances, sensitive to features of cortical or-
ganization that are below the spatial resolution of the fMRI re-
cording (Boynton 2005; Kamitani and Tong 2005). Here,

pattern classification analysis was conducted using a machine-
learning approach. We trained a machine-learning algorithm
(type-2 SVM) to predict the frequency of each presented stimu-
lus from the activity within small (4-mm) spherical volumes in
AC. Prediction accuracy in human datasets reached up to 50%
(i.e., the presented frequency was correctly predicted out of a
total of 8 possibilities in 50% of cases), which is well above the
12.5% chance level. A confusion matrix analysis between the
predicted and actual frequencies revealed that the majority
(68%) of misclassifications were between neighboring frequen-
cies. Figure 1 shows the spatial distribution of the classification
accuracy on slices through the STP containing HG and on the
temporal lobe surfaces. In all 14 hemispheres (7 participants),
as well as in the group average data, a contiguous patch of cor-
tical surface on or near HG showed classification accuracy sig-
nificantly above chance. Some participants showed a second,

Figure 1. Volume slices (4) and surface renderings (B) showing the spatial distribution of classification accuracy in AC. Both individual (labeled 1-7) and group average data
(labeled Group) are shown. The group data are based on a fixed-effects analysis. The volume slices were oriented to run parallel to the lateral sulcus (see Materials and Methods
and inset schematic brain). The cortical surfaces were extracted from the structural volumes; only the upper surfaces of the left and right temporal lobes are shown with HG, PT, and
the temporal pole marked in the group average surface (upper left corner in B, viewing direction is indicated by the red arrow in the inset schematic brain). The color overlay on each
slice or surface shows the performance accuracy of the classification algorithm expressed as proportion of correct classifications and thresholded at £ = 0.01 in the chance
(binomial) distribution. Black lines in the group average surfaces indicate the extent of the 10% and 50% probability maps of cytoarchitectonically defined core AC reported by
Morosan et al. (2001). The slice and surface representations are provided to facilitate comparisons with previously published results. In both representations, maxima of

classification accuracy are visible on or near HG in all participants.
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smaller patch of significant classification accuracy on the PT (6
participants) or planum polare (1 participant). This pattern of
results was stable across different classification algorithms (we
also tested type-1 SVM and k-nearest neighbor algorithms; see
Materials and Methods), and a wide range of hyperparameters
within each algorithm.

In order to test whether the region of significant classifica-
tion accuracy coincides with core AC, we applied the classifica-
tion method to fMRI datasets from 3 macaque monkeys (4
hemispheres, because only the right hemisphere was mea-
sured in Monkeys 1 and 2). In the monkey data, the location of
core AC could be verified using independent functional cri-
teria, as well as existing knowledge from previous anatomical
and physiological studies (Petkov et al. 20006). Figure 2 shows
the results from pattern classification analysis of the monkey
data together with a functional parcellation of each monkey’s
AC based on response amplitudes to pure tones and frequency
gradient reversals (see Materials and Methods). Similar to the
results in humans, classification accuracy in a circumscribed
region of the monkey AC was greater than that in other regions
(the red highlight in Fig. 2B-E shows significantly above-
chance classification accuracy). Importantly, a major portion of
this region coincided with the largest core field, Al, in all 4
monkey hemispheres. The second-largest core field, R, was
marked in 2 hemispheres, and belt fields CM, CL, and AL were
each marked in 1 hemisphere. In contrast, the core field RT
was never marked. The monkey data suggest that significant
classification accuracy is a useful marker for the core auditory
field A1, and, to a lesser degree, also R. From Monkey 2, suffi-
cient data were available to conduct a classification analysis
for 6 sound frequency conditions (Fig. 2H) in addition to a
high- versus low-frequency classification (Fig. 2C). Regions of

significant classification accuracy were virtually identical in
both analyses.

