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a b s t r a c t

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2
(SARS-CoV-2), has led to a global pandemic. Deep learning (DL) technology and molecular dynamics
(MD) simulation are two mainstream computational approaches to investigate the geometric, chemical
and structural features of protein and guide the relevant drug design. Despite a large amount of research
papers focusing on drug design for SARS-COV-2 using DL architectures, it remains unclear how the bind-
ing energy of the protein-protein/ligand complex dynamically evolves which is also vital for drug devel-
opment. In addition, traditional deep neural networks usually have obvious deficiencies in predicting the
interaction sites as protein conformation changes. In this review, we introduce the latest progresses of
the DL and DL-based MD simulation approaches in structure-based drug design (SBDD) for SARS-CoV-
2 which could address the problems of protein structure and binding prediction, drug virtual screening,
molecular docking and complex evolution. Furthermore, the current challenges and future directions of
DL-based MD simulation for SBDD are also discussed.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the end of 2019, the COVID-19 caused by SARS-CoV-2 has
emerged into an unprecedented public health crisis, causing many
deaths around the world. By July 2022, more than 566 million con-
firmed cases and 6.37 million deaths had been reported globally
(https://covid19.who.int/). The common symptoms of COVID-19
are pneumonia, shortness of breath, dry cough, tiredness [1], and
even some neurological complications [2]. Besides, the coronavirus
is continuously mutating, with some new variants being more vir-
ulent and transmissible than the original ones. At present, the Omi-
cron is the dominant variant globally and accounts for almost all
sequences reported to Global Initiative on Sharing Avian Influenza
Data (GISAID) [3]. Up to now, the Omicron variant has emerged
several sub-lineages including BA.1, BA.1.1, BA.2, BA.3, BA.4 and
BA.5. The BA.2 and BA.3 are highly relative to BA.1 but contain
some different mutations in the N-terminal domain (NTD) and
receptor binding domain (RBD) of the spike (S) (Fig. 1a). Comparing
to BA.1, the BA.1.1 has an additional R346K mutation in the RBD
[4]. The S sequences of BA.4 and BA.5 are identical which are spec-
ulated evolving from BA.2. The BA.4 and BA.5 show additional
mutations in the RBD, including R493Q, L452R and F486V. It is
worthy of noting that the R493Q is a reverse mutation of Q493R
appeared in other Omicron sub-lineages (Fig. 1) [5]. Rao et al. have
analyzed 1.79 million S glycoprotein sequences of SARS-CoV-2 and
found that the virus is fine-tuning the S protein with numerous
amino acids (AA) insertions and deletions [6]. Facing of the fast
mutating, possibly more virulent, transmissible, and cunning virus,
new therapeutic molecules are urgently required [7]. However, the
traditional experimental drug discovery is usually expensive and
time-consuming. Structure-based drug design (SBDD) is a proven
highly effective and economical computer-aided design approach
that could speed up the drug discovery for SARS-CoV-2 [8–10]. A
typical SBDD starts from the input protein sequence, builds a
three-dimensional (3D) structure by structure biology or structure
prediction, identifies binding sites, discovers active modulators
through virtual screening or de novo design, predicts the pro-
tein–protein/ligand docking sites with high accuracy, and lastly
simulates the dynamics evolution of the macromolecule (Fig. 2)
[11,12].

During the past few years, the deep learning (DL) technology
has been rapidly implemented into drug discovery. DL is an algo-
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Fig. 1. The mutations of Omicron sub-lineages. (a) The mutations in S of BA.1, BA.1.1, BA.2, BA.3, BA.4 and BA.5 with NTD and RBD indicated; (b) The positions of RBD
mutations, with mutations common to all Omicron colored in white, common to BA.1 and BA.1.1 colored in cyan, unique to BA.1.1 colored in blue, and unique to BA.2 colored
in magenta. Residue Serine 371 is mutated to Leucine 371 (S371L) in BA.1 and BA.1.1, but mutated to Phenylalanine (S371F) in BA.2 and BA.3. The RBD is plotted by gray
surface with the hACE2 footprint colored in dark green [5]. Reproduced with permission. Copyright 2022, Elsevier. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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rithm based on an artificial neural network (ANN) for data repre-
sentation learning [13]. Up to now, several DL frameworks, such
as deep neural network (DNN) [14,15], convolutional neural net-
work (CNN) [16,17], deep confidence network [18], recurrent neu-
ral network (RNN) [19], and generative adversarial network (GAN)
[20,21], etc. have been broadly applied in various fields, achieving
better results comparing to other computational models [22].

In terms of novel Coronavirus treatment, DL-based computer-
aided drug bio-computation can quickly identify drug molecules
that effectively prevent infection, showing potentials in finding
the cures for COVID-19 [23]. In addition, some new programs of
DL such as AlphaFold and its 2nd version (AlphaFold2) have been
utilized in 3D structure prediction of protein which show ultra-
high accuracy comparable to data collected by cryo-EM [24–26].
Artificial intelligence (AI) has attracted tremendous interests in
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the research of SBDD [27–31]. However, limitations of DL models
used in drug design are that they learn through observations, and
fail to consider the dynamic interactions of protein–protein/ligand.
The molecular dynamics (MD) simulations act a crucial role in
studying biological systems, which can be used to reveal different
conformations of proteins, evolutions of protein-protein/ligand
interactions and spontaneously complex phenomena such as pro-
tein folding [32–34]. In the past decades, more researchers have
realized that MD can overcome the major limitations of SBDD,
including those limitations routinely appear in ligand docking cal-
culations without sampling the protein conformational rearrange-
ments during ligand binding. The MD simulations also offer
opportunities to make sound scientific breakthroughs in COVID-
19 research, which contribute to a comprehensive understanding
of mechanisms of virus infection and pathogenesis of COVID-19



Fig. 2. The basic steps involved in the SBDD method. The first panel shows target protein structure prediction, at which the sequence is input and, through DL algorithm, the
protein structure is obtained. The second panel shows the identification of ligand binding sites, and the next step is drug virtual screening. In the last panel, compounds
obtained by molecular docking are synthesized and tested in vitro, and finally MD simulations are performed.
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[35,36]. In addition, they are effective ways to visualize the essence
of protein–protein/ligand interactions and guide the drug discov-
ery and design. For example, MD simulations can be performed
to evaluate the stabilities and interactions of the human
angiotensin-converting enzyme 2 (hACE2) receptor with screened
natural inhibitors to identify novel drug candidates against SARS-
CoV-2 [37]. A major drawback of MD is the accuracy of simulations
should always rely on proteins with known structures (usually
downloaded from the Protein Data Bank (PDB) [38]).

