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Abstract

The frequent dispensability of duplicated genes in budding yeast is heralded as a hallmark of genetic robustness
contributed by genetic redundancy. However, theoretical predictions suggest such backup by redundancy is evolutionarily
unstable, and the extent of genetic robustness contributed from redundancy remains controversial. It is anticipated that, to
achieve mutual buffering, the duplicated paralogs must at least share some functional overlap. However, counter-intuitively,
several recent studies reported little functional redundancy between these buffering duplicates. The large yeast genetic
interactions released recently allowed us to address these issues on a genome-wide scale. We herein characterized the
synthetic genetic interactions for ,500 pairs of yeast duplicated genes originated from either whole-genome duplication
(WGD) or small-scale duplication (SSD) events. We established that functional redundancy between duplicates is a pre-
requisite and thus is highly predictive of their backup capacity. This observation was particularly pronounced with the use of
a newly introduced metric in scoring functional overlap between paralogs on the basis of gene ontology annotations. Even
though mutual buffering was observed to be prevalent among duplicated genes, we showed that the observed backup
capacity is largely an evolutionarily transient state. The loss of backup capacity generally follows a neutral mode, with the
buffering strength decreasing in proportion to divergence time, and the vast majority of the paralogs have already lost their
backup capacity. These observations validated previous theoretic predictions about instability of genetic redundancy.
However, departing from the general neutral mode, intriguingly, our analysis revealed the presence of natural selection in
stabilizing functional overlap between SSD pairs. These selected pairs, both WGD and SSD, tend to have decelerated
functional evolution, have higher propensities of co-clustering into the same protein complexes, and share common
interacting partners. Our study revealed the general principles for the long-term retention of genetic redundancy.
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Introduction

Genetic robustness in yeast cells accounts for insignificant

phenotypic consequences upon deletion of many genes [1,2]. It is

thought that such resilient design of the genetic program is

achieved in two different ways. In the first scenario, genes

performing related functions are distributed on alternate pathways

[3,4] mimicking the electric parallel circuits so its alternate paths

can compensate that blockage of one pathway. The second

strategy to achieve robustness is by gene duplication, i.e. null

mutation on one gene can be buffered by its paralogous copy

which shares overlapping function [5]. This notion is supported by

recent investigations which showed that mutual compensation is

prevalent among paralogs [6–8], but contradicts population

genetic theories predicting that genetic redundancy is evolution-

arily unstable [9]. The instability can be understood when

considering the evolutionary fate of duplicated genes [10]. Upon

duplication, the paralogs usually go through a short-lived and

transient state of complete redundancy, followed by a non-

functionalization process that leads to massive loss of duplicates

[10]. To persist, duplicate genes usually have to functionally

diverge, either through subfunctionalization (partition of ancestral

functions) or neofunctionalization (independent gain of novel

functions) [10–13]. Regardless of how the paralogs had navigated

an evolutionary trajectory from the transient complete redundancy

to the long-time retention, the sister paralogs are anticipated to

share fewer functions as time progresses. Therefore, the missive

loss of duplicated genes and the highly divergent functions

between the long-term retained pairs appear to be contradictory

to the genetic redundancy provided by paralogs. More perplex-

ingly, even for the duplicates that have backup capacity, several

recent studies reported that little functional similarity is shared

between them [8,14], leading to the hypothesis of ‘‘backup without

redundancy’’ [14].

As these previous observations were made on small datasets

from double-gene deletion experiments in budding yeast, it is

necessary to re-examine the relationship between the cellular

robustness and gene redundancy using more recent and larger

datasets, and more importantly, to include paralogs arising from

different evolutionary origins. In this study, we based our analysis

on the synthetic genetic interactions derived from a recent

landmark study, in which ,2, 000 genes were queried against

the rest of the genome for synthetic genetic interactions (epistasis)

[15]. This data set, larger than any other previous yeast double-
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deletion experiments, provides us a unique opportunity to

systematically examine the genetic buffering between ,500

duplicate gene pairs on a genome-wide scale. Moreover, this data

set includes duplicate pairs from both whole-genome duplication

(WGD) and small-scale duplications (SSD), allowing us to compare

duplicates with different origins in an unbiased manner. Our

analysis confirmed the previous reports, which were based on

much smaller datasets, about the prevalent mutual compensation

among paralogs, both from WGD and SSD. However, in contrast

with ‘‘backup without redundancy’’, our further examination

suggests that functional overlap/redundancy between paralogs is a

key determinant of backup capacity between duplicates, with

which the buffering potential of any given pair can be accurately

predicted. More interestingly, although mutual compensation

among duplicate genes is prevalent, we found that the evolution of

genetic robustness by gene duplication follows a neutral mode, i.e.

the loss of backup capacity being proportional to background

mutations accumulated in the divergence time since duplication.

Under the neutral mode, although massive duplicates had lost

their mutual compensation, we also found natural selection plays a

role in maintaining long-term retention of the backup capacity

between a few duplicates, which requires slowly evolved functions

between paralogs.