Next, we tested whether the classification accuracy in the
human data correlated with the sharpness of the voxel fre-
quency tuning curves or the response amplitude to pure tones,
both of which have previously been used as markers for core
AC (Wessinger et al. 2001; Petkov et al. 2006; Moerel et al.
2012). We estimated the widths of the voxel frequency tuning
curves by measuring the spread around their centroids (see
Materials and Methods; Supplementary Fig. 14). For compari-
son, we also estimated the tuning widths by measuring the
full-width-at-half-maximum of bell-shaped (roex) functions
fitted to the voxel response curves. The 2 measures of tuning
width were moderately correlated (Pearson’s r=0.69, P<
0.0001). The tuning-curve spreads showed a small, but signifi-
cant, negative correlation with the classification accuracy (r=
—0.076, P<0.0001), indicating that spreads were smaller G.e.,
tuning curves were sharper) in voxels with higher classification
accuracy, as would be expected. The correlation with tuning
widths estimated from the fitted roex functions was not signifi-
cant (r=-0.015, P=0.07). To estimate the response amplitude
to pure tones, we calculated the maximum of the percentage
signal change across the 8 frequencies used in the human mea-
surements (Supplementary Fig. 1B), as well as the root-mean-
square signal change across all frequencies. Both measures
were almost perfectly correlated with each other (#>0.9,
P<0.0001), and both showed a small, but significant, correl-
ation with classification accuracy (»=0.08, P<0.0001), indicat-
ing that the pure-tone responses were somewhat larger in
voxels with higher classification accuracy.

We computed a probability map of the region of significant
classification accuracy across our sample of 14 human

D Anterior
Lateral

R Anterior

+ Lateral

Figure 2. (4) A slice through a macaque brain (Monkey 1) parallel to the STP and covering AC. The color overlay shows the sound frequency that evoked the strongest response for
each voxel. The black lines delineate different functional fields in AC, identified based on the response amplitude to pure tones and tonotopic gradient reversals. The core fields A1
and R as well as belt fields CM, CL, and AL are labeled. Modified, with permission, from Petkov et al. (2008). (B—£) The pattern classification results from 3 macaque monkeys (4
hemispheres; B, C, E: right AC of Monkeys 1, 2, and 3; D: left AC of Monkey 3; C: the classification accuracy when the 6 sound frequency conditions used in Monkey 2 were grouped
into high and low frequencies to enable direct comparison with the other monkeys, compare with panel H for results of the 6-frequency classification). The red highlight shows the
region where the classification accuracy was significantly above chance (chance levels differed, dependent on the number of frequency conditions). The white lines delineate
different AC fields as in A. F and G show automatically determined borders (dark gray) in core fields in the region of interest comprising A1 and R as determined by the manual
parcellation shown in B and C, respectively. The automatically identified border between A1 and R coincided exactly with the manual parcellation. The orientation of the slices in A—£

and H is depicted in the inset schematic brain.
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hemispheres (Fig. 3). The right hemispheres were flipped to
enable this analysis. We found that the overlap of regions of
significant classification accuracy in 2 or more hemispheres co-
incided with the middle part of HG, the same region as identi-
fied by cytoarchitectonical parcellations (Morosan et al. 2001;
Rademacher et al. 2001). The average overlap of the regions of
significant classification accuracy in any 2 hemispheres was
46%. This is similar to the average overlap in functionally
defined core AC fields in monkeys (~50%, see Petkov et al.
2000), suggesting that the locations of core AC fields exhibit a
similar degree of inter-individual variability in monkeys and
humans.

We also quantified the correspondence between the region
of significant classification performance and a previously
reported probability map of core AC based on cytoarchitecton-
ic data from 10 postmortem brains (Morosan et al. 2001). For
that, we defined 2 regions of interest: one more conservative,
corresponding to the 50% probability map of the cytoarchitec-
tonically defined core AC (i.e., the region comprising core AC
in at least 50% of brains tested), and the other more liberal, cor-
responding to the 10% probability map. Outlines of these
regions are shown on the group temporal lobe surfaces in
Figure 1. We found that the conservative region contained over
90% of the region of significant classification accuracy in the
group average data, indicating that there was a good corres-
pondence between the average region of significant classi-
fication accuracy and the cytoarchitectonic map of core AC.
For individual hemispheres, the correspondence was less
good, as would be expected, ranging from as little as 0% to as
much as 100%. The liberal region, however, contained 100% of
the region of significant classification accuracy not just in the
group average data, but in all individual hemispheres bar

