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ABSTRACT Vibrio vulnificus, an opportunistic pathogen, is the causative agent of a
life-threatening septicemia and a rising problem for aquaculture worldwide. The ge-
netic factors that differentiate its clinical and environmental strains remain enig-
matic. Furthermore, clinical strains have emerged from every clade of V. vulnificus. In
this work, we investigated the underlying genomic properties and population dy-
namics of the V. vulnificus species from an evolutionary and ecological point of view.
Genome comparisons and bioinformatic analyses of 113 V. vulnificus isolates indicate
that the population of V. vulnificus is made up of four different clusters. We found
evidence that recombination and gene flow between the two largest clusters (clus-
ter 1 [C1] and C2) have drastically decreased to the point where they are diverging
independently. Pangenome and phenotypic analyses showed two markedly different
lifestyles for these two clusters, indicating commensal (C2) and bloomer (C1)
ecotypes, with differences in carbohydrate utilization, defense systems, and che-
motaxis, among other characteristics. Nonetheless, we identified frequent intra- and
interspecies exchange of mobile genetic elements (e.g., antibiotic resistance plas-
mids, novel “chromids,” or two different and concurrent type VI secretion systems)
that provide high levels of genetic diversity in the population. Surprisingly, we iden-
tified strains from both clusters in the mucosa of aquaculture species, indicating that
manmade niches are bringing strains from the two clusters together. We propose an
evolutionary model of V. vulnificus that could be broadly applicable to other patho-
genic vibrios and facultative bacterial pathogens to pursue strategies to prevent
their infections and emergence.

IMPORTANCE Vibrio vulnificus is an emergent marine pathogen and is the cause
of a deadly septicemia. However, the genetic factors that differentiate its clinical
and environmental strains and its several biotypes remain mostly enigmatic. In
this work, we investigated the underlying genomic properties and population
dynamics of the V. vulnificus species to elucidate the traits that make these
strains emerge as a human pathogen. The acquisition of different ecological de-
terminants could have allowed the development of highly divergent clusters
with different lifestyles within the same environment. However, we identified
strains from both clusters in the mucosa of aquaculture species, indicating that
manmade niches are bringing strains from the two clusters together, posing a
potential risk of recombination and of emergence of novel variants. We propose
a new evolutionary model that provides a perspective that could be broadly ap-
plicable to other pathogenic vibrios and facultative bacterial pathogens to pur-
sue strategies to prevent their infections.
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The family Vibrionaceae encompasses a ubiquitous group of moderately halophilic
bacteria that are natural inhabitants of marine and brackish environments (1). Over

the past decades, the number of Vibrio-related human infections rose steadily, with a
similar increase observed in Vibrio infections in aquaculture environments (2–5). This
rise in Vibrio virulence and pathogenicity is often attributed to the ongoing increase in
sea surface temperatures associated with climate change (6, 7). Indeed, the distribution
and geographical range of these opportunistic pathogens has been gradually widen-
ing, with outbreaks of Vibrio infections reported at latitudes as high as the Baltic Sea (4)
or Alaska (8), previously considered too cold for Vibrio to thrive.

While the majority of the more than 100 described Vibrio species are harmless to
humans, several species have emerged as opportunistic human pathogens, most
notably Vibrio cholerae, V. parahaemolyticus, and V. vulnificus (9, 10). Vibrio infections are
associated with a wide range of diseases and symptoms ranging from cholera, and
other gastrointestinal infections, to necrotizing fasciitis and acute septicemia (1). Vibrio
infections occur through the consumption of contaminated water or of raw or under-
cooked seafood or through exposure of open wounds to seawater (11, 12). According
to CDC reports, an estimated 80,000 illnesses, 500 hospitalizations, and 100 deaths in
the United States occur annually due to Vibrio infections (13). The increase in preva-
lence of Vibrio infections in the United States is unique among foodborne pathogens,
with all infections associated with other major pathogens such as Salmonella, Esche-
richia coli, Campylobacter, Listeria, or Shigella steadily decreasing over the same time
period (14).