Results

We compiled unambiguous 495 WGD and 667 SSD duplicate

pairs from Guan et al. [16], where an improved algorithm on the

basis of Kellis et al. [17,18] was employed to detect WGD

paralogs; the independent SSD paralogs were derived from the

best reciprocal matches. We removed ribosomal-related duplicates

due to their high level of conservation in sequence and expression

[19]. In the end, we retained 494 pairs with quantitative genetic

interactions from Costanzo et al. [15], which included 266 WGD

pairs and 228 SSD pairs (Table S1). The scoring scheme for the

synthetic genetic array (SGA) experiment was described in the

original publication [15]. Briefly, duplicate pairs showing severer

aggravating genetic interactions received more negative interac-

tion scores and were thus deemed to have stronger backup

capacity [15]. We note that it is possible that mutual compensta-

tion between some pairs is too subtle to be detected in the current

SGA assay, so in this study we only cconsidered pairs with

unambiguous genetic interactions revealed by the scoring scheme

developed by Costanzo et al. [15].

Prevalent and strong genetic backup between duplicate
paralogs

Among the duplicate pairs assayed, we found 39.5% (105/266)

of the WGD paralogs had significant aggravating interactions, in

comparison with 18.4% (42/228) for SSD paralogs (Figure 1). The

percentage of backup pairs for WGD was comparable to what was

previously reported (,35%) [8], where random spore analysis

(RSA) and growth curve analysis (GCA) rather than SGA were

used to determine the compensatory effects between WGD

paralogs. It was interesting that the percentage of backup pairs

was much lower for SSD pairs than WGD pairs (Figure 1); such a

reduced dispensability of SSD duplicates was previously speculated

from single-gene deletion experiments [20].

We further designed two control sets to determine the statistical

significance of the observed compensation between duplicated

genes. First we randomly chose gene pairs that have genetic

interactions regardless of being duplicate or singleton, and found

only 7% of the pairs have aggravating interactions (see Figure 1A

and Materials and Methods). Second, we took all the duplicated

genes and randomly grouped them into pairs, and found that only

6.6% of these random pairs have aggravating interactions. This

ruled out the possibility that the observed preferential buffering

between duplicates was simply due to that duplicate genes might

have more aggravating genetic interactions than singleton genes.

Comparing the percentages for the control sets with the

percentages of 39.5% for WGD paralogs and 18.4% for SSD

paralogs (Figure 1B), our analysis established that duplicates

indeed have excessive backup capacity, which results from their

intrinsically shared properties. As SGA provides quantitative

measurements for the interaction strength between any gene pairs

[15], we next studied the backup strength between paralogs.

Compared with two control sets, we found the interaction strength

between duplicate pairs was much stronger with the average scores

of 20.42 and 20.33 for WGD and SSD, respectively, in sharp

contrast with 20.07 and 20.069 for the two random control sets,

respectively (see Figure 1B, P = 8.54610236 for WGD,

P = 1.8761026 for SSD and P = 0.06 between WGD and SSD).

We note that these findings are in agreement with what was

previous reported from analysis on much smaller datasets [6–

8,14]. Taken together, our analysis established that strong genetic

buffering capacity is prevalent between WGD and SSD paralogs,

which provides enhanced genetic robustness in yeast cell.

Functional similarity is a key determinant of backup
capacity between paralogs

Intuitively, genetic robustness by redundancy between gene

duplicates should be attributed to their functional similarities.

However, conflicting observations were reported in the recent

literature [6–8,14]. It was suggested that functional redundancy

between buffering duplicates is minimal [8,14], which gave rise to

the hypothesis of ‘‘backup without redudancy’’ [14]. In these

earlier studies, functional similarity between paralogs was

characterized based on their resemblance in gene expression

profiles, protein interactions, or genetic interaction profiles.

However, two genes may still buffer each other even though they

only have limited functional overlap, which does not require them

to have near identical profiles of gene expression or genetic

interactions. Supporting this notion, Kafri et al. proposed a model

Author Summary

Eukaryotic cells show remarkable robustness against
external perturbations, which has been thought to be
attributed, at least in part, to the extensive gene
duplication events in eukaryotic genomes. By duplication,
genes are likely to gain redundant copies for backup
purposes, however, this notion contradicts the population
genetic theory that genetic redundancy is evolutionarily
unstable. In this study, we used yeast as a model organism
to delineate the evolutionary trajectory of genetic
robustness by gene duplication, utilizing the comprehen-
sively characterized synthetic genetic interaction data in
the yeast genome. We showed that the evolution of
genetic robustness by duplication follows a neutral mode,
with the loss of backup capacity proportional to the
divergence time. However, natural selection was also
acting on a few pairs to maintain their long-term backup
capacity; and these pairs are slowly evolving, are co-
clustered in the same protein complexes, and tend to
interact with the similar partners. This study unravels the
general principles underlying the evolution of the cellular
robustness arising from genetic redundancy.