Anterior

T—»Media[

AC

HG

Figure 3. Probability map of estimated core AC. Cortical surfaces of all 14
hemispheres were aligned to the left hemisphere of a target using surface-based
alignment of the location of gyri and sulci. The color code indicates the number of
hemispheres that contained core AC at a given cortical location. Large overlap of core
AC was observed in middle HG.

one (Participant 7, left hemisphere). In this participant, the
classification-based estimate of core AC was located more
anteriorly and laterally than expected based on the cytoarchi-
tectonic probability map. It is impossible to decide whether
the classification-based estimate or the cytoarchitectonic prob-
ability map is “incorrect” in Participant 7. The fact that the loca-
tions of the classification-based estimates were consistent
across the 2 hemispheres would suggest that they are “correct.”
At the same time, however, the classification accuracy was gen-
erally lower than in other participants, suggesting that the
estimates were less reliable.

Rademacher et al. (2001) reported a maximal distance of
about 2 cm between the centroids of any 2 cytoarchitectoni-
cally defined core AC regions within 27 individuals. Here, we
found a very similar maximal distance of 2.3 cm between the
centroids of the regions of significant classification accuracy in
any 2 of our 14 hemispheres.

Estimation of Voxel Best Frequencies

The results from the previous section indicate that the region
of significant classification accuracy corresponds well with the
location of core AC based on cytoarchitectonic criteria in
humans and based on independent functional criteria in
monkeys. In this section, we describe an automated procedure
for measuring tonotopic gradients and finding their reversals
in order to delineate different subfields within core AC. The
first step in finding tonotopic gradient reversals is to estimate
each voxel’s preferred, or “best,” frequency. Here, the voxel
best frequencies were estimated by calculating the centroid of
the voxels’ frequency tuning curves (see Materials and
Methods). A prerequisite for determining voxel best frequen-
cies is that voxel tuning curves are reliable. We tested reliability
by computing the distributions across voxels of the coefficients
of correlation between the response curves for the first and
second experimental runs. The response curves were highly
correlated between the 2 runs in all participants (the distribu-
tions of correlation coefficients were skewed toward high
values, with a median value of 0.63, on average). Wilcoxon
rank sum tests showed that the distributions were significantly
different (P <0.0001) from the respective empirical null distri-
butions, estimated by 10 000-fold random sampling (with re-
placement) from distributions of correlation coefficients
between scrambled voxels.

Based on this result, we then computed best-frequency
maps using the centroid method (Fig. 4). For comparison, we
also derived the best frequencies from the roex functions fitted
to the voxel tuning curves (see Materials and Methods). The
best-frequency estimates obtained by the 2 methods were
highly correlated (Pearson’s r=0.87, P<0.0001); both
methods generally yielded a gradual variation in best fre-
quency across the cortical surface. The best frequencies esti-
mated with the centroid method appeared less noisy than
those estimated with the function-fit method and thus lent
themselves better to extracting best-frequency gradients.

In order to parcellate core AC into its subdivisions, we used
the best-frequency maps to locate reversals in the tonotopic
gradients. In the majority of previous tonotopic mapping
studies, the orientation of tonotopic gradients was assessed by
manually connecting their low- and high-frequency endpoints
with straight lines. Only a few studies computed gradient-sign
maps (Formisano et al. 2003; Petkov et al. 2006) or analyzed
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Figure 4. Temporal lobe surfaces with renderings of the voxel best frequencies estimated by calculating the centroids of the voxel tuning curves (A), or fitting them with
bell-shaped (roex) functions (B). In both panels, the outlines of core AC, estimated by thresholding the classification accuracy maps at the significance threshold (see Data Analysis),

are marked with black lines.

