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Abstract: Pure compounds extracted and purified from medical plants are crucial for preparation
of the herbal products applied in many countries as drugs for the treatment of diseases all over the
world. Such products should be free from toxic heavy metals; therefore, their elimination or removal
in all steps of production is very important. Hence, the purpose of this paper was purification
of an extract obtained from Dendrobium officinale Kimura et Migo and cadmium removal using
thermoplastic starch (S1), modified TPS with poly (butylene succinate); 25% of TPS + 75% PBS (S2);
50% of TPS + 50% PLA (S3); and 50% of TPS + 50% PLA with 5% of hemp fibers (S4), as well as ion
exchangers of different types, e.g., Lewatit SP112, Purolite S940, Amberlite IRC747, Amberlite IRC748,
Amberlite IRC718, Lewatit TP207, Lewatit TP208, and Purolite S930. This extract is used in cancer
treatment in traditional Chinese medicine (TCM). Attenuated total reflectance-Fourier transform
infrared spectroscopy, thermogravimetric analysis with differential scanning calorimetry, X-ray
powder diffraction, gel permeation chromatography, surface analysis, scanning electron microscopy
with energy dispersive X-ray spectroscopy, and point of zero charge analysis were used for sorbent
and adsorption process characterization, as well as for explanation of the Cd(II) sorption mechanism.

Keywords: cadmium; Dendrobium officinale Kimura et Migo; thermoplastic starch; ion exchange resin;
plant extract purification

1. Introduction

Medicinal plants, being a part of conventional medicine, have been used in therapy
throughout the world for a long time. They have been trusted globally for thousands of
years for their accessibility and limited side-effects [1]. The World Health Organization
(WHO) estimates that 65–80% of the world’s population, especially in Africa, Asia, Latin
America, and the Middle East use herbal products [2]. Recently, greater attention has also
been paid to herbal medicine in developed countries. The methods generally called natural
medicine, based on herbal extracts, are not favored [3–6]. In fact, these are proven and
non-contradictory to conventional medicine. They are not only a ‘green’ alternative to most
pharmaceuticals used for the treatment of diseases all over the world, but also the source of
a wide variety of natural antioxidants. Their medicinal value is usually due to the presence
of very important phytochemicals, such as alkaloids and tannins, as well as flavonoids
and phenolic compounds. However, they should be free from heavy metal ions. For this
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purpose, the key to success is the control of the process from the beginning (cultivation) to
the end (production cycle) and quality assurance, throughout the complete process chain.
Therefore, the critical factors for the manufacturing of extracts are the raw vegetal material,
manufacturing process, and final adjustment by blending.

Excess amounts of both essential and non-essential metals can cause ion stress in plants
and lead to a variety of direct or indirect effects, which involve virtually all physiological
functions. Heavy metal ions are distributed in growth substrates, widely transported to
various organs of plants, and then enter the food chain. Trace metal ions are contained
in growth substrates, especially the soil. Due to the non-degradability and cytogenetic
effects of heavy metals, biological structures, biochemical, physiological, and metabolic
processes suffer from sustainable irreversible damage, and disturb or even collapse biologi-
cal systems by inducing changes at the transcription level of numerous protein-encoding
genes, which cause chlorosis, growth retardation, induce lipid peroxidation, photosynthesis
inhibition, enhanced proteolysis, disorder reactive oxygen species (ROS) and antioxidants,
and eventually apoptosis or cell death. To discover the mechanism of translocation and
accumulation in detail, it is essential to study the processes of heavy metal ion uptake in
plants. Metal mobilization, root uptake, compartmentation, sequestration, xylem loading,
distribution in shoots, and storage in leaf cells are the main steps involved in translocation
and accumulation of heavy metals in plants (Figure 1).
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Figure 1. A schematic model for translocation of heavy metal ions in plants.

The nutrients required by plants in the greatest amounts are N, P, and K. For this
reason, they are often considered the most important; N and P as components of proteins
and nucleic acids. The essential heavy metals, such as Fe(II), Cu(II), Zn(II), Ni(II), Co(II),
Mo(II), Mn(II), and Se(IV,VI), play a crucial regulatory role in the series of cellular reactions,
including electron transfer, enzyme activation, redox reactions, and pigment synthesis.
However, Pb(II), Cr(III), Cd(II), Hg(II), and As(V) are not required in any biological re-
actions and cause toxic effects [3]. Except for the physiological defensive mechanisms
against damage by heavy metals (sequestration, compartmentalization, exclusion, and
inactivation), plants can also induce antioxidant systems and maintain metal homeostasis
by limiting the bioavailability of metals [4]. The essential processes: uptake, transloca-
tion, detoxification, and accumulation of heavy metals are controlled by physiological
and molecular complex regulatory mechanisms (Figure 2). For instance, transporters for
Zn(II) and Ca(II) can take up Cd(II) [6], and transporters for phosphate can also absorb
arsenate [7].
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As for the transport of metal ions in plants, both apoplastic and symplastic pathways
can be distinguished. Heavy metals using the apoplastic pathway can reach the apical
region of the underdeveloped endodermal suberin lamellae [8]. The translocation and
accumulation processes are closely related to the mobilization, radial transport [9], and
long-distance transport in xylem, as well as sequestration and detoxification of metal
ions [10]. Radial translocation, in particular, is essential for the accumulation of heavy
metals in the above-ground organs. For example, Pb(II) in the epidermal and cortical cells
of the roots cannot be loaded to the steles, which leads to a large accumulation in the roots
that cannot be further transported to the shoots driven by the transpiration stream [11,12].
Similarly, this effect was observed in Cr-tolerant plants. The Cr absorbed by Typha an-
gustifolia is mainly distributed in the outer layer of the roots, while only a minor portion
of Cr is transferred to fronds and distributed uniformly [13]. The method of transport
and place where heavy metal ions accumulate (roots, leaves, steams, blossoms) play a
significant role when considering the part of the plant from which the extract is obtained,
especially in traditional herbal medicine (THM). These aspects are presented based on the
Dendrobium officinale Kimura et Migo used in this study (Figure 3). D. officinale is a famous
Chinese plant used in traditional Chinese medicine (TCM). Its extracts contain various
phytochemicals, particularly polysaccharides, that have nutraceutical and pharmaceuti-
cal value. They are commonly used to reduce blood lipids, promote blood circulation,
and improve body immunity. They are also very important during radiotherapy and
chemotherapy to reduce the induced side effects (enhance suppression and resistance to
free radical damage), improve quality of life, and survival time during cancer treatment.
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However, in the case of hyperaccumulators, metal ion transport occurs by bulk flow
in the xylem from root to shoot by complex formation with chelators [14]. Heavy metal
complexes are translocated to the neighboring cells step by step by plasmodesmata or
transporters on the plasma membrane from the root symplast into the xylem apoplast. In
this saturable process, the number of transport proteins (Table 1), as well as the rate of
transport, substrate affinity, and substrate specificity of variation in the transporters, are
the main limiting factors [15].
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Table 1. Some transporters involved in heavy metal accumulation in plants.

Names Functions Related to Heavy Metal
Accumulation Transporter Types Reference

ZIPs family transporters (Zn, Fe, Mn, Cd, Ni, Cu, etc.)

ZIP1 Transporting Cd to the cytosol Divalent cations exporter transporter [16]

ZIP2 Transporting Cd(II)/Zn(II) to the root
vascular system

Plasma membrane -localized
transporter [17]

NcZNT1 Zn(II)/Cd(II) long-distance transport of
vascular system

Plasma membrane -localized
transporter [18]

AtZIP9 Marker of Zn(II) deficiency or Cd(II) excess in
uptake system Metal transporter [19]

CDFs family transporters (Mn, Fe, Zn, Co, Cd, Ni, etc.)