Robustness by Genetic Redundancy
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of transcriptional reprogramming, which predicted that differen-

tially expressed duplicates were more likely to buffer each other

[21]. Therefore complementary to indirect metrics that score

overall functional similarity between duplicate copies (inferred

from sequences or expression profiles), a new metric is required to

specifically and directly quantify the extent of functional overlap

between paralogs. In this study, we used a metric called GO-div to

gauge functional overlap between paralogs directly from their

respective GO annotations (see Materials and Methods and also

Figure S1). GO-div previously was used to benchmark data

obtained from high-throughput experiments [22], and here we

adopted this approach to quantify functional overlap between

duplicate genes. Conceptually, GO-div measures the semantic

dissimilarity between the sets of Gene Ontology annotations

associated with a pair of genes [22] and is calculated on the basis of

resemblance between the ‘‘best matched’’ GO terms between

sister paralogs, most notably not affected by other diverged

functions (see Materials and Methods and also Figure S1 for a

schematic illustration). Higher GO-div indicates less functional

overlap between paralogs while lower GO-div indicates both

paralogs at least share some very specific functions even though

they have diverged in other functions. Although current gene

annotations might be incomplete, given the extensive effort in

characterizing yeast genes in the past several decades, GO-div

calibrates functional overlap between two genes at least within the

best of our current knowledge. Complementary to GO-div, we also

calculated the non-synonymous substitution rate per site (Ka)

between paralogs to represent overall divergence in protein coding

sequence between paralogs [23]. Worthy of note, GO-div was

moderately correlated with Ka with R = 0.2 and P,0.05. The

statistical significance indicated their intrinsic consistency in

characterizing functional similarity between gene pairs, while the

Figure 1. Genetic buffering among duplicated genes. (A) The prevalent genetic buffering between duplicate genes in comparison with the
randomly paired genes. (B) Buffering strength between duplicates is stronger than randomly paired genes.
doi:10.1371/journal.pgen.1001187.g001

Robustness by Genetic Redundancy

PLoS Genetics | www.plosgenetics.org 3 November 2010 | Volume 6 | Issue 11 | e1001187



weak correlation suggested that only 4% (R2) of the variation in

GO-div could be explained by Ka, highlighting the non-

redundancy of using the two metrics in studying functional

divergence.

Among all the duplicate pairs we examined, we found that

substantial functional redundancy between paralogs (for both

WGD and SSD duplicates) was a key determinant of their genetic

backup capability. First, as revealed by Figure 2, duplicate pairs,

either WGD (Figure 2A) or SSD (Figure 2B), are more likely to

buffer each other if they have less diverged functions; this trend

stands when functional divergence was estimated either by the

direct measure (GO-div) or by ka. Secondly, for the buffering pairs

from both WGD and SSD, we found the buffering strength

between the paralogs was significantly correlated with their

functional divergence (see Figure 2C and 2D) scored by GO-div,

having Pearson’s R = 0.34, P = 3.161024 for WGD pairs and

R = 0.37, P = 0.01 for SSD pairs. The correlation is also significant

when using Ka to approximate functional divergence between

paralogs in both WGD and SSD, with Pearson’s R = 0.41,

P = 1.561025 for WGD pairs and R = 0.33, P = 0.03 for SSD

pairs. In addition, we also found expression divergence between

duplicates (see Materials and Methods) is significantly correlated

with their buffering strength for SSD paralogs with R = 0.33,

P = 0.03, but not for WGD pairs. This lessened significance of the

correlation highlights the superiority of using a direct metric to

quantify functional redundancies between duplicates. Taken

Figure 2. Genetic buffering between gene duplicates results from functional redundancy. (A) and (B) indicate functionally similar genes
are more likely to backup each other for WGD (A) and SSD (B) paralogs, respectively, where functional divergence was calibrated by the overlap of GO
annotations (GO-div) and coding sequence divergence (Ka). The number of total pairs in each bin is indicated for GO-div and Ka. (C) and (D) indicate
buffering strength between paralogs is on average proportional to their functional similarity for WGD (C) and SSD (D) paralogs, respectively. (E) is the
receiver operating characteristic (ROC) curve for the prediction of backup capacity between paralogs based on functional similarities. This curve,
together with the AUC (area under the curve) score, was from one random realization of the 3-fold cross-validation.
doi:10.1371/journal.pgen.1001187.g002
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together, such a tight coupling (see Figure 2C and 2D) between

buffering strength and functional overlap between paralogs

suggested that the observed prevalent mutual compensation

between paralogs (Figure 1) is indeed maintained by their

functional similarity, and the less diverged pairs tend to have

stronger buffering strength. It is also important to note that WGD

and SSD paralogs have different origins and functional propen-

sities [16,24], therefore our consistent observation on these two

classes of duplicates suggested our conclusion was not biased

towards particular function categories (as shown in Figure 1 and

Figure 2).