gradient-angle distributions (Langers and van Dijk 2012). Com-
putation of gradient-sign maps involves setting an orientation
along which to analyze best-frequency gradients, and then de-
termining, for each voxel, the direction of the best-frequency
change (i.e., rising or falling) along that orientation. Edges
between positive and negative gradient directions in such
maps mark gradient reversals with respect to the pre-set orien-
tation. For instance, if 2 mirror-oriented tonotopic gradients
were expected to run parallel to the long (mediolateral) axis of
HG, then gradient directions would be determined along that
axis of HG. Obvious drawbacks of this method are (1) that it
assumes that the gradients adjoining the edge are mirror-
symmetric and also (ii) that it requires a prior assumption as to
the orientation along which a gradient edge will occur. This is
problematic, because the orientations of tonotopic gradients
within core AC may vary between participants. A further draw-
back is that gradient edges are detected along only one, the
preset, orientation, and so, no measure of the reliability of the
edge locations can be obtained. Our aim was to refine the
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gradient-sign method in order to eliminate these problems
(Fig. 5). For that, we calculated gradient-sign maps, not just for
one, but for all possible orientations between 0 and 179°, in
1°-steps. We then marked the locations of gradient reversals
for each orientation using an edge detection filter (see Fig. 5D
for examples). This creates a gradient edge map for each
orientation. The edge maps were then summed across all or-
ientations to obtain a composite map of gradient edges repre-
senting the number of orientations for which an edge was
present at a given location. This composite map allowed us to
find the edges with the greatest number of overlapping rever-
sals. Because the orientations were sampled in 1°-steps, the
number of reversals represents the angle between the 2 tonoto-
pic gradients adjoining at a given edge location. Thus, the edge
with the greatest number of overlapping reversals is also the
edge with the largest average angle between adjoining gradi-
ents and would thus be presumed to represent the most likely
border between fields. In the monkey data, the region of sig-
nificant classification accuracy overlapped the border between
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Figure 5. Automatic parcellation of core AC. The extracted individual brain surface (4) is inflated (B) and a segment covering STP is cut out. (C) The best-frequency map is masked
with the contiguous region of significant classification performance located closest to HG. This region is taken as estimate of core AC. (D) Gradient reversals are computed for all
orientations between 0 and 179°. The reversal maps for different orientations are then summed. The values in the resulting map indicate the angle between the adjoining tonotopic

gradients. (£) Stable reversals indicate the location of subfield borders within core AC.

R

Figure 6. Parcellation results and tonotopic gradients for the human data. All individual hemispheres and the group average data are shown. In most hemispheres (11/14), we found
1 tonotopic gradient reversal with a shared low-frequency border, presumably marking the core fields A1 (red-yellow color gradient, corresponding to low-to-high best frequencies)
and R (blue-cyan color gradient). In 1 hemisphere (Participant 2, right hemisphere), we found an additional high-frequency reversal posterior to A1, which probably marks the border
between A1 and either of the belt fields CM or CL (green-yellow color gradient). In 2 hemispheres (Participants 2 and 6, left hemispheres), no stable gradient reversals were found in

the region of significant classification accuracy.

Al and R in 2 hemispheres, and between Al and CM and Al
and CL in 1 hemisphere each (see Fig. 2). The borders between
A1 and R and between A1l and CM or CL can be distinguished
based on the best frequencies of the adjoining voxels: tonoto-
pic gradients share a low-frequency border between Al and R,
but a high-frequency border between A1 and CM or CL. Thus,
gradient reversals within regions with low best frequencies
likely mark the border between the core fields Al and R,
whereas gradient reversals within regions with high best fre-
quencies likely mark the border between Al and either of the
caudal belt fields CM or CL.

We performed the same automatic detection of area borders
in the data from Monkeys 1 and 2 (we could not perform this
analysis on Monkey 3 because that dataset contained only 2
sound frequency conditions), using the published delineation
of core AC indicated in Figure 2. The automatically determined
A1/R borders (Fig. 2F and G) coincided exactly with the pub-
lished manual parcellation (Fig. 2B and C, respectively). In
addition, we detected a second, more posterior, gradient rever-
sal in both cases, which may indicate the border between Al

and posterior fields CM or CL. This is consistent with the
region of significant pattern classification accuracy, which did
not include the posterior portions of manually delineated A1l.