MTP1 Transporting cytosolic Zn/Cd into vacuoles Vacuolar transporter [20]

MTP4 Participating in vacuolar Zn and
Cd sequestration Vacuolar transporter [21]

NRAMPs family transporters (Mn, Fe, Zn, Cd, Co, Ni, Pb, etc.)

AtNRAMP1 High-affinity transporting Mn(II) into root cells;
Implicating in Cd(II) uptake in endodermal cells

Plasma membrane-localized
transporter [22]

AtNRAMP3/4 Exporting vacuolar Fe(II)/Mn(II)/Cd(II) into
the cytosol Metal transporters [23]

NcNRAMP1
Transporting Cd(II) into endodermal cells;

Involving Cd(II) flux movement towards the
stele and root-to-shoot Cd transport

Cd hyperaccumulation transporter [24]

HMAs family transporters (Cu, Ag, Zn, Cd, Pb, etc.)

AtHMA1 Exporting excessive Cd(II), Cu(II), Zn(II) from
the chloroplast to the cytosol Chloroplast-localized transporter [25]

AtHMA2 Exporting of cytosolic Zn(II) and Cd(II) into the
vascular cylinder

Plasma-membrane-localized
transporters [26]

AtHMA3 Transporting cytosolic Co(II), Zn(II), Cd(II) and
Pb(II) into vacuoles Metal transporter [27]

AtHMA4 Transporting cytoplasmic Zn(II), Cd(II), Co(II) to
the xylem vessels

Plasma-membrane-localized
transporters [28]

ABCC sub-family transporters (As, Cd, Hg, etc.)

DK/2 Transporting Cd-PCs and Hg-PCs into vacuoles Vacuolar phytochelatin transporters [29]

CAXs (Cation/H+ antiporters) family (Mn, Zn, Cd, Ni, Cu, etc.)

CAX2 Transporting Mn(II), Zn(II) and Cd(II) into
the vacuole Vacuolar transporter [30]

AtCAX4 Transporting Mn(II), Ni(II) and Cd(II) into
the vacuole Vacuolar transporter [31]

Subsequently, metals are transported from the xylem into the leaf cells. Heavy metals
are typically bound by chelators and tend to concentrate in the epidermis and trichomes at
the tissue level [32,33], while the excess parts accumulate in vacuoles or cell walls at the
cellular level [34,35]. They are probably accumulated in the plants by a double use of the
transport system [36]. During the translocation process of Cd(II) from the root to xylem, the
Zn(II) active transport system components that involve heavy metal ATPase are used. The
typical effects of Cd(II) are the inhibition of mitosis and repression of auxin production and
signaling [37]. By the disorganization of microtubule, cytoskeleton, and tubulin structures,
Cd(II) can damage meristems. Furthermore, Cd(II) is translocated in the xylem mainly
as aqueous free ions instead of being complexed with citrate. After going through the
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uptake, transport, sequestration, and detoxification processes of herbaceous and woody
plants, Cd(II) is partially translocated to the xylem vessels from roots and sequestered and
detoxified in the vacuoles of cells [38]. Inadequate methods of manufacturing, as well as
unhygienic processing and packing, are the major sources of microbial contamination in
herbal medicine products. This could be a major source of metal contamination in herbal
medicine products.

The aim of this paper was to investigate the possibility of the purification of Chinese
herbal medicinal plant extracts, based on D. officinale, from Cd(II), as well as to investigate
the sorption properties of various forms of modified thermoplastic starch (TPS) as well
as commercially available ion exchangers (IXs). Moreover to date, there are no data in
the literature that compare these two kinds of sorbents. Generally D. officinale has anti-
oxidation, anti-fatigue, and anti-aging effects for the human body. Therefore it is very
important to obtain pure extracts without Cd(II) ions. Different materials, both of a natural
origin and commercially available, were proposed for purification.

The TPS sorbents were obtained from potato starch containing 20% amyloze with
glycerine 99.5% (samples denoted as S1, S2, S3, and S4), whereas ion exchange resins
(denoted as SP112, S940, IRC747, IRC748, IRC718, TP207, TP 208, and S930) were chosen
based on the producer data sheets, their properties, functional groups, and application
area. Previous studies found that the ion exchangers are useful for heavy metal ion re-
moval from wastewaters [39–42]. To characterize the TPS sorbents, the following methods
were used: attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-
FTIR), thermogravimetric analysis (TGA) with differential scanning calorimetry (DSC),
X-ray powder diffraction (XRD), and gel permeation chromatography (GPC). Moreover,
Brunauer–Emmett–Teller (BET) surface analysis, scanning electron microscopy with energy
dispersive X-ray spectroscopy (SEM-EDX), point of zero charge analysis (pHpzc analysis),
and elemental analysis (CHN) were used for sorbents and adsorption process character-
ization, as well as for explanation of the sorption mechanisms. The effects of pH, initial
Cd(II) concentration, and phase contact time were taken into account during the extract
purification. The kinetic studies were analyzed with the typical kinetic models, such as
pseudo-first order and pseudo-second order, as well as intraparticle diffusion. The max-
imum adsorption capacities were obtained, and the Langmuir and Freundlich isotherm
models were applied. The most effective methods for purification of D. officinale extracts
were discovered.

2. Materials and Methods
2.1. Sorbents and Ion Exchangers

The TPS sorbents were obtained from the potato starch containing 20% amyloze
(Trzemeszno, Polska), with the addition of 99.5% plant pharmaceutical glycerol and water
as plasticizers.

The procedure of TPS production is presented in [43,44]. Three sorbents, obtained
on the basis of TPS starch, were used in the research and were determined successively:
TPS, sorbent 1 (S1) containing starch, 30% glycerol and 8% of water (used for comparison);
sorbent 2 (S2), obtained by mixing 25% TPS + 75% PBS (poly(butylene succinate)); sorbent 3
(S3), obtained by mixing 50% TPS + 50% PLA (polylactic acid); and sorbent 4 (S4), obtained
by mixing 50% TPS + 50% PLA and additionally 5% hemp fibers (Table 2). A comparison
of PBS and PLA is presented in Table S1 (Supplementary Materials).
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Table 2. Thermoplastic starch used for Cd(II) removal from the D. officinale extracts.

Name Appearance Composition Name Appearance Composition

S1
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2.2. Instruments 
Fourier transform infrared spectroscopy (ATR-FTIR) can be used as a method of 

quick and effective identification of changes in sorbent properties. This was used for de-
tection of the chemical bonds in the samples. Therefore, a Cary 630 ATR-FTIR spectrome-
ter with the attenuated total reflectance mode (Agilent Technologies, Santa Clara, CA, 
USA) was used. The spectra were recorded without any sample preparation in the range 
4000–650 cm−1. 

The analyses were performed using a TA Instruments Q50. The test sample, weigh-
ing about 10 mg was placed on a platinum measuring pan and then in a TGA furnace. It 
was heated at a constant rate of 10 °C/min in a temperature range of 298–723 K, and the 
change in mass as a function of temperature was recorded.  

25% of TPS + 75% of PBS S4

Materials 2021, 14, 4734 6 of 23 
 

 

Table 2. Thermoplastic starch used for Cd(II) removal from the D. officinale extracts. 

Name Appearance Composition Name Appearance Composition 

S1 

 

TPS (containing starch + 30% 
glycerol + 8% H2O) S3 

 

50% of TPS + 50% of PLA 

S2 

 

25% of TPS + 75% of PBS  S4 

 

50% of TPS + 50% of PLA 
(5% hemp fibers) 

As for the ion exchangers (IX), the following were applied: Lewatit MonoPlus SP112 
(denoted as SP112), Purolite S940 (denoted as S940), Amberlite IRC747 (denoted as 
IRC747), Amberlite IRC 748 (denoted as IRC748), Amberlite IRC718 (denoted as IRC 718), 
Lewatit TP207 (denoted as TP207), Lewatit TP208 (denoted as TP208), and Purolite S930 
(denoted as S930). The characteristics of these chelating ion exchangers are presented in 
Table 3 (functional groups, appearance) and in Table S2 (Supplementary Materials). 