Considering the advantages of both the DL and MD computa-
tional methods, DL-based MD simulation for SBDD has been
adopted against SARS-CoV-2. This paper firstly reviews the latest
applications and research progresses of DL technology in SBDD.
Then, the DL-basedMD simulation in SBDD for SARS-CoV-2 is high-
lighted and discussed. At last, we discuss the future direction for
computational methods in SBDD. During the COVID-19 global pan-
demic, we believe this review could offer novel insights into the
drug design against SARS-CoV-2.
2. Basic steps of SBDD

2.1. Target protein structure prediction by DL

With the rapid development of structural analysis techniques
such as X-ray and nuclear magnetic resonance, more and more
protein structures have been solved and stored in the PDB [39].
However, the structures of many target proteins have not been
solved yet due to the limitations of experimental techniques.
Obtaining the accurate structure of a protein is essential to under-
stand its biological function [40].

In the initial study, some researchers use Swiss model to do
homology modeling of protein structure with the target sequence
as input (http://swissmodel.expasy.org/interactive) [41]. But this
online model has some deficiencies, which is impossible to model
proteins with insertion of short AA chains or without highly similar
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templates [42,43]. Another online modeling server, the iterative
threading assembly refinement (I-TASSER) (http://zhanglab.ccmb.
med.umich.edu/I-TASSER/) predicts protein structure based on
the sequence-to-structure-to-function paradigm [44]. It uses AA
sequence information to generate 3D atomic models from multiple
threading alignments and iterative structural assembly simula-
tions. The function of the protein is then inferred by structurally
matching the 3D models with other known proteins. Although I-
TASSER can provide disulfide bonding modes, secondary and ter-
tiary structures, and functional annotations on ligand binding sites,
but it takes a quite long time to build complex structures [45]. In
2020, DeepMind unveiled its AlphaFold2, a DL-based structure pre-
diction method that ranked the first in protein structure prediction
in 14th Critical Assessment of Techniques for Protein Structure Pre-
diction (CASP14) competition [46]. AlphaFold2 is now freely acces-
sible with novel neural network architectures that have improved
the accuracy from its earlier version AlphaFold. The full realization
of AlphaFold2 mainly consists of the neural network EvoFormer
and the structure module [24,47]. The EvoFormer uses two trans-
formers and one clear communication channel between them.
Each head is specialized for one particular type of data, such as a
multiple sequence alignment (MSA), and a representation of pair-
wise interactions between AA. The information of the contiguous
representation which allows for regular exchange of information
and iterative refinement is also incorporated. The structure module
uses the first part of MSA, as well as the pair features obtained by
calculation, and initializes all the residual frames from the coordi-
nate origin and calculates the updated backbone frames. Finally,
the specific 3D atomic coordinates are predicted [24]. Later,
researchers have independently reproduced many ideas of Alpha-
Fold2 and implemented in the so-called RoseTTAFold [48]. Evans
et al. have released AlphaFold-multimer, a refined version of
AlphaFold2 for the prediction of protein complexes [49], generaliz-
ing the use of AlphaFold2 and RoseTTAFold which are usually for
single chain prediction. Most recently, Mirdita et al. have devel-
oped ColabFold, which offers accelerated prediction of protein

http://swissmodel.expasy.org/interactive
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://zhanglab.ccmb.med.umich.edu/I-TASSER/


Y. Sun, Y. Jiao, C. Shi et al. Computational and Structural Biotechnology Journal 20 (2022) 5014–5027
structures and complexes based on fast homology search of many-
against-many sequence searching N(MMseqs2) by AlphaFold2 or
RoseTTAFold [50]. The fast development of DL technology has pro-
vided more opportunities for accurate protein structure prediction.
SARS-CoV-2 is a single-stranded RNA virus with a genome of about
30 kb [51,52]. In addition to the 4 structural proteins (S, nucleocap-
sid (N), membrane (M), and envelope (E)), the SARS-CoV2 genome
encodes 16 non-structural proteins (NSPs 1–16) which are essen-
tial for virus replication, eliciting the immune response and repre-
senting targets to develop future prophylactic and therapeutic
approaches against COVID-19 [53]. Yang et al. have predicted the
structures of S, M, and N proteins of the Omicron variant using
AlphaFold2, and investigated the effects of mutations on the S1,
NTD and RBD domains of S protein [54]. The high-precision struc-
tures of M and N proteins obtained by AlphaFold2 could provide a
basis for understanding the replication and propagation character-
istics of Omicron. Robertson et al. have evaluated the consistency
of the models generated by AlphaFold2 by atomic pairs measured
with residual dipole coupling (RDC) in solution [55]. They have
found that the AlphaFold2 models are entirely consistent with
the experimental RDC data for most proteins. Yang et al. have
adopted AlphaFold2 to predict the structures of S proteins accord-
ing to the sequences of the mutants and successfully predicted the
S proteins of 10 major variants of SARS-CoV-2, including the Orig-
inal, Alpha, Beta, Gamma, Delta, Epsilon, IOTA, Kappa, Lambda and
21H strains [56]. Gupta et al. have combined the cryo-EM with
AlphaFold2 to obtain the atomic model of full-length SARS-COV-
2 non-structural protein 2 (NSP2) [57], which reveals a highly-
conserved zinc ion-binding site, suggesting a role for NSP2 in
RNA binding. Through the mapping of emerging mutations from
variants of SARS-CoV-2 on the resulting structures, the potential
host-NSP2 interaction regions can be observed. These studies
demonstrate that DL is more likely to be locally accurate for
domain structure prediction, sufficient for global structure predic-
tion and to offer comprehensive structure modeling strategies
combined with experimental constraints.