Having established the role of genetic redundancy in cellular

robustness, we ask whether backup capacity can be predicted for

any unseen duplicate pairs. To test this, we pooled the WGD and

SSD duplicates together, labeled the 147 pairs (WGD+SSD) that

have backup capacity as positive samples and the remaining non-

backup pairs as negative. We characterized each pair with a feature

vector, each element being a direct or indirect metric measuring

their functional divergence, including Ka, sequence identity,

expression divergence and GO-div. A support vector machine

(SVM) was subsequently implemented to classify these paralogs

into either with backup capacity or without. A 3-fold cross-

validation, as demonstrated in Figure 2E, suggested that the

degree of functional overlap between any paralog pairs was

sufficient to distinguish backup pairs from non-backup pairs, with

AUC = 0.7460.05. Such a high predictive power further strength-

ened our argument that backup between paralogs stems from their

functional redundancy. It is also important to note that GO-div,

which scores the specificity of the best-matched functions between

paralogs, is the strongest indicator among all the features to predict

backup capacity, and using GO-div alone can achieve AUC = 0.7,

higher than using combination of any other features (AUC = 0.67).

Neutral evolution of genetic robustness from gene
duplication

In the above we described the presence of prevalent mutual

compensation between paralogs (Figure 1) and established that

such compensation is maintained by functional overlap (Figure 2).

However, such functional redundancy should be understood in a

dynamic and evolutionary context because functional similarity

between duplicate pairs might be due to a lack of sufficient

divergence time, or due to the long-term retention by natural

selection. We next decided to delineate the evolutionary trajectory

of genetic robustness resulting from gene duplication events. For

this purpose, we only considered SSD pairs because they have

continuously tractable divergence times, which provide us a

dynamic view of genetic robustness in the course of evolution.

WGD pairs, however, have all resulted from a single ancient

genome duplication event ,100 millions years ago [17,25], and

thus the observed backup capacity between WGDs have

presumably been retained by selection. In the above analysis, we

have identified 42 pairs with backup capacity among a total of 228

SSD pairs (Figure 1). We then calculated Ks (the synonymous

substitution rate per site in coding sequences) between these

buffering SSD paralogs to approximate their divergence time

[10,23]. Strikingly, as revealed in Figure 3A, we found Ks values

among these buffering pairs showed a bi-modal distribution. The

broad peak on the right (with Ks.2, Figure 3A) represents very

ancient paralogs that still maintain their backup capacity. It is

known that most paralogs have to functionally diverge to achieve

long-term retention [11]; the maintained backup capacity between

these ancient pairs should result from severe purifying selection

stabilizing their functional redundancy (note that the ribosomal

proteins have been removed). The peak on the left, centered at

Ks = 0.18, represents very recent duplicates. These recent

duplicates have not had sufficient time to functionally diverge,

and these very recent paralogs among the buffering pairs may be

merely due to an ‘‘evolutionary inertia’’. In other words, these

paralogs are in an evolutionary ‘‘transient state’’ since it is

uncertain whether the paralogs will be eventually retained in the

genome or whether they could still keep sufficient functional

overlap in the course of evolution to maintain mutual backup

capacity.

We also examined the remaining 186 SSD pairs, whose mutual

compensation had been completely lost; we found the vast

majority (88%) is ancient pairs with Ks.2, confirming that the

loss of backup capacity needs sufficient divergence time. However,

8 pairs among them showed unusually low Ks values (Ks,1),

where 6 pairs are uncharacterized open reading frames or

hypothetical proteins with unknown functions. Such a discrepancy

might have resulted from rapid loss of functional overlap between

these hypothetical proteins. Furthermore, the observation that the

majority of the duplicate pairs (186 non-buffering pairs, in

comparison with 42 buffering pairs) had lost backup capacity also

suggested that maintaining long-term mutual compensation

between duplicates is evolutionarily difficult because most

mutations affecting fitness are deleterious, and genetic redundancy

would be eventually eroded by rampant mutations. Therefore in a

neutral mode, it is expected that the loss of buffering strength

between paralog pairs should be proportional to the amount of

background mutations, scaled by divergence time. However, in the

alternative model, which assumes the presence of natural selection,

no correlation was expected between these two variables. By using

Ks to approximate the amount of background mutations during

the divergence time since duplication, we were able to consider 10

pairs with Ks#2 among the 42 SSD pairs with backup capacity.