Table 3. Ion exchangers used for Cd(II) removal from the D. officinale extracts. 

Name Appearance Composition Name Appearance Composition 

SP112 

 
 

IRC718 

  

S940 

 
 

TP207 

  

IRC747 

 
 

TP208 

  

IRC748 

  

S930 

  

2.2. Instruments 
Fourier transform infrared spectroscopy (ATR-FTIR) can be used as a method of 

quick and effective identification of changes in sorbent properties. This was used for de-
tection of the chemical bonds in the samples. Therefore, a Cary 630 ATR-FTIR spectrome-
ter with the attenuated total reflectance mode (Agilent Technologies, Santa Clara, CA, 
USA) was used. The spectra were recorded without any sample preparation in the range 
4000–650 cm−1. 

The analyses were performed using a TA Instruments Q50. The test sample, weigh-
ing about 10 mg was placed on a platinum measuring pan and then in a TGA furnace. It 
was heated at a constant rate of 10 °C/min in a temperature range of 298–723 K, and the 
change in mass as a function of temperature was recorded.  

50% of TPS + 50% of PLA
(5% hemp fibers)

As for the ion exchangers (IX), the following were applied: Lewatit MonoPlus SP112
(denoted as SP112), Purolite S940 (denoted as S940), Amberlite IRC747 (denoted as IRC747),
Amberlite IRC 748 (denoted as IRC748), Amberlite IRC718 (denoted as IRC 718), Lewatit
TP207 (denoted as TP207), Lewatit TP208 (denoted as TP208), and Purolite S930 (denoted
as S930). The characteristics of these chelating ion exchangers are presented in Table 3
(functional groups, appearance) and in Table S2 (Supplementary Materials).

Table 3. Ion exchangers used for Cd(II) removal from the D. officinale extracts.

Name Appearance Composition Name Appearance Composition

SP112

Materials 2021, 14, 4734 6 of 23 
 

 

Table 2. Thermoplastic starch used for Cd(II) removal from the D. officinale extracts. 

Name Appearance Composition Name Appearance Composition 

S1 

 

TPS (containing starch + 30% 
glycerol + 8% H2O) S3 

 

50% of TPS + 50% of PLA 

S2 

 

25% of TPS + 75% of PBS  S4 

 

50% of TPS + 50% of PLA 
(5% hemp fibers) 

As for the ion exchangers (IX), the following were applied: Lewatit MonoPlus SP112 
(denoted as SP112), Purolite S940 (denoted as S940), Amberlite IRC747 (denoted as 
IRC747), Amberlite IRC 748 (denoted as IRC748), Amberlite IRC718 (denoted as IRC 718), 
Lewatit TP207 (denoted as TP207), Lewatit TP208 (denoted as TP208), and Purolite S930 
(denoted as S930). The characteristics of these chelating ion exchangers are presented in 
Table 3 (functional groups, appearance) and in Table S2 (Supplementary Materials). 

Table 3. Ion exchangers used for Cd(II) removal from the D. officinale extracts. 

Name Appearance Composition Name Appearance Composition 

SP112 

 
 

IRC718 

  

S940 

 
 

TP207 

  

IRC747 

 
 

TP208 

  

IRC748 

  

S930 

  

2.2. Instruments 
Fourier transform infrared spectroscopy (ATR-FTIR) can be used as a method of 

quick and effective identification of changes in sorbent properties. This was used for de-
tection of the chemical bonds in the samples. Therefore, a Cary 630 ATR-FTIR spectrome-
ter with the attenuated total reflectance mode (Agilent Technologies, Santa Clara, CA, 
USA) was used. The spectra were recorded without any sample preparation in the range 
4000–650 cm−1. 

The analyses were performed using a TA Instruments Q50. The test sample, weigh-
ing about 10 mg was placed on a platinum measuring pan and then in a TGA furnace. It 
was heated at a constant rate of 10 °C/min in a temperature range of 298–723 K, and the 
change in mass as a function of temperature was recorded.  
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2.2. Instruments 
Fourier transform infrared spectroscopy (ATR-FTIR) can be used as a method of 

quick and effective identification of changes in sorbent properties. This was used for de-
tection of the chemical bonds in the samples. Therefore, a Cary 630 ATR-FTIR spectrome-
ter with the attenuated total reflectance mode (Agilent Technologies, Santa Clara, CA, 
USA) was used. The spectra were recorded without any sample preparation in the range 
4000–650 cm−1. 

The analyses were performed using a TA Instruments Q50. The test sample, weigh-
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change in mass as a function of temperature was recorded.  
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2.2. Instruments 
Fourier transform infrared spectroscopy (ATR-FTIR) can be used as a method of 

quick and effective identification of changes in sorbent properties. This was used for de-
tection of the chemical bonds in the samples. Therefore, a Cary 630 ATR-FTIR spectrome-
ter with the attenuated total reflectance mode (Agilent Technologies, Santa Clara, CA, 
USA) was used. The spectra were recorded without any sample preparation in the range 
4000–650 cm−1. 

The analyses were performed using a TA Instruments Q50. The test sample, weigh-
ing about 10 mg was placed on a platinum measuring pan and then in a TGA furnace. It 
was heated at a constant rate of 10 °C/min in a temperature range of 298–723 K, and the 
change in mass as a function of temperature was recorded.  
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tection of the chemical bonds in the samples. Therefore, a Cary 630 ATR-FTIR spectrome-
ter with the attenuated total reflectance mode (Agilent Technologies, Santa Clara, CA, 
USA) was used. The spectra were recorded without any sample preparation in the range 
4000–650 cm−1. 

The analyses were performed using a TA Instruments Q50. The test sample, weigh-
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2.2. Instruments 
Fourier transform infrared spectroscopy (ATR-FTIR) can be used as a method of 

quick and effective identification of changes in sorbent properties. This was used for de-
tection of the chemical bonds in the samples. Therefore, a Cary 630 ATR-FTIR spectrome-
ter with the attenuated total reflectance mode (Agilent Technologies, Santa Clara, CA, 
USA) was used. The spectra were recorded without any sample preparation in the range 
4000–650 cm−1. 

The analyses were performed using a TA Instruments Q50. The test sample, weigh-
ing about 10 mg was placed on a platinum measuring pan and then in a TGA furnace. It 
was heated at a constant rate of 10 °C/min in a temperature range of 298–723 K, and the 
change in mass as a function of temperature was recorded.  
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4000–650 cm−1. 
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2.2. Instruments 
Fourier transform infrared spectroscopy (ATR-FTIR) can be used as a method of 

quick and effective identification of changes in sorbent properties. This was used for de-
tection of the chemical bonds in the samples. Therefore, a Cary 630 ATR-FTIR spectrome-
ter with the attenuated total reflectance mode (Agilent Technologies, Santa Clara, CA, 
USA) was used. The spectra were recorded without any sample preparation in the range 
4000–650 cm−1. 

The analyses were performed using a TA Instruments Q50. The test sample, weigh-
ing about 10 mg was placed on a platinum measuring pan and then in a TGA furnace. It 
was heated at a constant rate of 10 °C/min in a temperature range of 298–723 K, and the 
change in mass as a function of temperature was recorded.  
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USA) was used. The spectra were recorded without any sample preparation in the range 
4000–650 cm−1. 

The analyses were performed using a TA Instruments Q50. The test sample, weigh-
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2.2. Instruments 
Fourier transform infrared spectroscopy (ATR-FTIR) can be used as a method of 

quick and effective identification of changes in sorbent properties. This was used for de-
tection of the chemical bonds in the samples. Therefore, a Cary 630 ATR-FTIR spectrome-
ter with the attenuated total reflectance mode (Agilent Technologies, Santa Clara, CA, 
USA) was used. The spectra were recorded without any sample preparation in the range 
4000–650 cm−1. 