Figure 6 shows the parcellation results for the human data.
In 11 of the 14 hemispheres, the region of significant classifica-
tion accuracy contained 2 tonotopic gradients with a shared
low-frequency endpoint, which presumably marks the border
between the core fields A1 and R. One hemisphere showed an
additional gradient reversal with a shared high-frequency end-
point, located posterior to the low-frequency reversal. This
high-frequency reversal probably marks the border between
A1 and either of the caudal belt fields CM or CL. In the remain-
ing 2 hemispheres, the region of significant classification ac-
curacy contained only a single tonotopic gradient and thus no
reversals. In these hemispheres, the gradient orientation was
consistent with A1.

We measured the direction of the tonotopic gradient with
respect to the orientation of the long (mediolateral) axis of HG
at each vertex on the flattened cortical surfaces in A1 and R in
each participant and the group map (Fig. 7). Mean angles
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Figure 7. Circular histograms of tonotopic gradient direction in A1 (black polygons)
and R (gray polygons) in left (L) and right (R) hemispheres of the group data and
Participants 1-7. Directions are relative to the orientation of HG, whose medial-
to-lateral axis corresponds to the horizontal axis in each plot (indicated by the black
arrow in plot 2L). Directions were binned every 45° (light-gray circle sections) for
plotting. Mean directions and 95% confidence intervals are indicated by small gray
triangles. Numbers at the bottom of each graph indicate the upper axis limit of the
histogram as number of vertices. Dashed black lines show the orientation of the border
between A1 and R, as identified by the gradient reversal analysis.

ranged from almost parallel (1°) to almost perpendicular (88°)
with a mean of 34° (interquartile range 30°). The mean angle
in the group map was 50°. In individual hemispheres, 19 out
of 26 of the mean directions were below 45°. This proportion
and larger ones are unlikely to occur under the assumption of
an equal distribution of angles within the measured range
(under 2% of 100000 bootstrap samples), suggesting that
mean gradients tend to align with the long axis of HG. We also
examined the orientation of the border between Al and R
identified by the gradient reversal analysis. Although these
edges are not straight, a representative angle can be computed
as the complement to 90° of the direction for which the edge
map correlates maximally with the sum of edge maps across all
directions (for instance, in Fig. 5D, the gradient reversals at 30°
correlate better with the summed map than the ones at 90°). In
the group map, the border between Al and R so computed ran
almost parallel to HG (3° on the left and 6° on the right side,
Fig. 7). In the majority of the individual hemispheres, these
angles were above 70°, that is, almost perpendicular to HG.
The mean angle was 67° with an interquartile range of 23° and
arange of 15-90°.

Discussion

This study aimed to map core AC in humans using fMRI. In
contrast to previous tonotopy studies, we used multi-voxel
pattern classification of sound frequency to distinguish core
from belt AC, and we assessed tonotopic gradients and gradi-
ent reversals using an automated procedure unbiased by prior
assumptions to delineate subfields within core AC. We limited
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the tonotopic gradient analysis to the region identified as core
by the pattern classification analysis. This avoids the risk of
constructing erroneous tonotopic gradients across borders
between core and belt fields (see also Dick et al. 2012; Moerel
et al. 2012). We validate our method with fMRI tonotopy data-
sets from 3 macaque monkeys. Our results challenge a model
of core AC organization in humans proposed by several recent
fMRI tonotopy studies (Humphries et al. 2010; Da Costa et al.
2011; Langers and van Dijk 2012) but are consistent with previ-
ous cytoarchitectonic (Morosan et al. 2001) and myeloarchitec-
tonic (Sigalovsky et al. 2006; Dick et al. 2012) measurements
of human core AC and accord with a recently proposed unified
model of the primate primary AC (Baumann et al. 2013).
Unlike the myelination measurements, the pattern classifica-
tion method involves no specialized imaging sequences or ana-
lysis techniques and can also be applied to already existing
tonotopy datasets. The current results suggest that, at least at 3
T, where the current human data were acquired, the pattern
classification approach may be more sensitive than the previ-
ously used criterion of sharper frequency selectivity in core AC
(Moerel et al. 2012; see below).