The current literature on target protein structure prediction by
DL mainly uses AlphaFold2 and analogical methods mentioned
above. Although the structure prediction of a protein by DL could
provide some essential resources for speculating its function,
experimental works are still needed to further confirm the result.
Besides, AlphaFold2 and other DL computational approaches have
intrinsic defects. For example, AlphaFold2 predicts protein struc-
tures according to protein structures (training data) in the PDB,
but many of these structures are not actually in their folded states.
That is, the proteins could only correctly fold into specific struc-
tures upon binding to other proteins, substrates or metal ions, or
assemble into large complexes. We are still facing the problems
of the difficulties of analyzing protein functions, and the high costs
of protein structure determinations through experiments. To
address those problems, further studies in accurate determination
of protein structures are necessary [58].

2.2. Identification of ligand binding sites

A typical SBDD procedure involves the development of potential
drug molecules or ligands which can form stable complexes with a
given receptor at its binding sites. A prerequisite is to find out the
druggable and functionally relevant binding sites on the 3D struc-
ture of the protein [59]. Information about binding sites is also
required for specific docking. The binding sites could be tradition-
ally identified by site-directed mutation studies or X-ray crystal
structures of target protein [60]. Compared with traditional meth-
ods, DL-based models can be trained in a fully data-driven manner
with little expert knowledge to predict the binding sites more
quickly and accurately [61].
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Nazem et al. have used an improved U-Net model based on the
dice loss function to accurately predict binding sites of SARS-CoV-2
proteins [59]. The performance of the model on independent test
datasets and SARS-CoV-2 shows that the segmentation model
could predict binding sites more accurate than the recently
released DL model DeepSite [62]. Nguyen et al. have integrated
algebraic topology and DL (MathDL) to provide a reliable ranking
of the binding affinities for 137 SARS-CoV-2 3-chymosin-like cys-
teine protease (3CLpro) inhibitors. The 3CLpro is an essential molec-
ular target of SARS-CoV-2 [63]. They have reported 13 distinct
binding pockets of the SARS-CoV-2 3CLpro which are denoted by
Pi, i = 1, 2, . . ., 13, as illustrated in Fig. 3a. Among all the 13 binding
pockets, P1 is the most common binding region of the SARS-CoV-2
3CLpro, which attracts around 80 % of ligands in the data set of 137
complexes while the binding pockets P2, P3, P5, P7, P8, and P10 are
the least common binding sites consisting of only one ligand
(Fig. 3b). In addition, the binding pocket P1 with the lowest media
binding energy value has been found as the best region on the
SARS-CoV-2 3CLpro for inhibitor design (Fig. 3c)[64]. Li et al. have
developed the ligand neural network (L-Net), a novel graphic-
generating model for the end-to-end design of chemically and con-
formationally efficient 3Dmolecules with high drug similarity [65].
Later, L-Net has been combined with Monte Carlo tree search for
SBDD. The drawbacks of L-Net include limited versatility, require-
ment of expert knowledge, and heavily dependence on feature
engineering. Then, Li et al. have introduced the DeepLigBuilder, a
new drug design method based on DL which could generate 3D
molecular structures of the binding sites of the target protein
[65]. In a case study of SARS-CoV-2 3CLpro inhibitor design, Dee-
pLigBuilder has recommended a list of drug-like compounds with
novel chemical structures, high predictive affinity, and similar
binding characteristics to known inhibitors by combining deep
generation models with atomic-level interaction assessments.

It is worthy to note that SARS-CoV-2 has undergone several
mutations since its emergence and is still evolving rapidly [66].
In particular, the S protein has been profoundly mutated with
RBD as a primary domain showing many mutant clusters [67,68].
The virus may accumulate further mutations at the RBD site to
improve its interaction with hACE2 and escalate its infectivity. Pre-
dicting potential sites of non-synonymous mutations and the evo-
lution of protein structural modifications that lead to drug
tolerance are critical problems regarding the treatments of new
mutants. Padhi and Tripathi have used a computational high-
throughput interface-based protein design strategy to identify
mutation hot spots and potential adaptation characteristics in
the binding sites of 3CLPro. They have found that several mutants
exhibit reduced binding affinity to drugs Boceprevir and Telaprevir,
out of which hotspot residues having a strong tendency to undergo
positive selection have been identified. The results indicate that
these drugs have larger footprints in the mutational landscape of
3CLpro and hence encompass the highest potential for positive
selection and adaptation [69].

These state-of-the-art models for SBDD demonstrate the capa-
bility of computational approaches especially the incorporation
of DL methods in predicting protein binding sites and its potential
in accelerating drug design and discovery for COVID-19. However,
a majority of them have been limited by the expressivity of the
handcrafted features and the availability of similar proteins. In
addition, some of the DL methods are surprisingly failed in the
identification and ranking of binding sites accurately. Recently,
Tubiana et al. have introduced ScanNet, an end-to-end, inter-
pretable geometric DL model that learns features directly from
3D structures of proteins. It builds representations of atoms and
amino acids based on the spatial-chemical arrangements of their
neighbors. The ScanNet is trained for detecting protein–protein
and protein-antibody binding sites, demonstrating high accuracy



Fig. 3. (a) All binding site pockets observed from 137 inhibitors in SARS-CoV-2; (b) Distribution of 137 ligands across 13 distinct binding sites; (c) Box plot of predicted
binding energies (kcal/mol) of all inhibitors in each binding site [64]. Reproduced with permission. Copyright 2020, Royal Society of Chemistry.
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in presenting folding of unseen protein and interpreting the filters
learned. They have successfully predicted epitopes of the SARS-
CoV-2 S protein and validated known antigenic regions [70]. Scan-
Net is also demonstrated easily to be generalized to other classes of
binding sites with sufficient available training data. Extension to
partner-specific binding prediction and guiding molecular docking
is a promising future direction in SBDD.
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2.3. Compound library preparation-drug virtual screening

DL-aided virtual screening by using the 3D structures of target
protein and small molecule drugs together with their binding
could help to achieve very large-scale drug screening from chemi-
cal libraries [71]. The DL methods are typically data type depen-
dent and have been extensively used in drug prediction and