The analyses were performed using a TA Instruments Q50. The test sample, weigh-
ing about 10 mg was placed on a platinum measuring pan and then in a TGA furnace. It 
was heated at a constant rate of 10 °C/min in a temperature range of 298–723 K, and the 
change in mass as a function of temperature was recorded.  
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2.2. Instruments

Fourier transform infrared spectroscopy (ATR-FTIR) can be used as a method of quick
and effective identification of changes in sorbent properties. This was used for detection of
the chemical bonds in the samples. Therefore, a Cary 630 ATR-FTIR spectrometer with the
attenuated total reflectance mode (Agilent Technologies, Santa Clara, CA, USA) was used.
The spectra were recorded without any sample preparation in the range 4000–650 cm−1.

The analyses were performed using a TA Instruments Q50. The test sample, weighing
about 10 mg was placed on a platinum measuring pan and then in a TGA furnace. It was
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heated at a constant rate of 10 ◦C/min in a temperature range of 298–723 K, and the change
in mass as a function of temperature was recorded.

The XRD measurements were carried out using an X’pert MPD X-ray diffractometer
(Panalytical, Eindhoven, Netherlands) with a goniometer PW 3020 and X-ray source anode
Cu (Kα) (I = 40 mA and U = 40 kV) and a graphite monochromator. Diffraction patterns
were recorded, and HighScore Pro software (version 3.0, Eindhoven, The Netherlands) was
used for diffraction data processing. The identification of mineral phases was based on
PCPDFWIN ver. 1.30 formalized by JCPDS-ICDD.

Accelerated surface area and porosimetry analysis using ASAP 2045 (Micromeritics,
Inc., Norcross, GA, USA) with Brunauer–Emmett–Teller (BET) analysis was also performed.
nitrogen adsorption–desorption analysis was performed at 77 K.

Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDAX)
(Tescan, Fuveau, France) was also used to compare the sorptive material beads.

The point of zero charge (pHpzc) of the S1–S4 samples and ion exchangers SP112, S940,
IRC747, IRC748, IRC718, TP207, TP207, TP208, and S930 was measured using the pH drift
method using a pH-meter CP-411 (Elmetron, Zabrze, Poland).

All these methods were used for sorbent and adsorption process characterization, as
well as for explanation of the sorption mechanisms. In the second step, the sorption prop-
erties were studied with respect to the effect of the pH, the comparison of uptake kinetics
(at different levels of saturation of the sorbent), and the evaluation of sorption isotherms.

2.3. Methods; Kinetic and Adsorption Experiments

All sorptive materials were used to remove Cd(II) ions from the D. officinale extracts.
The study of sorption properties was carried out in batch mode; 0.2 g of sorbent was mixed
with 20 cm3 of solution containing Cd(II) ions at the above-mentioned initial concentration
[C0, mg/dm3] at the established pH. The pH measurements were performed using a pH-
meter, CP-411 (Elmetron, Zabrze, Poland). A laboratory shaker, type 358A (Elpin+, Lubawa,
Poland) at amplitude 8 and stirring rate 180 rpm, was used for the batch experiments. The
sorbent dosage was defined as m/V. The standard temperature was 295 K. The samples
of solutions were collected and filtrated, and the residual concentration of Cd(II) was
measured using an atomic absorption spectroscopy method (AAS). A Spectr AA240 FS
atomic absorption spectrophotometer (AAS, Varian Inc., Melbourne, Australia), operating
with an air-acetylene flame, was used to analyze the concentration of Cd(II) ions.

Kinetic experiments and the study of pH value effect were carried out at the ini-
tial Cd(II) concentrations of 10 mg/dm3, 50 mg/dm3, and 100 mg/dm3 for S1–S4 and
10 mg/dm3, 25 mg/dm3, and 50 mg/dm3 for IX. The effect of pH was determined by
studying the adsorption of Cd(II) ions over a pH range 2–10. The pH was adjusted by the
addition of HCl or NaOH solution using a pH-meter, CP-411 (Elmetron, Zabrze, Poland).
All the experimental data were the averages of triplicate determinations. The relative errors
of the data were about 5%.

Typical kinetic models were used for fitting experimental results, i.e., pseudo-first
(PFO) and pseudo-second order (PSO), intraparticle diffusion equations (IPD), and sorption
isotherms, i.e., Freundlich and Langmuir. The parameters were determined by non-linear
regression analysis using Origin software. The fitting of experimental profiles was com-
pared based on the determination coefficients calculated through the linear regression
analysis. The relevant equations are reported in the Supplementary Materials (Table S3).

2.4. Calculations

The amount of Cd(II) adsorbed on the thermoplastic starch and the selected ion
exchangers (qt) [mg/g], the amount of Cd(II) adsorbed on the starch, the selected ion
exchangers equilibrium capacity (qe) [mg/g], the sorption %S, and desorption %D per-
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centages, as well as the distribution coefficient (Kd) [cm3/g], were calculated from the
difference between the initial and equilibrium concentrations using the equations:

qt = (C0 − Ct)×
V
m

(1)

qe = (C0 − Ce)×
V
m

(2)

%S =
(C0 − Ct)

C0
× 100% (3)

%D =
Cdes
C0

× 100% (4)

Kd =
(C0 − Ct)

Ct
× V

m
(5)

where C0 is the initial Cd(II) concentration [mg/dm3], Ct is Cd(II) concentration after time
t [mg/dm3], m is the thermoplastic starch mass or the ion exchanger mass [g], V is the vol-
ume of the solution [dm3], and Cdes is Cd(II) concentration after the desorption [mg/dm3].

3. Results and Discussion
3.1. Chemical Characterization of the Materials

Starch is one of the most promising polymers obtained from renewable sources, and
which can be successfully used in the biodegradable plastic industry. The glass transition
temperature (503 K) and the melting point (493–513 K) of native starch are higher than
the degradation temperature (approx. 493 K), therefore starch in its pure form cannot be
processed. To obtain a material that can be processed by classical processing methods, so
called thermoplastic starch (TPS) must be obtained in the extrusion process [39,40] using
a single-screw or twin-screw extruder. Extrusion is a continuous process that involves
plasticizing a polymeric material in a plasticizing system, which is ended by head extrusion,
which forms the extruded material. The most commonly used TPS plasticizer is glycerol
(S1). This alcohol has three hydroxyl groups in its molecule. During the plasticization
process between them and the -OH groups of the starch chain, hydrogen bonds are formed
that are more stable than the existing intramolecular and intermolecular hydrogen bonds
in the starch chains. Water also plays an important role in plasticizing the native starch,
taking part in the process plasticization together with the main plasticizer. In the case
of a lack of water, it is necessary to increase the quantity of the plasticizers. Raw TPS
can be used in powder, flake, chips granule, and fiber forms. This is a cheap and easily
accessible approach.

In our research, as modifiers, poly (butylene succinate) PBS as an aliphatic polyester
(obtained on a commercial scale in the polycondensation process of succinic acid and 1,4-
butanediol) and polylactic acid (PLA) as biodegradable polymer (belonging to the group
of aliphatic polyesters) (S2–S4) were used. A comparison is presented in Table S1. Addi-
tionally, sorbent S4 was modified by adding hemp fibers. Hemp fibers are a natural and
extremely durable raw material used in many industries. Durability, ecological origin, and
the possibility of wide applications are the features that best describe the fiber properties.