Location of Core Auditory Fields

Frequency classification accuracy peaked on or near HG in all
of the 14 human hemispheres measured in this study. In the 4
macaque monkey hemispheres, the region of significant classi-
fication accuracy consistently overlapped the largest core field
Al and, in 2 hemispheres, also the smaller core field R. In 2
hemispheres, the significant classification region also over-
lapped the caudal belt fields CM or CL. This is consistent with
previous findings of tonotopic organization in these areas in
primates (Kaas and Hackett 1998; Petkov et al. 20006). Physio-
logical studies have shown that frequency selectivity is lower
in belt than in core fields (Rauschecker et al. 1995). This may
explain why significant classification accuracy in the caudal
belt was observed in only 2 of our 4 macaque hemispheres.
Note, however, that the parcellation of the monkey AC pro-
posed by Petkov et al. (2006), against which the current
classification results were compared, was not verified by post-
mortem anatomical analysis and may thus itself exhibit inac-
curacies. That study also reported considerable variability in
the tonotopic maps within and between animals. Irrespective,
there is a clear convergence of human and macaque results in
that the region of significant classification accuracy corre-
sponded roughly to the expected location of core AC and, in
the majority of cases, contained 2 tonotopic maps with orienta-
tions consistent with the 2 largest core fields, A1 and R.

The classification results were robust across different classi-
fication algorithms and parameters, suggesting that the fre-
quency classification method is a useful in vivo marker of core
auditory field A1 and, to a lesser extent, R in individual brains.
We would expect that the region of significant classification ac-
curacy would also be robust against changes in the stimulation
paradigm or parameters. It has been shown that the size of the
sustained response (SR) to longer stimulus sequences (>6 s) is
affected by the stimulus rate, with faster rates yielding a larger
SR in primary fields, and slower rates yielding a larger SR in
nonprimary fields (Giraud et al. 2000; Harms and Melcher
2002; Seifritz et al. 2002). The current study used relatively
short stimulus sequences (4 s), and so, the measured activity
would be expected to represent the onset response to the



sequences, which is relatively little affected by the stimulus
rate (e.g., Harms and Melcher 2002). When using longer se-
quences, an intermediate stimulus rate should be used in order
to create balanced activity across both primary and non-
primary fields.

In the human participants, classification accuracy correlated
weakly with the sharpness of the frequency tuning curves and
with the overall response amplitude to pure tones. This was ex-
pected because neurons that are more sharply tuned in fre-
quency and thus more strongly driven by narrowband sounds
such as pure tones should also be more informative about the
presented frequency. Sharpness of frequency tuning and re-
sponse amplitude to pure tones and other narrowband sounds
have been used in previous studies as criterion to delineate
core AC in humans (Wessinger et al. 2001; Chevillet et al.
2011). The classification method might be expected to be more
sensitive than the sharpness-of-tuning criterion, because classi-
fication analysis of multi-voxel activation patterns has been
shown to be less susceptible than single-voxel-based analyses
to limitations in the measurement spatial resolution (deter-
mined by the voxel size and the spatial spread of the blood
oxygen level-dependent effect). Multi-voxel pattern analysis
can be used to extract information encoded at a somewhat
smaller scale than the voxel dimensions and does not require
measurable tuning at the voxel level (Boynton 2005; Kamitani
and Tong 2005). The criterion of response amplitude to nar-
rowband sounds is premised on the assumption that core and
belt AC differ in their frequency tuning properties, but not in
their overall sensitivity to sound. Given that response ampli-
tudes also depend on stimulus parameters other than frequency
composition (e.g., stimulus rate; see above), this assumption
cannot be generally valid. Moreover, due to nonlinearities in the
blood oxygenation level-dependent effect (Liu et al. 2010), large
differences in the neural response amplitude between core and
belt AC might translate to only small differences in the ampli-
tude of the fMRI signal.