Fig. 4. A schematic illustration of the generative network complex. SMILES strings are encoded into the latent space vectors via a gated RNN-based encoder. A molecule
generator is applied on the latent vectors to achieve desirable druggable properties, such as binding affinity, partition coefficient (LogP), similarity, etc. from pre-trained
DNNs. The resulting drug-like molecules are then decoded into SMILES strings via an RNN-based decoder. The physical properties of the decoded SMILES strings are examined
by multitask DNNs. Potential drug candidates are then input into a MathPose unit to generate 3D structures, which are further validated by a mathematical DL (MathDL) unit
to recommend new drug candidates [80]. Reproduced with permission. Copyright 2020, PubMed Central.
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design. For example, text mining techniques and graphics-based
approaches are used for drug reuse, while autoencoder approaches
are largely helpful in predicting drug possibilities, drug target rela-
tionships, and generation of new drug molecules. Graph Convolu-
tional Network like DL and molecule transformer-drug target
interaction (MT-DTI) methods have been proved to be successful
in predicting available antiviral drugs that are effective against
SARS-CoV-2. AI/DL subsets, homology modeling, virtual screening
and molecular docking are the most commonly used SARS-COV-2
drug reuse approaches to identify potentially effective drugs for
the treatment of COVID-19 infection [72]. Up to now, hundreds
of potential drugs have been discovered by the AI/DL technology
[73–77], saving more time and effort for drug development than
the traditional experimental methods.

Joshi et al. have used DL methods to conduct virtual screening
of natural compounds to find effective drugs against COVID-19
[78]. In their work, DL is used to predict 3CLpro inhibitor in
CHEMBL3927 dataset, and the predicted models have been devel-
oped and evaluated based on coefficient of determination (R2),
mean absolute error (MAE), mean square Error (MSE), root mean
squared error (RMSE) and loss. Karki et al. have introduced the
application of an end-to-end DNN framework called SSnet, which
is used to repurpose approved drugs from a large drug library
[79]. They have firstly screened a small library of approved drugs
from DrugBank and ZINC by SSnet to identify compounds that have
high-binding affinities. The results are cross-validated against tra-
ditional drug docking algorithm using the Autodock Vina scoring
function. Then the SSnet approach has been extended to a library
of 750,000 compounds in BindingDB, with the compounds that
have poor predicted binding capacity discarded. In this way, poten-
tial binding agents can be identified to target hACE2 for possible
COVID-19 treatments. Nand et al. have used the DL prediction
model, drug similarity screening and molecular docking to screen
1528 anti-HIV-1 compounds, and finally screened out 41 com-
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pounds against 3CLpro. Considering the IC50 values of known inhi-
bitors, a DL model has been constructed to re-screen the 41
compounds and resulted in 22 hit compounds. Finally, 2 out of
the 22 hit compounds have been screened out as potential targets
of 3CLpro, which could be used as drugs to treat SARS-CoV-2. Gao
et al. have developed a generative network complex (GNC) plat-
form to design new drug candidates for treatment of SARS-CoV-
2, as shown in Fig. 4. The first component of the platform is a gen-
erative network including an encoder, a latent space, a molecule
generator, and a decoder. The simplified molecular input line entry
specification (SMILES) strings are the input to generative network
to generate novel molecules, which are fed into the second compo-
nent of GNC, a 2D fingerprint-based DNN, to re-evaluate their
druggable properties. The next component is the MathPose model
which is used to predict the 3D structure information of the com-
pounds selected by the 2D fingerprint-based DNN. The bioactivities
of those compounds are further estimated by the structure-based
DL model named MathDL. The druggable properties predicted by
the last component of GNC are used as an indicator to select the
promising drug candidates [80]. Kumari and Subbarao have pro-
posed a DL model based on a CNN architecture which could be
used to predict the inhibitory activity of 3CLpro against unknown
compounds during virtual screening for SARS-CoV-2 [81]. The
descriptors which represent the chemical molecules are input into
the CNN framework training model to predict active compounds,
and could be further used to develop new targeted anti-SARS-
CoV-2 compounds. Ahmed et al. have integrated a CNN to find
the spatial relationship between input and output data to help pre-
dict the affinity of protein binding to multiple ligands in the gen-
eral family without docking postures or complex user inputs
[82]. They have proposed to predict ligands by using the structures
of target proteins (PDB format) and ligands (SDF format) as inputs
for target binding affinities. The CNN has been used to learn repre-
sentations from hidden layers and affinity prediction tasks can be
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extracted from inputs. In comparison to some widely used meth-
ods, their work shows better performance for predicting high-
resolution protein crystals and non-peptide ligands. In detail, they
have used two levels (atomic level and composite level) for feature
extraction and compared their performance using the same net-
work. The algorithm is relied on sensitive binding cavity detection
which uses mathematical morphology to find deep and shallow
pockets (if any) in a given protein. The coordinates of the predicted
binding cavity of the protein are placed around the center of mass
of the ligand and rotated to various combinations, while the resul-
tant 4D tensor is further processed with CNN. The dataset has
approximately more than 5000 complexes including complexes
that are not part of PDBbind. The ligand set they have used also
represents a diverse set and is one of the highlights of their
approach. Joshi et al. have developed a domain aware generation
framework called 3D-scaffold which takes the 3D coordinates of
the required scaffold as input, and the 3D coordinates of the new
treatment candidate scaffold as output, while always preserving
the required scaffold in the generated structure [83]. It shows good
performance on SARS-CoV-2 3CLpro and NSP15 targets. Most
importantly, their DL model performs well with relatively small
3D structural training data and could quickly learn to generalize
new scaffolds, highlighting their potential applications in generat-
ing target-specific candidates. Wang et al. have adopted a directed
message passing neural network which could learn the structure–
activity behaviors from a collection of anti-beta-CoV active and
inactive compounds to successfully construct a broad-spectrum
anti-viral compound prediction model for new active drugs against
SARS-CoV-2. After that, they have applied transfer learning to fine-
tune the model with the newly reported SARS-COV-2 drugs, gener-
ating a specific SARS-COV-2 predictive model called COVIDVS-3.
The COVIDVS-3 has been proved capable of screening a large com-
pound library with 4.9 million drug-like molecules from ZINC15
database and recommending a list of potential anti-SARS-CoV-2
compounds for further experimental tests [84]. The experimental
validation has demonstrated that the COVIDVS-3 is highly efficient
and can be used to screen large compound databases containing
millions or more compounds, successfully accelerating the drug
discovery process for COVID-19. Gentile et al. have developed an
AI-powered virtual screening pipe, which uses deep docking with
the Autodock GPU, Glide SP, FRED, ICM and QuickVina2 programs
to screen 40 billion molecules that target SARS-CoV-2 3CLpro