3.1.1. ATR-FTIR Analysis

Chemical characterization of S1, S2, S3, and S4 samples by the attenuated total re-
flectance Fourier transform infrared spectroscopy (ATR-FTIR) method was used for as-
sessment of structural changes in the chemical structure of starch before and after the
adsorption process. The ATR-FTIR method is also commonly used for the study of struc-
tural chemical compounds and sorbent modification. To characterize the S1–S4 sorbents
and their structural changes in the chemical structure of starch during the plasticizing
process, as well as the extrusion process, at first the ATR-FTIR spectra of native starch
(NS), glycerol, PBS, PLA, and TPS were recorded. They are presented in Figure S1. It
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was proven that, due to the plasticizer addition, shear forces, and temperature during
the extrusion process, the intramolecular and intermolecular hydrogen bonds between
the hydroxyl groups of the starch chains are broken. These are replaced by more stable
hydrogen bonds formed between the –OH groups of the starch and the plasticizer. In
the spectrum of NS, the band at the wavenumber of 3303 cm−1 coming from hydrogen
bonds is shifted to 3287 cm−1 in TPS. Characteristic changes in the spectrum of TPS as
compared to NS also take place in the region of 900–1200 cm−1. These are associated with
C–O stretching vibrations in the C–O–H system at 1083 cm−1 and 1151 cm−1, as well as at
996 cm−1, resulting from the stretching vibrations of the C–O bonds in the C–O–C system.
Both can form hydrogen bonds with the plasticizer, which results in a shift of these bands
to the values 1151 cm−1 and 1078 cm−1 (Figure S1e) [45]. There is also an additional band
next to the wavenumber 1016 cm-1, which, similarly to the wave number 996 cm−1, is
related to the stretching vibrations of C–O bonds in the C–O–C system. Table 4 shows the
changes in the wavenumber values for the characteristic bands of TPS, depending on the
modification (Figure 4). The spectra after the sorption of Cd(II) are also presented.

Table 4. Changes in the position of the characteristic bands in the spectra of S1–S2 sorbents.

Sorbent Hydrogen Bonds C–O in C–O–H C–O in C–O–C

S1 3287 cm−1 1158 cm−1 and 1059 cm−1 1014 cm−1 and 996 cm−1

S2 3329 cm−1 1207 cm−1 and 1053 cm−1 1020 cm−1 and 994 cm−1

S3 3319 cm−1 1183 cm−1 and 1082 cm−1 1021 cm−1 and 998 cm−1

S4 3319 cm−1 1206 cm−1 and 1083 cm−1 1018 cm−1 and 990 cm−1
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Figure 4. ATR-FTIR spectra of S1-S4, (a) before and (b) after the sorption process of Cd(II).

An ATR-FTIR analysis of the ion exchangers is presented among others in (Figure 5) [46,47].
As for SP112, the bands at 1173, 1124, 1033, and 1009 cm−1 before loading are attributed to the
presence of sulfonic groups. These bands prove the presence of stretching vibrations of the
S=O and S–O groups in the –SO3Na group. After sorption, they were moved to 1170, 1120,
1031, and 1001 cm−1 for Cd(II) ions. Analogous results were obtained for S940, IRC 747, IRC
748, IRC718, TP207, and TP208. As for S940 and IRC 747, the presence of bands related to P=O
stretching vibrations was observed in the range 1350–1150 cm−1 and the P–OH group in the
range 1100–900 cm−1 and for bands in the range 1250–1020 cm−1. They are derived from C–N
stretching vibrations of aliphatic amines. Next, four ion exchangers, IRC 748, IRC718, TP207,
and TP208, contain the iminodiacetate functional groups.
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3.1.2. TGA Analysis

Thermogravimetric analysis (TGA) was used to determine the composition of materi-
als, thermal stability, and temperature degradation [48]. On the TG curve of the granulate
of native starch plasticized with glycerol (Figure 6), the first weight loss of 10–15% up to
the temperature of 290 ◦C is related to evaporation of water and plasticizer. The starting
temperature for the actual starch-related transformation is 290 ◦C, while the end of the
transformation is at 316 ◦C. The weight loss in this temperature range was 75%. Glycerol
evaporates completely at a temperature above 290 ◦C. The change in the mass was simulta-
neously registered with the degradation of starch, and these two transformations overlap.
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In the first stage, up to a temperature of about 473 K, there is a loss of mass (about
5–20%) as a result of evaporation of water contained in the structure of ion exchangers. At
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temperatures above 473 K, there is a loss of weight related to the distribution of functional
groups. The weight loss from 600 K to 1200 K was gradual, which may have been due to the
slow degradation of the styrene-divinylbenzene matrix. Lewatit SP112 TG and TG/TGA
curves were also presented in [46], and Amberlite IRC 747 and Amberlite IRC 748, as well
as Lewatit TP 208, in [49].

3.1.3. XRD Analysis

Regarding the other methods, X-ray powder diffraction (XRD), used to distinguish
the crystalline phase, and gel permeation chromatography (GPC), used to determine
the molecular weight of the polymers, are mainly applied. Native starch has a partially
crystalline structure, and this phase accounts for approx. 45% of the total structure, the
rest is the amorphous phase. The crystal structure of native starch is destroyed during
plasticization. However, for the samples with glycerol, the crystalline phase content was
25% [39]. As for the GPC method, it was found that the average molecular weight of native
starch is approx. 33 MDa and TPS is 3.52 MDa. After the application of modifiers, this
mass increased and amounted to 39 MDa. Due to the polymer structure, SP112, S940, IRC
747, IRC748, IRC718, TP207, TP208, and S930 were not characterized by either XRD and
GPC methods.

3.1.4. ASAP ANALYSIS

Characterization of the porous structure parameters of the selected sorbents and ion
exchangers, i.e., the specific surface area SBET (m2/g), pore size, and pore volume, was
determined using low-temperature nitrogen adsorption/desorption isotherms obtained
by means of an ASAP 2405 sorption analyzer (Micromeritics, Norcross, GA, USA) and are
presented in [46]. The exemplary results are also presented in Table 5.

Table 5. Textural properties of S1.

SBET [m2/g] 14.98

Vtot [cm3/g] 0.144

IRC748 was characterized by the highest SBET value (23.1 m2/g) and TP 208 the lowest
value (0.68 m2/g). The obtained pore size values indicate the presence of mesopores
(range 2–50 nm) and macropores (>50 nm) in the structure of the ion exchangers. Such an
extensive network of large pores inside the ion exchanger beads may allow the sorption
process to proceed quickly.

3.1.5. SEM Analysis

SEM analysis of the materials revealed that, as mentioned in the table presenting
the physicochemical properties, ion exchangers differ in bead size (presented images are
in the same magnification). Their surface is typical of macroporous materials (Figure 7).
Analogous results were presented in [49–51].

3.1.6. pHpzc Analysis

The pH of zero charge (pHpzc) of S1–S4 sorbents was determined using the solid
addition method. The solutions of 0.01 M KNO3 concentration of proper pH, which was
in the range from 1 to 12, were prepared using 0.1 M HCl and 0.1 M NaOH. Then 0.2 g
of sorbent was brought into contact with 20 cm3 of solution for 24 h (vibration amplitude
8 units, shaking speed 180 rpm). After this period of time, the pH of the solution was
measured again (pH1) using a pH-meter CP-411 (Elmetron, Zabrze, Poland). The plot pH0
vs. pH1-pH0 was obtained and is presented in Figure 8. The values of the point of zero
charge were equal to 6.42 (S3), 6.66 (S4), 7.04 (S1), and 7.05 (S2).
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the ion exchangers are as follows: 6.61 (SP112), 9.98 (S940), (IRC 747), (IRC748), (IRC718), (TP207),
(TP208), and 6.67 (S930).