The results from the classification method show a consider-
able degree of variability in the location of human core AC
across our sample of 14 hemispheres. Much of this variability
is due to macroanatomical variability. A probability map of the
region of significant classification accuracy, calculated using
surface-based alignment of the temporal lobes across partici-
pants and hemispheres, showed a good degree of overlap of
core AC around middle HG. The location and variability of the
region was consistent with the previous cytoarchitectonic
(Morosan et al. 2001; Rademacher et al. 2001) and myelination
measurements (Sigalovsky et al. 2006; Dick et al. 2012). The
group average region of significant classification accuracy was
for the most part (90%) contained within the cytoarchitectonic
50% probability map of Morosan P et al. (2001). We do not
have myelination data for our participants (the data acquisition
predated those reports) and thus cannot conduct a direct
within-participants comparison of myelination and classifica-
tion accuracy. However, at the group level, the region identi-
fied by the classification method was largely congruent with
the region that exhibited high myelination in the study by Dick
et al. (2012). Both sets of results suggest that core AC may
extend less widely than assumed in several recent human tono-
topy studies (Humphries et al. 2010; Da Costa et al. 2011;
Langers and van Dijk 2012). These studies assumed that
core AC encompasses the entire HG and also some of the
regions anterior and posterior to HG. In contrast, both our

classification results and the myelination results by Dick et al.
(2012) suggest that, on average across participants, core AC en-
compasses only a relatively small, circumscribed region on
middle HG.

The convergence between independent (functional and
anatomical) localizers bolsters confidence in their validity and
highlights the potential benefit of combining them in 1 experi-
ment. The method proposed by Dick and colleagues and our
classification method both require thresholding (on the myelin
measure, Ry, and on classification accuracy, respectively) to de-
lineate core fields, and combining information, for instance in
a Bayesian framework, may help to reduce potential bias from
threshold selection.

Orientation of Tonotopic Gradients

The orientation of the tonotopic gradients within the core AC
region in individual hemispheres varied between 1 and 88°
relative to the long axis of HG, with an average of 34° and an
interquartile range of 30°. The automatically identified border
between the presumed core fields A1 and R was oriented
almost perpendicular to HG in most hemispheres, with a mean
angle of 67°, a range of 15-90°, and an interquartile range of
23°. In the monkey data, the border identified by our automatic
method coincided exactly with the previously published
manual delineation. The method proposed here to identify reli-
able gradient reversals is robust against variation in gradient
orientation, because it is not dependent on any assumption of
the orientation of tonotopic gradients with respect to HG. The
centroid method for estimating voxel best frequencies helped
to reduce noise in the best-frequency maps, which makes the
extraction of gradient reversals more reliable. Previous studies
have demonstrated good repeatability of tonotopic mapping
with fMRI across time and stimulus types (Da Costa et al. 2011;
Dick et al. 2012; Moerel et al. 2012). Similarly, the current data
showed good repeatability of voxel frequency tuning curves
across measurement runs. We therefore think that the observed
variability in the tonotopic gradient orientations represent, at
least partly, true differences between individuals and hemi-
spheres. This is consistent with physiological data: in the earli-
est tonotopic mappings of animal AC, Merzenich and colleagues
report a significant variation in the location of core AC and in
the orientation of best-frequency gradients in core AC in
macaque monkeys (Merzenich and Brugge 1973), squirrels
(Merzenich et al. 1976), and cats (Merzenich et al. 1975). In the
description of the results on cat AC, the authors explicitly
stated that it was necessary to consider each cat individually in
order to arrive at a coherent model of tonotopic organization.
Variability in the tonotopic gradients has also been reported in
fMRI studies in macaques (Petkov et al. 2006; Baumann et al.
2010; Tanji et al. 2010). Although often de-emphasized, con-
siderable inter-individual variation is also evident in human to-
notopy studies that show individual data (Schonwiesner et al.
2002; Formisano et al. 2003; Talavage et al. 2004; Humphries
et al. 2010; Da Costa et al. 2011; Langers and van Dijk 2012;
Dick et al. 2012; Moerel et al. 2012), and in macaque fMRI to-
notopic maps (Petkov et al. 2006).