[85]. Their findings have provided a new starting point for the
lead-to-lead optimization campaign for 3CLpro and encouraged
the developments of fully automated AI-based drug discovery pro-
tocols. Budak et al. have successfully used structural information of
molecules and proteins to prepare a list of repurposed drug candi-
dates from FDA-approved drugs by a graph neural network-based
graph early fusion affinity (GEFA) model. The Tanimoto/jaccard
similarity analysis is conducted on data sets from public databases
DrugBank and PubChem, and a list of similar drugs have been pre-
pared by comparing the drugs used in the treatment of COVID-19
with the drugs used in the treatment of other diseases [86]. Kang
et al. have analyzed RNA-seq datasets using various bioinformatics
methods (e.g., gene ontology, protein–protein interaction-based
networks) to profile the upregulation of molecular pathways and
analyze the gene enrichment of normal human bronchial epithelial
(NHBE) cells infected with SARS-CoV-2. The results suggest that
COVID-19 is similar to acute mode of chronic obstructive pul-
monary disease (COPD) caused by SARS-CoV-2 infection and the
drug Tiotropium may be effective for patients with COVID-19
[87]. Ting et al. have identified basic infections of pathogenesis
by comparing core signaling pathways between COVID-19-ARDS
(acute respiratory distress syndrome) and non-viral-ARDS. The
DNN of the Drug-target interaction model (DNN-DTI) has been
trained in advance through the drug-target interaction database
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to predict drug candidates with identified biomarkers. These pre-
dicted drug candidates have been further narrowed down as
potential multimolecular drugs through a drug design specification
filter [88]. Hu et al. have proposed a new framework called AI
model and enzymological experiments (AIMEE) to identify inhibi-
tors of 3CLpro against SARS-COV-2. Based on two rounds of exper-
iments, interpretability of the central model in AIMEE, and
mapping of the DL extracted features to the domain knowledge
of chemical properties, a commercially available compound has
been selected and proven to be an activity-based probe of 3CLpro

[89]. Zeng et al. have reported an integrative, network-based DL
methodology to identify repurposable drugs for COVID-19. Specif-
ically, they have built a comprehensive knowledge graph which
includes 15 million edges across 39 types of relationships connect-
ing drugs, diseases, proteins/genes, pathways, and expression col-
lecting from 24 million PubMed publications. Using such
network-based DL methodology, they have successfully identified
41 repurposable drugs whose therapeutic associations with
COVID-19 can be validated by transcriptomic and proteomics anal-
ysis in SARS-CoV-2 infected human cells [90]. Yuvaraj et al. have
designed a DNN model that can accurately sense the protein–li-
gand interactions of specific drugs and make decision on which
drug produces effective interactions against SARS-COV-2 [91].

As shown above, different DL architectures and databases have
been adopted and successfully applied in drug virtual screening
against SARS-COV-2. However, one of the major challenges for
drug screening from large databases is the growing demand for
computational resources, which are usually unaffordable for most
labs due to the high computational costs. Therefore, various DL-
based docking simulation technologies have been proposed to per-
form such tasks without a large amount of computing resources.
Another major challenge for drug virtual screening is the possibil-
ity of generating false positives and incorrect ranking of ligands
docked. Different results can be obtained through different virtual
screening methods even with the same input. We hope that more
and better virtual screening technologies will flourish in future and
become the mainstream in SBDD.

2.4. Molecular docking

Molecular docking is a computational technique to study the
interaction between a target protein and a ligand at the atomic
level, which can be used to predict the ligand conformation as
well as its position and orientation within binding sites, and
offers assessment of the binding affinity [92]. Various scoring
functions [93] have been used to evaluate the binding affinity
between a ligand and a receptor. In most cases, the success of
molecular docking is dependent on the target and computational
methods[94]. In literature, most studies on molecular docking
prediction tend to predict molecules that bind protein targets
with detectable affinities and solved crystal structures [95]. The
real challenge is to calculate the relative binding energy with suf-
ficient accuracy to allow as many true positives as possible in the
final selection of compounds. With the assistance of DL technolo-
gies, sliding docking (or other docking events) and docking scores
can be predicted and achieved quickly and more accurately. Nota-
bly, the Drug Design Data Resource (D3R), a community-oriented
initiative that collects and uses scientific data to test and advance
the computer aided Drug Design technology through community-
wide blind prediction challenges, has been established to provide
opportunities for prediction of protein–ligand poses, affinity rank-
ings, and relative binding free energies. D3R enables rigorous
evaluation of normally used computational techniques and suc-
ceeds in reducing costs and accelerating the discovery of new
drugs in a range of therapeutic areas. However, it does not have
the power to clearly distinguish among most approaches with
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respect to incorporation of machine learning or choosing from
structure-based, ligand-based methods and alchemical free
energy methods [96].

Ton et al. have developed a new deep docking platform, deep
docking (DD), which could quickly predict docking scores for slid-
ing docking, enabling structure-based virtual screening of billions
of purchasable molecules in a short period [97]. Mylonas et al.
have reported a method which combines a variety of conforma-
tion ligands with ResNET-based CNN scoring feature, including
the docking output scores in the evaluation. When tested against
the DUD-E dataset (a dataset to help benchmark molecular dock-
ing programs by providing challenging decoys), it shows signifi-
cant performance, especially in early enrichment which exceeds
the current benchmarks [98]. Their proposed method is eventu-
ally applied to target the emerging COVID-19, and successfully
discovers the inhibitors for the SARS-COV-2 S protein-hACE2
interaction. By introducing MolAICal software and combining
the advantages of DL model and classical algorithm, Bai et al.
have proposed a method to generate 3D drugs in 3D pockets of
the target proteins [99]. The MolAICal software is mainly com-
posed of two 3D drug design modules. In the first module of
MolAICal, genetic algorithm and DL model are used for drug
design and training of FDA-approved drug fragments, and Vinardo
score fitting is performed based on PDBbind database (a compre-
hensive collection of experimentally measured binding affinity
data for the protein–ligand complexes deposited in the PDB). In
the second module, DL generative model is trained by drug-like
molecules from ZINC database while molecular docking is
invoked by Autodock Vina automatically. For the drug design of
SARS-COV-2, MolAICal is demonstrated capable of generating var-
ious and novel ligands with good binding scores to SARS-COV-2
3CLpro. Nguyen et al. have combined mathematics and DL meth-
ods to provide a reliable ranking of the binding affinities of 137
SARS-CoV-2 3CLpro inhibitor structures [64]. Anwar et al. have
proposed a robust experimental design that combines DL meth-
ods with molecular docking experiments to identify the most
promising drug candidates from the FDA-approved list of drugs
which could be used for the treatment of COVID-19. FDA-
approved drugs with the highest KIBA scores (representing
drug-protein binding affinities) are selected for molecular docking
simulations. The results show that 16 drugs demonstrate the
highest predicted inhibitory potential against key SARS-CoV-2
viral proteins. In addition, the highest inhibition of papain-like
cysteine protease (PLpro) activity can be seen with rifapentine
and Flavin adenine dinucleotide (FAD) disodium which have high
predicted KIBA scores and binding affinities [100].