3.1.7. Degradation Analysis

Our previous studies showed that thermoplastic blends of starch with, among others,
glycerol, poly (butylene succinate), and polylactic acid have a good potential to be used
in heavy metal ion removal [52]. In this work, the thermal behavior of these materials
was investigated by differential scanning calorimetry (DSC), thermogravimetric analysis
(TGA), and Fourier-transform infrared (FTIR) spectroscopy. It was proven that chemical
interactions between the different components occur and degradation mechanisms were
identified, being assigned to the mass loss due to the plasticizer leaching and to the
degradation of the starch at temperature above 350 ◦C. For biodegradation to be visible
and occur quickly, the starch content in the material must be at least 60%. In such cases,
the starch is a matrix of the material, and this is usually plasticized starch. The higher the
starch content, the more biodegradable the polymer [52].

3.2. Influence of Solution Ph on the Uptake of Cd(II) Ions

Due to the surface properties of adsorbents, one of the factors that is taken into account
when assessing their adsorption capacity is pH. Its influence is related to both the effect on
the chemical behavior of the adsorbent, as well as the adsorbate, i.e., the species present in
the solutions at different pH values and the nature of the structures formed between the
adsorbate and the adsorbent. According to literature data on the speciation of cadmium
ions, the following forms were found to be the dominant species: Cd2+ and Cd(OH)+ at
pH < 8 and Cd(OH)2 at pH > 8 at the initial concentration 100 mg/dm3 (Figure 9) [53].

Materials 2021, 14, 4734 13 of 23 
 

 

 
Figure 8. Determination of point of zero charge for S1–S4 by the drift method. Analogous values for 
the ion exchangers are as follows: 6.61 (SP112), 9.98 (S940), (IRC 747), (IRC748), (IRC718), (TP207), 
(TP208), and 6.67 (S930). 

3.1.7. Degradation Analysis 
Our previous studies showed that thermoplastic blends of starch with, among others, 

glycerol, poly (butylene succinate), and polylactic acid have a good potential to be used 
in heavy metal ion removal [52]. In this work, the thermal behavior of these materials was 
investigated by differential scanning calorimetry (DSC), thermogravimetric analysis 
(TGA), and Fourier-transform infrared (FTIR) spectroscopy. It was proven that chemical 
interactions between the different components occur and degradation mechanisms were 
identified, being assigned to the mass loss due to the plasticizer leaching and to the deg-
radation of the starch at temperature above 350 °C. For biodegradation to be visible and 
occur quickly, the starch content in the material must be at least 60%. In such cases, the 
starch is a matrix of the material, and this is usually plasticized starch. The higher the 
starch content, the more biodegradable the polymer [52]. 

3.2. Influence of Solution Ph on the Uptake of Cd(II) Ions 
Due to the surface properties of adsorbents, one of the factors that is taken into ac-

count when assessing their adsorption capacity is pH. Its influence is related to both the 
effect on the chemical behavior of the adsorbent, as well as the adsorbate, i.e., the species 
present in the solutions at different pH values and the nature of the structures formed 
between the adsorbate and the adsorbent. According to literature data on the speciation 
of cadmium ions, the following forms were found to be the dominant species: Cd2+ and 
Cd(OH)+ at pH <8 and Cd(OH)2 at pH >8 at the initial concentration 100 mg/dm3 (Figure 
9) [53]. 

. 

Figure 9. Form of Cd(II) species depending on pH values at the initial concentration 100 mg/dm3. 
Figure 9. Form of Cd(II) species depending on pH values at the initial concentration 100 mg/dm3.

This is of particular importance in the case of the ion exchangers with the chelating
functional groups. The hydronium H3O+ ions compete for active sites on the sorbent
surface with metal cations, especially at low pHs of the solution; therefore, usually low
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adsorption is observed in this area. The adsorption of metal ions increases in the pH region
when decreasing the number of hydronium ions. This is due to the fact that the surface
of the adsorbent becomes negatively charged as a result of the deprotonation reaction.
Accordingly, the repulsive force that exists between the metal ions in the solution and
the active groups of sorbents is reduced, thereby increasing the removal of metal ions
from the solution. Therefore the Cd(II) ion sorption mechanism is largely based on the ion
exchange process between the exchangeable protons from the sorbents hydroxyl groups
and the metal ions, or a complexation reaction in the case of SP112, S940, IRC747, IRC748,
IRC718, TP207, TP207, and TP208, as well as S930. This was confirmed by the fact that
the equilibrium pH of the solutions was reduced compared to the initial pH. This can be
expressed in the following reactions: Cd2+ + H2O
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293 K, m = 0.2 g, V = 20 cm3, t = 4 h).

The highest adsorption, close to 1 mg/g, was found for the sorbent S1, at pH 4–12 there
was a plateau at a level of 95% adsorption. In the case of sorbents S2–S4, a sinusoidal course
of the adsorption change, depending on pH, was observed. In the range of pH 0–2 the
increase in adsorption for each of the three sorbents was found to be at least 50% sorption,
and the sorption capacity was 0.5 mg/g for S2–S4. Another increase in sorption was found
in the range of pH 3–4 and it was up to 0.89 mg/g for S1, 0.66 mg/g for S2, 0.72 mg/g for
S3, and 0.75 mg/g for S4. In the pH range from 6–8 they were equal to 0.96 mg/g for S1,
0.67 mg/g for S2, 0.79 mg/g for S3, and 0.82 mg/g for S4. Another increase in adsorption
took place in the range of pH 9–11, to the level of about 98%, and the sorption capacity was
almost 1 mg/g. In this pH range, the precipitation of Cd(OH)2 hydroxide on the adsorbent
surface, which results in a high adsorption value, was observed. As the optimum, pH 6.0
was chosen for further experiments.

3.3. Sorption Process

The main source of heavy metal pollution in China is industrialization. In rural areas
the Cd(II) concentration in the atmosphere is lower than 1.0 pg/dm3; reaching a value
up to 100 pg/dm3 in urbanized areas. Cd(II) can be precipitated and accumulated in
the soil [54]. Metal uptake by plants occurs during the adsorption of soil solution by
roots and then their transport by the xylem network to the leaves. On the other hand,
transpiration establishes a water potential gradient in the plant and the excess of heavy
metals affects water flow efficiency by reducing the transpiration rate and/or through
changes in stomal resistance in leaves. Hydraulic conductivity influences the water supply
for the whole plant, so that the water transport, root exudation, and leaf gas exchange
parameters depend on the toxic metal concentrations. These plant–water relationships
impair the shoot water and have a negative effect on the plant growth, largely causing
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the plant to develop negatively. For instance, a high concentration of Ni(II) in the root
zone of Psidium guajava can rapidly inhibit stomatal aperture (>50%) [55]. Particularly high
levels of Hg(II) ions, which bind to water channel proteins, cause leaf stomatal closure and
physical obstruction of water transport, and they further induce biomembrane lipids and
cellular metabolism disruption. Hg(II) uptake by Brassica juncea L. can cause phytotoxicity
of both biomass and leaf, as regards the water content reduction and leaf cellular structure
changes, which are similar to those of Pteris vittata under Cr(VI) stress [56,57]. When the
heavy metal ions are centripetally transported to the vascular cylinder, they are loaded
into xylem conducts, where they are further transferred to the aboveground parts of the
plant, including stems, leaves, blossoms, fruits, and seeds. Therefore, in our studies the
extract based on D. officinale in different forms (stick and balls), which is commonly used in
Chinese herbal medicine, was prepared for the Cd(II) ion removal determination. As a first
step, adsorption studies were carried out. The effects of the initial concentration of Cd(II)
on the sorption process with TPS based sorbents S1–S4 were investigated to determine the
maximum sorption capacity. The results are presented in Figure 11.
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To describe the interactions between the Cd(II) ions and the above mentioned adsor-
bents, the most popular adsorption isotherms were applied to fit the experimental data to
the Freundlich and Langmuir models. The Freundlich and Langmuir isotherm parameters
were calculated from the linearized plots of log qe vs. log Ce and Ce/qe vs. Ce, respectively.
Moreover, the obtained results were described using the 1/n parameter and the separation
factor RL (Table S3). The Freundlich model is based on a different approach, it does not
predict surface saturation and considers the existence of a multilayered structure. The
Langmuir isotherm model predicts the formation of an adsorbate monolayer on the ho-
mogeneous adsorbent surface, with no side interactions between the adsorbed ions. The
calculated isotherm parameters for the Cd(II) on S1–S4 are presented in Table 6.
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Table 6. Freundlich and Langmuir isotherm parameters determined for Cd(II) sorption in the S1–S4 systems using
linear regression.