The general pattern of frequency preference across the STP
observed in our group data is consistent with the results found
in previous studies (Talavage et al. 2004; Humphries et al.
2010; Da Costa et al. 2011; Langers and van Dijk 2012; Dick
et al. 2012; Moerel et al. 2012). All these studies show a broad
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region of low best frequencies on the anterolateral crown of
HG, and a wide collar of high best frequencies around the pos-
teromedial end of HG and extending both anteriorly and pos-
teriorly along HG. However, different studies have interpreted
this pattern differently depending on whether or not they used
an independent criterion to delineate core AC. The studies that
did not use an independent criterion (Humphries et al. 2010;
Da Costa et al. 2011; Langers and van Dijk 2012) proposed a
model of human core AC in which the core fields Al and R run
all the way along the anterior and posterior banks of HG,
sharing a border roughly parallel to its long axis (see, for in-
stance, Humphries et al. 2010, Fig. 9). The assumption is
that the tonotopic gradients in both Al and R run quasi-
perpendicular to HG, connecting the low-frequency region on
its anterolateral crown to the high-frequency strips anterior
and posterior to HG, respectively. However, our classification
results suggest that these low- and high-frequency regions do
not represent corresponding endpoints of tonotopic gradients.
In particular, our results, together with myeloarchitectonic
mapping (Dick et al. 2012) and other functional criteria
(Moerel et al. 2012), suggest that only the best-frequency pro-
gression within a relatively small, circumscribed region around
the middle part of HG represents a coherent tonotopic gradi-
ent, presumably the gradient of area Al. A quasi-perpendicular
layout would also be in direct disagreement with the cytoarchi-
tectonic parcellation of human core AC by Morosan et al.
(2001). These authors found 3 subfields (which they referred
to as Tel.0, Tel.1l, and Tel.2), stacked along HG, and with
borders running perpendicular, rather than parallel, to its long
axis. The best-frequency progression is variable across individ-
ual hemispheres but runs approximately parallel to the long
axis of HG in the majority of hemispheres tested here (8/14).
This is consistent with several earlier human tonotopy studies
(Talavage et al. 2000, 2004; Formisano et al. 2003; Upadhyay
et al. 2007), which have also found a low- to high-frequency
progression from anterolateral-to-posteromedial HG.

In addition to Al and R, a third core subfield, RT, has been
demonstrated in several monkey species. There is growing evi-
dence for the existence of RT in humans. Morosan et al. (2001)
reported 3 primary-like fields in human postmortem brains,
but the correspondence between these fields and functionally
defined A1, R, and RT, is unclear. While the earlier human to-
notopy studies did not find a second tonotopic gradient rever-
sal (Talavage et al. 2000; Schonwiesner et al. 2002; Formisano
et al. 2003; Talavage et al. 2004), some of the more recent
studies reported a second reversal, located anterior or lateral to
the first reversal (Woods et al. 2009; Humphries et al. 2010;
Moerel et al. 2012). The second reversal might mark the R-RT
border. RT is small and exhibits a less consistent tonotopic or-
ganization than Al and R (Petkov et al. 2006). This may be
why RT failed to yield significant frequency classification ac-
curacy in our monkey datasets. Alternatively, the tonotopic
map of RT may be incomplete in humans (i.e., only cover a
part of the frequency range). An inconsistent or incomplete to-
notopic organization of RT may mean that a definitive marker
of the entire core AC may have to comprise a combination of
functional, anatomical, and perhaps connectivity criteria.

In this study, we could not extend the tonotopic mapping
beyond core AC, because we were unable to distinguish
between belt and parabelt fields. At present, the separation of
belt from parabelt AC would have to be inferred from the
known organization of the non-human primate AC and would
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thus be highly speculative. Moreover, tonotopic gradients
would be expected to be less clear outside of core AC.
However, at least belt fields would be expected to exhibit tono-
topic organization with best-frequency gradients collinear to
those of the adjacent core areas. It may thus be hoped that
identification of core AC as in the current study will enable de-
lineation of at least some of the adjoining fields.

Supplementary Material

Supplementary can be found at: http://www.cercor.oxfordjournals.

org/.
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