We did not include gene pairs with Ks greater than 2 since the

substitutions might have been saturated, which made it inaccurate

to estimate the synonymous rates of substitutions. Interestingly, we

found a tight correlation between Ks and the buffering strength

between paralogs, with Pearson’s correlation R = 0.85,

P = 1.861023 (Figure 3B), suggesting ,72% (R2) of the variation

in backup strength between these duplicates could be explained by

Ks. Furthermore, the proportionality of the two variables is

characterized by the slope (k = 0.41) of the regression line in

Figure 3B, suggesting that a 0.41-fold decrease in buffering

strength is accompanied with an increase of Ks by every unit. As

Ks is highly correlated with Ka, which is an indicator of functional

divergence in protein coding sequences, we sought to determine

whether Ka was a confounding factor for the correlation between

Ks and the buffering strength between the paralogs. We

performed a partial correlation analysis; by controlling for the

third variable Ka, we found the significant correlation between Ks

and the buffering strength still remains (R = 0.64, P = 0.06), while

by controlling for Ks, Ka is no longer significantly correlated with

the buffering strength (R = 0.41, P = 0.27). This trend is also

confirmed on another set of duplicate pairs with no restriction of

best reciprocal BLAST matches to include more samples; again

significant correlation between Ks and the buffering strength still

stands when controlling for Ka (R = 0.68, P = 0.02), while the

correlation between Ka and the buffering strength is absent when

controlling for Ks (R = 0.32, P = 0.33). This analysis suggested that

for duplicate pairs, their gradual loss of mutual buffering strength

is scaled by the amount of background mutations (approximated

by Ks), not by the non-synonymous mutations (Ka).

To further support this neutral mode of evolution, the buffering

WGD pairs serve as a negative control as backup capacity between

WGD paralogs has been long-term stabilized by natural selection.

Robustness by Genetic Redundancy
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In this scenario, the background mutations are expected not to

correlate with the buffering strength between duplicate pairs. By

considering 18 WGD pairs with mutual compensation and Ks#2,

our partial correlation analysis (after controlling for Ka) consis-

tently confirmed this prediction with R = 0.4 and P = 0.1.

Therefore, we concluded that, unless severe natural selection

stabilizes genetic redundancy between paralogs for their backup

capacity, mutual buffering is generally unstable between paralogs

and will be eventually lost given sufficient amount of background

mutations, which is proportional to divergence time between

paralogs.

For those ancient pairs (Ks.2) that have still retained mutual

buffering (the right peak in Figure 3A), some of them exhibit very

strong buffering capacity with buffering strength less than 20.7

(Figure 3C). This highlighted the effects of selective pressure in

stabilizing functional redundancy between these SSD paralogs.

However, it is known that duplicate genes generally have to

functionally diverge to achieve long-term retention in the genome

[10–12]; therefore cells must have adopted some strategies to

satisfy these conflicting requirements. One interesting example is

an ancient pair STV1 and VPH1 with Ks.4. Their coding

sequences have significantly diverged (Ka.0.4) but have main-

tained significant functional overlap with GO-div being much

smaller than 0.01, manifested by their common function in

vacuolar acidification. The protein products of both genes (Stv1p

and Vph1p) have a vacuolar-ATPase V0 domain for proton

transportation across membranes; however, Stv1p is localized in

Golgi and endosomes while Vph1p is localized in vacuole [26–29].

Therefore the observed backup capacity between these two

paralogs in our study suggests that their function in normal

conditions is likely to be specialized for different cellular

compartments, but upon perturbations, they could be alternately

used to buffer the loss of their respective paralogs. Supporting this

scenario, previous experiments have shown that the moderate

growth defects of Dvph1 mutant could be rescued by over-

expression of Stv1p, which led to re-localization of some Stv1p to

the vacuole where Vph1p is specifically localized [29]. Therefore

this example represents a strategy allowing long-term retention of

duplicates by diversifying their sub-cellular localization to retain

the same functions, with which functional redundancy between

duplicates could be maintained for their long-term mutual

buffering.

Properties of duplicate pairs with retained long-term
backup capacity

Lastly, we probed the general genetic properties of these ancient

pairs that have maintained their long-term backup capacity. For

this purpose we only considered the stabilized buffering paralogs

and excluded those transient buffering pairs (such as gene pairs

around the left peak in Figure 3A). For WGD pairs, as their

mutual compensation remains strong (Figure 1B) even after ,100

million years of evolution [25], mutual compensation between

Figure 3. Neutral evolution of genetic buffering between duplicate genes. (A) The distribution of Ks for the SSD buffering pairs shows a bi-
modal structure, with one peak on the left representing young duplicates with transient buffering and the other broad peak on the right
representing ancient duplicates with stabilized backup by natural selection. The distribution was learned based on kernel density estimation with a
Gaussian window. (B) For SSD buffering pairs with Ks,2, their buffering strength is scaled with divergence time, approximated by Ks. (C) Histogram
of buffering strength between SSD pairs with Ks.2, indicating ancient pairs could still maintain strong mutual compensation.
doi:10.1371/journal.pgen.1001187.g003
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WGDs is most likely to have been stabilized by natural selection.

Therefore we compared the 105 WGD duplicates with retained

backup capacity against 161 WGD pairs that had lost their backup

capacity. Similarly, for SSD paralogs, we only considered those

paralog pairs with sufficient divergence time (Ks.2) and excluded

the ‘‘transient’’ buffering paralog pairs since their backup capacity

might be eventually lost (see Figure 2A and 2B). In the end, we

were able to compare 32 ancient SSD backup pairs (Ks.2) with

the 163 non-backup pairs within the same age range (Ks.2).