Sorbent
Freundlich Isotherm Parameters Langmuir Isotherm Parameters

kF (mg/g) 1/n R2 Q0 (mg/g) b (dm3/mg) RL R2

S1 0.323 0.377 0.909 1.79 0.099 0.092 0.927
S2 0.075 0.573 0.986 1.32 0.029 0.257 0.857
S3 0.148 0.524 0.944 1.74 0.046 0.178 0.865
S4 0.243 0.358 0.967 1.26 0.097 0.094 0.944

For comparison, the same data were compiled for Cd(II) using the ion exchangers
SP112, S940, IRC 747, IRC748, IRC718, TP207, TP208, and S930 and are shown in Table S4.
The correlation coefficients R2 of the Freundlich model, equal to 0.909–0.986, were slightly
higher than these of the Langmuir model, 0.857–0.944 for Cd(II) sorption using the S1–S4
sorbents. The 1/n values were in the range 0.377–0.573, which indicates the preferential
adsorption of Cd(II). The adsorption capacities decreased for the sorbents modified by
PBS and PLA. The Freundlich adsorption capacity kF was equal to 0.323 mg/g for S1,
0.075 mg/g for S2, 0.148 mg/g for S3, and 0.243 mg/g for S4. The highest value for kF was
in the case of S4 sorbent with the composition of 50%TPS + 50%PLA with 5% hemp fibers.

The Langmuir isotherm is frequently used for the quantitative comparison of different
adsorbents. The monolayer adsorption capacities were in the range of 1.26–1.79 mg/g
with R2 0.857–0.944, the highest Q0 value was found for S3. The calculated values of the
separation factor RL e.g., 0.092–0.257 were in the range from 0 to 1, which proves the
favorable nature of adsorption. Table 7 reports a comparison of the sorption capacities of
starch based adsorbents for Cd(II) ions reported in the literature.

Table 7. Comparison of the sorption capacities of starch based adsorbents for Cd(II) removal.

Adsorbent qe (mg/g) pH Ref.

S1 1.79 6

This paperS2 1.32 6
S3 1.74 6
S4 1.26 6

Montmorillonite modified starch 4.2 5 [58]
Starch esters 7.54 4–9

[59]Succinylated starch 12.36 4–7
Magnetic starch microspheres 39.98 - [60]

Amino (5.67–13.01 N%) modified starch 69.7–139.4 6–7 [61]

The applicability of the Langmuir isotherm model for description of the equilibrium
sorption data of Cd(II) on ion exchangers was obtained regarding the R2 values and
is presented in Table S4. Taking into account the values of monolayer capacities from
83.16 mg/g to 171.78 mg/g in relation to Cd(II), the following series of applicability can be
noted, considering their application for the removal of Cd(II): IRC748 > TP208 > SP112 >
TP207 > S930 > IRC718 ≈ S940 > IRC747.

3.4. Kinetic Studies

The time-dependent behavior of Cd(II) sorption with S1–S4 was investigated in the
range from 1 min to 4 h, and the amount of Cd(II) adsorbed (qt) on S1–S4 as well as the
sorption percent (%S) were calculated. The plots qt vs. t are presented in Figure 12a,c,e. The
plots %S vs. t are presented in Figure 12b,d,f. Additional curves are presented in Figure S2
(Supplementary Materials).
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(e,f) 100 mg/dm3.

The initial concentrations of Cd(II) in the extract from D. officinale were 10, 50, and
100 mg/dm3, whereas the pH was close to 6. It was observed that the sorbents S1–S4
possessed different abilities to remove Cd(II) from the extract. The amount of Cd(II)
adsorbed with S2 increased sharply within the first 60 min of phase contact time, then
the system reached the equilibrium after 120–240 min, depending on the initial Cd(II)
concentration in the extract. For the other (S1, S3, and S4) sorbents, the adsorption at the
beginning was not so fast; therefore, the shape of the curve is not as sharp as in the case
of S2. Thus, the amount of adsorbed Cd(II) increases slightly as the phase contact time
increases. This indicates that the surface of the studied sorbents possesses adsorption sites
which are occupied during the adsorption process, and the rate of adsorption decreases
with the decrease of the number of empty adsorption sites.

Moreover, the sorption capacities increase when the initial concentration increases for
S1–S4 sorbents, being 0.36 mg/g (at the initial concentration 10 mg/dm3), 0.99 mg/g (at
initial concentration 50 mg/dm3), and 2.79 mg/g (at initial concentration 100 mg/dm3);
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whereas for S3 they were as follows: 0.41 mg/g, 0.87 mg/g, and 2.58 mg/g. The adsorption
capacities for S2–S4 were smaller compared to those of S1, e.g., 2.31 mg/g for S2, 2.58 mg/g
for S3, and 2.79 mg/g for S4, and 3.01 mg/g for S1 (adsorption from extract containing
100 mg Cd(II)/dm3).

The greatest adsorption capacities obtained with the S1 sorbent (TPS containing 30%
of glycerol and 8% of water) indicate a strong affinity of Cd(II) for this sorbent. On the other
hand, TPS adsorbents with PLA (50% of PLA and 50% of PLA with 5% hemp fibers (S3 and
S4)) and with PBS (75% of BPBS (S2)) additions showed a smaller adsorption affinity for
Cd(II). For Cd(II) sorption from D. officinale solutions of 10 mg Cd(II)/dm3, the adsorption
capacities decreased from 0.75 mg/g for S1, through 0.41 mg/g for S3, to 0.36 mg/g for
S4. Based on the adsorption capacities, the S1–S4 adsorbents can be ordered in the affinity
series: S1 > S3 > S4 > S2 (adsorption from extract containing 10 mg Cd(II)/dm3), S1 > S2 >
S4 > S3 (adsorption from extract containing 50 mg Cd(II)/dm3), as well as S1 > S4 > S3 >
S2 (adsorption from extract containing 100 mg Cd(II)/dm3).

A plasticizer (glycerol, sorbitol, glycols, urea, maltodextrin, water) is a material
incorporated into a plastic material, resulting in its flexibility and increase in applicability.
Starch granules are penetrated by plasticizer, and the inner hydrogen bonds of starch are
broken at a high temperature or pressure. Moreover, the starch network can be deformed
without rupture, due to the more mobile and smaller molecules of plasticizers. Starch–
starch interactions are eliminated and starch–plasticizer interactions are formed. The
percentage removal of TPS sorbents indicates that the Cd(II) removal is not quantitative.
The %S was the highest for the S1 sorbent, being in the range from 32 to 75% (S1), from 12
to 27% (S2), from 24 to 41% (S3), and from 16 to 37% (S4) (at initial concentration 10 mg
Cd(II)/dm3); whereas for the extract containing 100 mg Cd(II)/dm3 %S was from 22 to
31% (S1), from 15 to 23% (S2), from 22 to 26% (S3), and from 22 to 29% (S4). Comparing
the %S values obtained during Cd(II) adsorption from the D. officinale extract containing
10 mg/L with the %S values obtained during Cd(II) adsorption from the extract with the
higher Cd(II) concentration, 50 mg/dm3 or 100 mg/dm3, it was revealed that the %S was
higher for the solutions with a smaller Cd(II) concentration.