In view of the above-mentioned works, we understand that
computational drug virtual screening works as a prefilter to select
molecules according to a particular predefined criterion of poten-
tially active drugs against a target protein. The DL-based molecular
docking is used to further select and investigate the protein-more
potent drugs interactions. The docking-based virtual screening is
the best example which performs the selections of drugs from
large libraries and anlyzes the binding affinities of drugs at partic-
ular regions of the target protein receptor with elucidated 3D
structures. The combination of DL technology and molecular dock-
ing enables fast selection and ideal binding results on drug design,
however, there exists a typical drawback at the present stage. A
large number of docking software including X-Score, Autodock
Vina, and ChemScore use the empirical scoring functions which
are limited to features extracted from structural information and
often assume a linear relationship existed between the features
and the binding affinity. Therefore, researchers are still committed
to search for alternative scoring functions that are able to describe
the nonlinear relationships between the features and the binding
affinity [101].
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2.5. Molecular dynamics (MD) simulation

MD simulations of proteins were first carried out in the late
1970s [102]. This powerful tool is used to predict the position of
each atom in a molecular system in time domain based on New-
ton’s laws of motion [103]. MD simulations have been widely used
in SBDD processes because the technique can help to investigate
dynamic atomic details such as binding, unbinding, and conforma-
tional changes of receptors which are not easily available from
experimental studies [32,104]. Furthermore, MD simulations can
reveal receptor-ligand interaction dynamics such as association
and dissociation, and quantify the thermodynamics, dynamics,
and free energy landscape [105].

Chloroquine (CQ) has been a potential effective treatment for
COVID-19 [106]. Hydroxychloroquine, a CQ derivative, has been
reported as a better inhibitory effect than CQ against SARS-COV-
2 [107]. Beura and Chetti have adopted a series of computational
methods, including pharmacophore model, molecular docking,
MM_GBSA (molecular mechanics with generalized Born and sur-
face area) study, ADME (absorption, distribution, metabolism and
excretion) property analysis and MD simulations to study the
interactions of CQ and its derivatives with SARS-CoV-2 [67]. The
structural properties of the compounds and the interactions
between the ligand and receptor have been investigated by the
pharmacophore model and molecular docking study. The
MM_GBSA study and ADME property analysis have revealed the
binding free energy of the protein–ligand complex and the phar-
macological properties of the compounds. The optimal synthesized
CQ derivative molecule CQD15 has been selected and further sim-
ulated by MD to obtain the root-mean-square deviation (RMSD),
ligand properties, and protein–ligand contact. Their work offers a
complete process of SBDD for SARS-CoV-2. The MD simulation
plays a critical role in drug design which allows a more accurate
estimate of the thermodynamics and kinetics associated with
drug-target recognition and binding [32]. Compared with CQ and
hydroxychloroquine, CQD15 shows a better inhibitory effect on
SARS-COV-2. The anti-influenza drug, Arbidol, has been reported
able to neutralize SARS-CoV-2 [36]. However, the detailed mecha-
nism behind the inhibition remains unclear. Herein, Padhi et al.
have presented the atomic insights into the SARS-CoV-2 mem-
brane fusion inhibition mechanism. Analyses based on MD simula-
tions show that Arbidol binds with high affinity and is stable at the
RBD/hACE2 interface [36]. In addition, identifying key residues of
RBD and hACE2 that interact with Arbidol by MD could open the
door to therapeutic strategies and developments of higher efficacy
Arbidol derivatives or primary drug candidates.

In drug development, the discovery of lead compounds and sub-
sequent optimization of identified compounds into drug candi-
dates should be followed by target identification or target
validation. The goal is to discover and design compounds with
good binding affinity and selectivity for the target. Docking and
scoring are standard tools for rapidly estimating favorable ligand
binding positions and energies. However, as it is mentioned above,
the scoring functions of the current docking tools still have many
limitations [108]. Using MD to address these limitations allows a
more accurate and facilitative assessment of the binding affinity
of selected compounds. In addition, MD could help to unravel the
atomic details of protein-drug interaction and explain the molecu-
lar mechanism behind it.
3. DL-based MD simulation in SBDD for SARS-CoV-2

Predictions of protein–ligand binding has broad biological sig-
nificance [102,105]. However, performing such analyses to cover
the entire chemical space of small molecules together with com-



Table 1
Current literature on DL-based MD Simulation in SBDD for SARS-CoV-2.

Reference Methods Objective Input Results

(Joshi et al., 2021) DL regression model, molecular
docking and MD simulation

To identify potential
drugs against SARS-CoV-
2 3CLpro

CHEMBL3927 dataset Two compounds have been identified to be
potential hits against 3CLpro..

(Arshia et al., 2021) DL LSTM generative network via
transfer learning, fine-tuning over
ten generations, molecular docking
and MD simulation

To identify potential
inhibitors against SARS-
CoV-2 3CLpro

ChEMBL and Moses
datasets, SMILES

Four top-ranked ligands have been found to be
potential inhibitors against SARS-CoV-2
3CLpro.

(Zhang et al., 2020) DFCNN and DeepBindBC DL models,
molecular docking, pocket localized
MD simulation, metadynamics and
inhouse developed tools

To identify potential
drugs targeting SARS-
CoV-2 RdRp from drugs
available on the market

TargetMol-
Approved_Drug_Library

An FDA-approved drug called Pralatrexate that
strongly inhibits the replication of SARS-CoV-2
in vitro has been identified.