Compared with the non-buffering paralog pairs, the stabilized

buffing paralogs have significantly overlapping functions for both

WGD and SSD pairs (20–30% lower than non-backup pairs,

Figure 4A and 4B), characterized by GO-div and Ka. Particularly

for WGD, as they originated from a single duplication event ,100

million years ago, the observed elevated functional redundancy

between the buffering pairs indicates decelerated functional

evolution between these duplicates. As the divergence in protein

sequence (nonsynonymous substitutions) can also cause divergence

in three-dimensional structures, we next examined the difference

in secondary structures between these pairs. As expected, we

confirmed that functional similarity between buffering pairs from

WGD could be also reflected by their structural similarities, with

backup pairs usually having similar secondary structural confor-

mations (Figure 4C).

We also collected protein interactions from BioGrid (see

Materials and Methods) [30] and found 62% of the backup

WGD paralogs have at least one shared interacting protein while

the percentage substantially decrease to 40% for non-backup

WGD paralogs (Figure 4D, P = 5.9561024, chi-square test). We

performed a similar analysis on the 32 SSD paralogs pairs, but did

not find the excessive shared protein interactions in comparison

with the matched control. It is likely due to insufficient sample size

for SSD backup pairs. In addition, unlike WGD pairs, buffering

between SSD pairs is typically weaker than WGD pairs

(Figure 1B). Therefore it is likely that the subtle buffering between

SSD pairs might not be captured in our analysis of protein

interactions. However, regardless of WGD and SSD, we did find

the buffering pairs shared some common characteristics. With a

total of 392 literature-curated protein complexes examined, we

found both WGD and SSD buffering pairs were more likely to be

co-clustered in the same protein complexes, with the percentage of

,18% for the buffering pairs, compared with only ,5–8% for the

non-buffering pairs (see Figure 4D). Worthy of note, previous work

showed preferential co-clustering of WGD pairs in protein

complexes [31]; thus the further elevated propensity of co-

clustering for these buffering WGD pairs reveals a strategy of

genetic buffering between duplicates: within the same complex,

the backup subunit is always ready to take place of the

malfunctioned ones. However, it is important to note that even

in the same protein complex, the paralogs still have substantial

divergence in sequences and expression profiles, which might

indicate the underlying regulatory reprogramming to regulate

such a backup strategy [21]. This notion can be best illustrated by

one example of a buffering pair derived from SSD, Hos2p

(YGL194C) and Rpd3p (YNL330C): both proteins are involved in

the histone deacetylase complex; however, Rpd3p is also a

member of Rpd3L complex, Rpd3S complex, Sin3 complex and

HDB complex. Therefore by differentiating their functions, the

Figure 4. Genetic properties of paralogs with stable mutual buffering. WGD (A) and SSD (B) buffering paralogs have reduced sequence
divergence and have more specific overlapping GO annotations. Note that for WGD buffering pairs have more conserved sequence evolution that
SSD buffering pairs. (C) The WGD buffering pairs have more conserved structural conformation than the non-buffering pairs. (D) WGD buffering pairs
are more likely to share ancestral interacting proteins; both WGD and SSD buffering pairs are more likely to be co-clustered in the same protein
complexes.
doi:10.1371/journal.pgen.1001187.g004
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two paralogs could achieve long-term retention while their co-

clustering in histone deacetylase complex enables their mutual

buffering capacity.

Discussion

There are long-standing debates about the extent and

mechanism of genetic robustness contributed by gene duplication.

On one hand duplicated genes do show markedly elevated

dispensability than singleton genes, which was speculated to result

from mutual compensation between paralogs [5]. Alternatively, it

was also proposed that such elevated dispensability of duplicates

merely results from higher ‘‘duplicability’’ of less important

ancestral genes [32]. Therefore, to determine the extent to which

yeast paralogs could buffer each other, a systematic interrogation

of double-knockouts of yeast paralogs is essential. In this work, we

analyzed mutual buffering between yeast paralogs for ,500 non-

redundant WGD and SSD duplicate pairs, a set much larger than

what was previously examined. With this largest dataset to this

date, we established that merely relying on functional overlap, we

are able to accurately predict buffering capacity between paralogs

(with AUC.0.74). We further considered the functional redun-

dancy in an evolutionary context, and found recent pairs usually

maintain transient functional overlap, and the resulting mutual

compensation should be mainly attributed to a lack of sufficient

divergence time. However, we also uncovered an appreciable

portion of duplicates with long-term retained backup capacity

stabilized by selection, which is explained by their conserved

functional overlap.

Although both WGD and SSD paralogs could have buffering

capacity, substantial difference existed between these two sets, As

shown in Figure 1, it is clear that WGD pairs are far more likely to

buffer each than SSD pairs (39% vs 18%); WGD pairs also have

stronger buffering strength. We reasoned that this disparity might

have resulted from differential evolutionary mode between WGD

and SSD paralogs [24]. It is known that dosage balance plays an

important role in WGD retention [24,33]; thus the retained WGD

paralogs we observed here are expected to be under stronger

functional constraints, which reduce the rate of functional

divergence between WGD paralogs. Given these facts, their

preferential mutual buffering is then anticipated.