The effects of phase contact time on the Cd(II) adsorption from D. officinale extracts
containing 10, 25, and 50 mg/dm3 of Cd(II) and %S were also analyzed for chelating ion
exchangers SP112, S940, IRC 718, IRC 747, IRC 748, TP207, TP 208, and S930. The kinetic
curves were plotted as qt vs. t and %S vs. t. The exemplary results are presented in
Table S4 (Supplementary Materials). Additionally, the D. officinale extracts before and after
adsorption the ion exchangers are presented in Figure 13.
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IRC 748, TP207, TP 208, and S930.

Based on the obtained results it was found that the amount of Cd(II) adsorbed on
SP112, S930, S940, IRC718, and IRC747 increased very sharply at the beginning of the sorp-
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tion process, within first 15–30 min of phase contact time for all systems under discussion.
The results demonstrate that the systems reached equilibrium after 30 min in the case of
the extract containing 10 mg Cd(II)/dm3, whereas for solutions of higher Cd(II) concen-
tration this time was longer, being in the range 30–60 min (adsorption from the extract
containing 25 mg Cd(II)/dm3) or 60–120 min (adsorption from the extract containing 50 mg
Cd(II)/dm3). In the case of IRC748, TP207, and TP208, the kinetic curves rose gradually
and the qt increase was slower. The time required to reach system equilibrium was longer
for IRC748, TP207, and TP208 compared to the SP112, S930, S940, IRC718, and IRC747
ion exchangers and increased with a Cd(II) initial concentration increase (e.g., 120 min
for IRC748 and 10 mg/dm3; 240 min for IRC748 and 25 mg/dm3; >240 min for IRC748
and 50 mg/dm3, or >240 min for TP207 and TP208 and 10, 25, and 50 mg/dm3). The
highest sorption capacities were obtained at 10 mg/dm3 for IRC748 and IRC747 (1.28 mg/g
and 1.38 mg/g, respectively), at 20 mg/dm3 (2.21 mg/g and 2.79 mg/g), at 25 mg/dm3

(4.93 mg/g) for IRC748, and at 50 mg/dm3 (5.11 mg/g) for IRC747, whereas the smallest
were for S957 (0.09 mg/g, 10 mg/dm3), IRC718 (1.64 mg/g, 25 mg/dm3), TP207 (2.55 mg/g,
50 mg/dm3) ion exchangers. The results show that ion exchangers of uniform bead size
distributions (0.52–0.66 mm IRC748, 0.50–0.65 mm IRC747) allowed obtaining the largest
Cd(II) uptake. Fine resin beads provide a greater capacity and better kinetics, whereas
coarse beads are often more sensitive to osmotic stress and have slower kinetics, resulting
smaller in adsorption efficiency. The adsorption process of Cd(II) on ion exchangers as a
heterogeneous reaction between the solid phase (ion exchanger) and the aqueous phase
(extract containing Cd(II)) is a complex and multistage process, in which individual stages
determine the overall rate of Cd(II) adsorption: (1) transport of Cd(II) to the external surface
of ion exchange resin; (2) diffusion of Cd(II) ions through the ‘liquid film’ surrounding
the ion exchanger beads, diffusion through film (film diffusion model); (3) migration of
Cd(II) ions within ion exchange beads, so-called intraparticle diffusion in ion exchanger
pores; (4) direct adsorption of Cd(II) ions on binding functional groups of the ion exchanger
(considered as a chemical reaction); (5) diffusion of exchange ions within the ion exchanger
beads (reversal of stage 3); and (6) diffusion of exchange ions from the ion exchanger into
the solution (reversal of stage 2). Film diffusion is usually the rate-controlling step for
systems with a small particle size, poor mixing, small concentration of adsorbate, and high
affinity of the adsorbate for the adsorbent; whereas the intraparticle diffusion for systems
with large particle sizes of the adsorbent gives a low affinity of adsorbate for the adsorbent,
good mixing, and high concentration of the adsorbate [62]. %S of Cd(II) was much higher
for the ion exchangers than for the TPS sorbents. The purification efficiency of the extracts
containing 10, 25, and 50 mg/dm3 Cd(II) was great, and the %S was in the range from 84.2
to 98.71% for SP112, from 64.65 to 97.33% for S930, from 78.79 to 97.90% for S940, from
26.61 to 99.71% for S957, from 83.62 to 97.16% for IRC718, from 80.71 to 97.73% for IRC474,
from 27.5 to 94.72% for IRC748, from 20.07 to 93.06% for TP207, and from 25.19 to 82.19%
for TP208. Comparing these results with those described in the literature it can be noted
that the adsorption of heavy metal ions with Cd(II) on Amberlite IR120 is efficient, with an
%S equal to 99% and pH 4–8 and after 75 min for Cd(II). The maximum adsorption capacity
was equal to 1.78 mg/g for Cd(II) [63]. Application of Dowex 50W × 8 for Cd(II) and other
heavy metals (Cu(II), Zn(II), Ni(II), Pb(II)) also shows fast kinetics. In the case of Cd(II) the
system reached equilibrium after 60 min. At pH 8–9, %S 97% of Cd(II) was removed [64].
Moreover, the results obtained for Duolite C443 and Lewatit CNP80 demonstrate that the
adsorption increased with the increasing phase contact time, and after 75 min the system
reached equilibrium for Cd(II) [65].

In the next step, desorption studies were also carried out using hydrochloric acid as
eluent. Elution involves removing the Cd(II) from the used materials by reversing the
adsorption process. The main factor that makes desorption a simple process is the fact that
cadmium will only adsorb onto the surface of TPS-based materials. Other requirements of
the elution process are high HCl concentration, low ionic strength of solution, optimum
flow rate/speed of mixing, and low cadmium concentration in the solution. A comparison
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of Cd(II) elution efficiency using 1 M HCl from the best S1 sorbent and ion exchanger S957
is presented in Figure 14. In the case of 1 M HCl, the desorption was almost completed
(100%) for S1 sorbent; however, in the case of S957 it was equal to 67%. In the case of the
low-cost adsorbents (like S1–S4), their rare reuse was taken into account, due to the fact that
the amount of the cadmium(II) adsorbed is not high. Therefore, disposal of the exhausted
adsorbent is proposed. The obtained results also suggest the different mechanisms of
sorption: for the TPS based sorbent, physical adsorption, and for IXs, chemical reaction.
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4. Conclusions

For purification of D. officinale extracts thermoplastic starch (S1); modified TPS with
poly (butylene succinate), 25% of TPS + 75%PBS (S2); 50% of TPS + 50% PLA (S3); and 50%
of TPS + 50% PLA with 5% of hemp fibers (S4); as well as ion exchangers of different types,
e.g., Lewatit SP112, Purolite S940, Amberlite IRC747, Amberlite IRC748, Amberlite IRC718,
Lewatit TP207, Lewatit TP208, and Purolite S930 were used. The effects of adsorption
time, initial concentration of Cd(II), and pH on the adsorption efficiency were investigated.
The results showed that modifications of TPS do not improve the adsorption capacity of
Cd(II). The adsorption efficiency of Cd(II) on S1 is over 99% with the adsorption capacity
of 1.79 mg/g, and on IRC 748 with the adsorption capacity of 171.78 mg/g. The adsorption
rate of Cd(II) on the S1–S4 sorbents and ion exchangers SP112, S940, IRC 718, IRC 747,
IRC 748, TP207, TP 208, and S930 was determined from the PSO kinetic equation. The
adsorption efficiency of ion exchangers was higher than on S1–S4 for Cd(II), which indicates
that they can be used for utilization of Cd(II). This research proposes novel materials based
on TPS, to be used to deal with the cadmium contamination of medicine herbal extracts, as
well as providing a highly efficient adsorbent for further applications. The results obtained
clearly show their advantages for use as natural, cheap, and abundant materials.
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kinetic and isotherm models, Table S4: Kinetic parameters obtained for TPS (S3) and ion exchangers
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