(Casalina et al., 2021) DL variational autoencoder model
and DeepDriveMD simulation

To investigate the
mechanism of infectivity
of SARS-CoV-2 S protein

Conformational
sampling across
different systems

Have provided the elucidation of the full
glycan shield of S, the role of S glycans in
modulating the infectivity of the virus, and the
characterization of the flexible interactions
between the S and the hACE2.

(Lee et al., 2019) DeepDriveMD simulation To understand how
coupling DL approaches
to MD simulation

Villin headpiece protein Have achieved a performance gain in sampling
the folded states by 2.3x and provided
quantitative basis to understand how DL
drives MD simulation.
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plex biological proteins requires tremendous computational power
[109]. DL is now playing an increasingly pivotal role in SBDD as
described above. In particular, the advances of the use of DL-
based MD computational methods have enabled researchers to
understand the binding mode, affinity and evolution of atomic sys-
tem by using appropriate models and algorithms in which the
selected model could ‘‘learn” the patterns inherent in the input
data. Here, we have summarized some representative works in
Table 1.

Virus replication is controlled by the coronavirus 3CLpro which
is therefore considered a major target and promising opportunity
for antiviral discovery with direct acting agents [110]. Joshi et al.
have screened 9101 drugs from the drug bank database for SARS-
COV-2 3CLPro using DL, molecular docking, and MD simulation
techniques [111]. Prior to MD simulations, 500 drugs have been
screened by DL regression model and subjected to molecular dock-
ing, resulting in ten screened compounds with strong binding
affinity. Afterwards, MD simulations have been conducted for five
compounds in order to obtain their binding potentials. Two com-
pounds, {4-[(2 s,4e)-2-(1,3-Benzothiazol-2-Yl)-2-(1 h-1,2,3-Benzo
triazol-1-Yl)-5-Phenylpent-4-Enyl]Phenyl}(Difluoro)Methylpho
sphonic Acid and 1-(3-(2,4-dimethylthiazol-5-yl)-4-oxo-2,4-dihy
droindeno[1,2-c]pyrazol-5-yl)-3-(4-methylpiperazin-1-yl)urea
have been screened as potential hits. Their study suggests two
potential drugs that can be tested under experimental conditions
to assess efficacy against SARS-COV-2 (Fig. 5a). Arshia et al. have
used 2.5 million compounds to train a long short-term memory
(LSTM) generative network through transfer learning to identify-
four optimal candidates that inhibit 3CLpro in SARS-COV-2 [112].
Fig. 5b shows the block diagram of the network’s training and gen-
eration phases, fine-tuning and evaluation sessions for design of
potential inhibitors against SARS-COV-2 3CLpro. The datasets used
to train the DNN models have been obtained from ChEMBL and
ZINC. The SMILE format has collected 2.1 million compound struc-
tures from the ChEMBL dataset and 1.9 million molecular struc-
tures from Moses, a subset of the ZINC dataset. After removing
the molecules containing undesirable atoms or groups, a total of
2.5 million SMILES have been used to train the neural network.
The LSTM_Chem network has been used to generate drugs, with
its weights trained on ChEMBL. Validity determines whether the
generated SMILES are truly valid candidates for a molecule.
Uniqueness ensures the uniqueness of the compound within the
dataset. Originality guarantees that the generated SMILES are not
5022
in any datasets. Then, SMILES that satisfy all three criteria are cho-
sen as eligible molecules. Followingly, molecular docking and MD
simulation are conducted. The extensive calculations and statisti-
cal analyses of the study indicate that the chosen candidates can
be used as potential inhibitors against SARS-COV-2 in computa-
tional environments. However, additional in vitro, in vivo, and clin-
ical trials are needed to further prove their true efficacy. Zhang
et al. have proposed a hybrid drug screening program based on
DL and MD simulations which consists of a dense fully connected
neural network (DFCNN) [113], DeepBindBC (https://cbblab.siat.
ac.cn/DeepBindBC/index.php) [114], Autodock Vina [115], pocket
local MD simulations and metadynamics simulations. DFCNN uses
molecular vector data of protein pocket and ligand to estimate the
protein–ligand pair as binding or non-binding with a probability
value between 0 and 1. DeepBindBC estimates the binding possibil-
ity from atom contact information at interaction surface of a mod-
elled 3D protein–ligand complex. DFCNN and DeepBindBC are both
DL-based methods. This program could help explore the binding
potentials of drugs in TargetMol-Approved_Drug_Library, a drug
library containing 1906 of currently available drugs in market.
After the predictions by DFCNN and DeepBindBC, 14 candidates
have been selected. MD simulations on RNA-dependent RNA poly-
merase (RdRp)-drug complexes have been adopted to further
screen the 14 selected drugs and understand the interactions and
stabilities of the complexes. RdRp is believed to be one of the most
promising therapeutic targets [116,117]. Molecules that can bind
to the catalytic site of RdRp could potentially interfere the synthe-
sis of viral RNA [118]. Finally, 4 approved drug candidates targeting
RdRp have been screened out, and 2 out of 4 (Pralatrexate and Azi-
thromycin) can effectively inhibit SARS-CoV-2 replication in vitro
with EC50 values (effective concentration or dose that produces
50 % of the maximum response) of 0.008 lM and 9.453 lM [119].