While the stoichiometric constraints on WGD pairs provide an

explanation to the long-term retained redundancy for backup

capacity, we for the first time presented convincing evidence that

natural selection also acted on SSD pairs, which were presumably

under less stoichiometric constraints compared with WGDs

[16,24]. This finding is interesting as it revealed a different mode

of evolution from that of WGD pairs. Without severe stoichio-

metric constraints, the duplicated copies could have the freedom to

experience functional dispersal for their long-term retention,

which may bring substantial genetic novelty into an existing

system [13]. On the other hand, however, functional overlap

between the duplicated copies and the progenitor copies was also

selected and therefore stabilized during the course of evolution,

which promotes cellular robustness. Though both sides are

beneficial for a cell, they are conflicting in nature because most

duplicates have to experience substantial functional divergence to

achieve their long-term retention [10,11], and genetic redundancy

would be eventually eroded by rampant mutations in the process

of functional divergence. However, in our study the observed

natural selection on backup capacity between some ancient SSD

pairs (Figure 3A and 3C) suggests that in some circumstances,

genetic redundancy can still be long-term retained by natural

selection, and that cells must have evolved effective strategies to

balance the conflicting needs, promoting genetic novelty and

systems robustness simultaneously. This point is best demonstrated

by the example of STV1 and VPH1, which retained their long-term

backup capacity by specializing their overlapping function in

different cellular organelles.

Based the results described in this paper, we propose that genetic

redundancy essentially comes from functional overlap between paralogs

[7]. This notion is consistently supported in our study by

employing GO-div to specifically quantify the degree of functional

overlap between paralogs; this approach is not affected by other

differentiated functions that are not shared by the paralogs. In

contrast, as shown in previous work, when using expression

profiles or genetic interaction profiles to estimate functional

divergence on a global scale (in comparison with localized function

overlap), strong association between functional similarity and

backup capacity is not always observed [14,31].

Despite the prevalence of mutual compensation between

paralogs, our analysis revealed that a large number of duplicate

pairs had lost their backup capacity. Indeed, we showed that the

erosion of backup capacity between paralogs is essentially a neutral

process, with the buffering strength correlated with the amount of

background mutations, and proportional to divergence time.

Consequently unless evolutionarily stabilized, mutual compensa-

tion between most paralogs is an evolutionarily transient state, and

cannot substantially contribute to the cellular robustness on a large

evolutionary scale. Therefore, beyond genetic redundancy be-

tween duplicates, future research is needed to explore other

mechanisms contributing to the global robustness in a cell.

Materials and Methods

Compiling duplicate genes in budding yeast
We compiled yeast duplicates from Guan et al. [16], where the

authors used an improved algorithm to detect paralogs based on

Kellis et al [17,18]. In our study, we studied 495 WGD and 667

SSD paralogs with sequence identity $20% as they represent the

most confidently assigned paralogs. The SSD pairs were derived

from the best reciprocal matches, with one gene being involved in

only one pair. Among the WGD and SSD paralogs, we removed

the pairs with at least one copy annotated to be ribosomal proteins,

and the annotation was based on gene ontology (GO, as of Jan

2009).

Genetic interaction between paralogs
We mapped the paralogs onto the newly released yeast genetic

interaction data generated by high-density synthetic genetic arrays

(SGA) [15], and retained a total of 328 pairs that have quantitative

genetic interactions. We further complemented this list by

quantitating additional 166 pairs with the same platform as Costanzo

et al. [15]. In total, we studied 494 non-ribosomal paralogs in this

study, in which 266 were WGD paralogs and 228 were SSD

paralogs. The scoring scheme for genetic interactions is detailed in

Costanzo et al. [15]; the significant negative genetic interactions

(interaction score is smaller than 0 and P-val is less than 0.05)

between paralogs indicate their mutual backup capacity, implicating

that double deletion of a pair induces much sicker growth defect that

expected from single-deletions. Therefore the more negative the

scores are, the stronger backup capacity is expected.

Randomization protocols
To determine whether the duplicate pairs have an excess of

backup capacity, we generated an ensemble of 1,000 randomized

controls. For each control group, we randomly sampled 1,000

gene pairs hat have genetic interaction assayed in Costanzo et al.
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Then the percentage of random pairs having negative genetic

interaction can be determined for each control group, and the

distribution of the percentages can be estimated from the 1, 000

randomized controls. To determine whether buffering between

paralogs was stronger than random pairs, for each control, we

calculated average scores for the pairs maintaining negative

interactions, and the distribution of the average scores can be

estimated from the 1, 000 randomized controls.

Calculating sequence divergence
Sequence divergence between paralogs is estimated by synon-

ymous (Ks) and non-synonymous (Ka) substitutions per site by

aligning the coding sequences of two genes. We downloaded yeast

gene sequences from SGD (Saccharomyces Genome Database),

and implemented PAML to calculate Ks and Ka [34].