Although DL methods have demonstrated their potential to be
efficient by learning from sufficient training data, there are still
problems such as overfitting and discrepancies between training
data and actual data. Casalino et al. have developed an AI-driven
multiscale simulation framework to investigate SARS-CoV-2 S
dynamics, revealing the full glycan shield of S protein and discov-
ering that glycans play an active role in infection [120]. In their
work, all-atomic MD simulations have been adopted to combine,
augment, and extend the available experimental data set to study
the structure, dynamics, and function of SARS-CoV-2 S protein. Tra-
ditional MD and weighted integrated enhanced sampling methods

https://cbblab.siat.ac.cn/DeepBindBC/index.php
https://cbblab.siat.ac.cn/DeepBindBC/index.php


Fig. 5. (a) Graphic illustration of drug virtual screening for SARS-COV-2 3CLPro by DL, molecular docking and MD simulation techniques. In the initial stage, 500 drugs have
been screened by a DL regression model and subjected to molecular docking, resulting in 10 screened compounds with strong binding affinity. Further, five compounds have
been checked for their binding potentials by analyzing MD simulations for 100 ns. In the final stage, two compounds have been screened as potential hits [111]. Reproduced
with permission. Copyright 2021, Springer Nature; (b) A block diagram of training and generation phases of the network, fine-tuning and evaluation sessions for design of
potential inhibitors against SARS-COV-2 3CLpro. The datasets used to train the DNN models have been obtained from ChEMBL and Moses. The LSTM_Chem network has been
used to generate drugs, with its weights trained on ChEMBL. The SMILES that satisfy-three criteria (validity, uniqueness and originality) are retained as eligible molecules.
Followingly, molecular docking and MD simulation are conducted [112]. Reproduced with permission. Copyright 2021, Elsevier.
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have been used. Then the simulations have been combined with a
DL-based method as an integrated workflow that ‘‘drives” sam-
pling from knowledge gained at one scale to another. Specifically,
the DL-based method uses a variational autoencoder (VAE), which
is developed based on convolution filters on contact graphs (from
MD simulations) to analyze simulated data sets over long-time
scales and organize them into a small number of conformational
states along with biophysically related response coordinates. For
SARS-CoV-2 S protein, the intrinsic size of the such simulation pre-
sents a significant challenge in scaling DL-based method to eluci-
date conformational states associated with functions. Therefore,
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Casalino et al. have further developed the DeepDriveMD [121],
an approach that extends the AI-driven multiscale simulation
framework to adaptively run MD simulations ensembles to fold
small proteins. The DeepDriveMD has also been performed on a
S-hACE2 system with 8.5 million atoms. Three conformations have
been extracted from the first set of MD simulations and then been
used as a starting point for a new round of MD simulations. Such a

DL-driven adaptive MD approach has expanded the conformational
space explored and described the flexibility of S in the context of
hACE2 binding, revealing the effects of internal structure of S on
RBD-hACE2 interaction and the infectious mechanism of SARS-
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CoV-2 S protein. Their work has successfully uncovered many
aspects of peak dynamics and function that are currently unavail-
able from experiments. In addition, it has provided information on
the basic mechanism of viral infection and advanced the technical
and methodological limits of molecular simulations.

Simulations of biological macromolecules play an important
role in understanding the physical basis of many complex pro-
cesses [122]. However, the simulations of protein folding at the
atomic scale remain challenging, even though computing power
has improved and specialized architectures have evolved [123].
This is due to the high dimensional nature of protein conforma-
tional landscapes and the inability of atomic and MD simulations
to adequately sample these landscapes for observation of the dual
aspects of folding events [124]. DL-based MD simulation in SBDD
can effectively fold small proteins on supercomputer [32]. Com-
pared with traditional MD approaches, DL-based MD simulation
in SBDD provides a quantitative basis with improved performance
and reduced computing time, showing strong potentials in struc-
tural discovery and drug design in COVID-19 research.
4. Perspective and future direction

4.1. Strengths and challenges

Recognizing the steadily increasing number of positive cases of
infection and the lack of approved treatments for SARS-CoV-2,
SBDD has emerged as a rapid and reliable technique in pharmaceu-
tical and medical research because it not only saves time, but also
helps reduce the cost of designing therapeutic agents [9,125]. In
particular, the DL applications in SBDD can facilitate the discovery
of new drugs and reuse of FDA-approved drugs whose safety and
side effects have already been known [126]. Due to inherent muta-
tions in the SARS-CoV-2 genome that may hinder disease treat-
ment, applications of DL in SBDD also play a key role in
accelerating the process of drug discovery and development
against new SARS-CoV-2 variants. MD simulations have been
widely used in SBDD because the technique helps to unravel many
SARS-CoV-2 atomic details, such as binding, unbinding and confor-
mational changes, at a high resolution that is not normally avail-
able from experimental studies [127]. In addition, MD
simulations can be used to explore the dynamics of SARS-CoV-2
receptor-ligand interactions and quantify the thermodynamic,
kinetic and free energy landscape [128]. In particular, the DL-
based MD simulations could undoubtedly inherit the advantages
of both DL and MD which could reveal the dynamic evolution of
large, complex biological system with selected drugs.

However, the SBDD method used at the current stage still has
some limitations. For example, the current drug design method is
mainly based on the structures of drug and target biological
macromolecules [129]. As mentioned above, many protein struc-
tures in the PDB are not actually the folded states of proteins. Some
protein structures may only fold upon binding to other proteins,
substrates or metal ions, some may only fold when they are chem-
ically modified, and some may fold directly into large complexes
such as the ribosome. Moreover, SBDD only considers the interac-
tion between the compound and the target biomolecule but does
not consider other interaction modes between the two [129].
Although SBDD is a powerful tool that can provide an intuitive
model for scientists to design drugs [11], the results still need to
be verified by experiments at the present stage [130].
4.2. Future outlook and concluding thoughts

Research on the pathogenesis of COVID-19 is still ongoing, and
the existence of bias, imbalance, and limited data may have a sig-
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nificant impact on the prediction accuracy of DL methods in SBDD
[131]. In addition, the increase in COVID-19 positive cases and the
lack of approved drugs remain global health issues that require
urgent discovery of drugs to prevent and treat the disease [132].
DL prediction has accelerated the virtual identification of
structure-based drug target inhibitors for SARS-CoV-2 [133]. The
application of DL-based MD simulations in SBDD for SARS-CoV-2
has accelerated the development of new drugs. But the current
DL and MD computational methods remain to be further devel-
oped. There are two approaches regarding the future developments
of these computational methods in SBDD. The first is to continue
optimizing the parameters under the existing framework of molec-
ular mechanics, incorporating DL to expand the scope of applica-
tion, and further introducing the polarization effect of molecular
interactions. The second is to introduce a new paradigm, which
requires the development of both computational methods and
the theory. In this review, we hope to provide the scientific com-
munity with a comprehensive review of major new applications
of DL methods and DL-based MD simulations in SBDD procedures,
as well as their applications in the research of SARS-CoV-2. How-
ever, we only focus on protein–ligand problems in SBDD but do
not include the protein–protein interactions, which might be the
future direction for better designing drugs against SARS-CoV-2.
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