Calculating GO–div
Functional similarities between two genes can be measured by

their semantic similarities in the Gene Ontology (GO) hierarchy

[22,35]; this approach had been successfully used to benchmark

data from high-throughput experiments [36]. In this study, we

adopted this approach to quantify functional overlap between

duplicate genes. We considered all the GO terms in the hierarchy

of Biological Process (BP), and these terms represent a corpus, with

which each gene is annotated. We did not consider terms in the

hierarchies of Cellular Component (CC) and Molecular Function

(MF) because CC is not a direct indicator of functional similarity.

MF depicts gene activities at the molecular level, and one or more

assemblies of MF define a BP term [37]. Therefore considering BP

terms implicitly covers MF annotations. In addition, recent work

showed using BP reaches the best performance than using CC and

MF terms [22]. Considering annotation quality, we excluded all

the electronic annotations (with the code of IEA).

For a duplicate pair, as shown in Figure S1A, copy A is

annotated with m terms and copy B is annotated with n terms, so

GO-div between copy A and B is defined by:

Go{div~1{ maxfT(i,j),1ƒiƒm,1ƒjƒng ð1Þ

where T(i,j) is the semantic similarity between term i and j.

Calculation of the term-term semantic similarity T in a GO

hierarchy is demonstrated in Figure S1B by following the protocol

described in [22] and [36]. The rationale is that two terms are more

similar if they share a very specific ancestral term, and the specificity

of a term x is defined by the probability, p(x), of randomly sampling

the term x and all its (recursive) children terms from the BP term

collection [35]. With this, the term-term similarity T(m,n), using the

term Am for gene copy A and the term Bn for gene copy B as an

example (as illustrated in Figure S1A), is defined by:

T(m,n)~
2| ln (minx [S(m,n)fP(x)g)

ln P(m)z ln P(n)
ð2Þ

S(m,n) is the set of parent terms shared by m and n (see Figure S1B),

and the numerator of Eq.[2] essentially is to calculate the

information content of the most specific parental term(s) shared

by m and n (see Figure S1B). The denominator is a normalization

constant to scale the score between 0 and 1. Thus for two terms, if

both terms are specific (deep in the GO tree) while their common

ancestor term is also very specific, then the two terms receive high

score T, indicating great semantic similarity between the two terms.

At an extreme, when two terms are only overlapped at the root term

(Biological Process), then p(x) = 1, giving T = 0.

Collectively, GO-div computes all possible term-term similarity for

a duplicate pair (Figure S1A), and scores the best matched GO term

pair(s). In this regard, compared with other metrics for character-

izing overall functional similarity between duplicates, GO-div is more

suitable to quantify ‘‘functional overlap’’ between paralogs.

Expression divergence between paralogs
We collected expression profiles for each yeast genes across 549

physiological conditions [38–40]. Expression divergence between

paralogs is then defined as 1 minus correlation coefficients of

expression profiles between sister paralogs.

SVM implementation
We trained a SVM using RBF kernel with Gaussian variance

s~45 and penalty for soft margin e~1,500.

Protein secondary structure prediction and comparison
We predicted protein secondary structures using PSIPRED

[41], which achieves prediction accuracy .80%. For the predicted

structures, we compared the structural resemblance using a newly

introduced approach [42], where structural characteristics are

encoded in a feature vector comprised of transition probabilities

among the basic structural building blocks including a helices, b
strands and coils. Information discrepancy between two feature

vectors of sister paralogs was calculated to quantify dissimilarity in

secondary structures, D, and greater D indicates more dissimilar

secondary structures. This approach has been shown to be robust

and objective to classify protein structures [42].

Compiling protein interaction networks and protein
complexes

We downloaded protein-protein interactions from BioGrid

(version 2.0.52) [30], and retained protein interactions reported

from two-hybrid assays and affinity capture-mass spectrometry.

The derived protein interaction network covers 4,873 genes

mediate 33, 949 protein interactions. Protein complexes were

curated by merging annotations from SGD (Saccharomyces

Genome Database), GO (Gene Onotology) and MIPS (The

Munich Information Center for Protein Sequences).

Supporting Information

Figure S1 A schematic illustration of how to calculate GO-div.

(A) For a duplicate pair with copy A and B, we first get all the

annotated terms for each copy, and GO-div is calculated on the best

matched terms, with the highest term-term similarity. (B)

Calculating the term-term similarity in a hierarchical GO tree.

For term m and n, in this example, their semantic similarity is

measured by their most specific common ancestor. Term

specificity is calibrated by the probability of randomly sampling

a term and all its associated children terms from the global GO

hierarchy (indicated by p in the figure). The term set S represents

the common ancestral nodes between node m and n.

Found at: doi:10.1371/journal.pgen.1001187.s001 (0.39 MB PDF)

Table S1 The duplicate pairs analyzed in this study, grouped by

WGD and SSD separately.

Found at: doi:10.1371/journal.pgen.1001187.s002 (0.29 MB PDF)
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