Among vibrios, V. vulnificus has gained particular notoriety as an opportunistic and
often fatal human pathogen and as an emergent pathogen of aquaculture species (12,
15). Specifically, V. vulnificus infects humans through consumption of raw seafood,
causing severe gastroenteritis, or by direct contact of an open wound with seawater,
producing wound infections, leading to necrotizing fasciitis or primary septicemia (16,
17). V. vulnificus is responsible for up to 94% of noncholera Vibrio-related deaths (12).
Most deaths occur in patients with preexisting conditions, such as a compromised
immune system or elevated serum iron levels (primarily in alcohol-associated liver
cirrhosis), where primary septicemia may lead to mortality rates of over 50% (18, 19).

Strains of V. vulnificus are currently subdivided into three biotypes based on their
biochemical characteristics and phylogeny (20, 21). Biotype 1 is associated with most of
the clinical infections. Biotype 2 is primarily considered a pathogen of aquaculture-
raised species, particularly eels, but is also found in association with human infections
(22). Biotype 3, the smallest and most recently discovered, is thus far limited to Israel,
where it caused a serious outbreak of wound infections among fish farmers and
consumers of tilapia grown in aquaculture (12). A recent classification based on
phylogenetic lineages broadly matches the biotype classification (23).

In contrast to V. cholerae, where all strains capable of causing cholera belong to a
single clade, a comparison between V. vulnificus strains reveals a more complex pattern
in the distribution of its clinical strains (24–27). Clinical V. vulnificus strains encompass
a large range of genomic diversity (12, 28, 29) and lack specific markers that can be
used to clearly distinguish isolates with pathogenic potential (16). Despite possessing
a wide range of essential virulence factors (e.g., capsular polysaccharide [CPS], iron
acquisition, cytotoxicity systems, etc.), the general consensus is that virulence in V.
vulnificus is mostly host dependent (12, 16, 30). Nonetheless, it remains puzzling why
most of the clinical strains isolated to date belong to biotype 1.

In this study, we aimed to gain insights into the emergence of this enigmatic human
pathogen by understanding the evolutionary differences at the population, genomic,
and phenotypic levels that differentiate strains belonging to the different V. vulnificus
biotypes. To this end, we performed the most comprehensive computational analysis
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of V. vulnificus to date. For our analysis, we compared all V. vulnificus genomes currently
available in public databases, comprising a total of 113 worldwide isolates from various
habitats and hosts collected over a period of 40 years. We analyzed these genomes
using a diverse suite of bioinformatic tools and performed phenotypic analyses of
representative strains in order to infer the mechanistic processes driving their evolu-
tion. We identified four major clusters: cluster 1 (C1) to cluster 4 (C4). We show that the
two largest and most divergent ones (C1 and C2) are adapted to different lifestyles that
may include behavioral barriers leading to speciation. Nonetheless, frequent exchange
of mobile genetic elements (MGEs) across family barriers occurs. Surprisingly, we
identified strains from both C1 and C2 cohabitating in the mucosa of eels from
aquaculture farms, which raises the concern of manmade environments bringing
strains of these two clusters together. Overall, our findings shed light on the underlying
genomic properties that are required for the emergence of pathogenic V. vulnificus
strains and determine their host range. Information derived from our results may be
applied to develop novel strategies for the prevention of future infections in aquacul-
ture environments and subsequent spread to human hosts.

RESULTS
Phylogenomic and population structure of V. vulnificus. In order to investigate

the evolutionary changes that led to the divergent expansion of V. vulnificus, we
compared 113 publicly available genomes in GenBank, complete or draft, using a
phylogenomic tree based on both single nucleotide polymorphisms (SNPs) and aver-
age nucleotide identity (ANI). A total of 27,366 SNPs were identified among the aligned
core genomes of 113 strains recovered from a wide range of geographical and
ecological sources (see Table S1 in the supplemental material) to produce a phylog-
enomic tree. Using both approximations, all strains were clustered into four groups
with ANI values of �97% (Fig. 1A; see also Fig. S1 in the supplemental material), here
referred to as clusters 1 to 4 (C1 to C4) for simplicity.

The genetic population structure, inferred based on the pattern of SNPs shared
among the strains (Fig. 1B), revealed four ancestral populations that closely corre-
sponded with the phylogenomic approach. We did not observe significant mixing
between the different clusters, suggesting low connectivity and gene flow. Signifi-
cantly, our analysis indicated that clusters 1 and 2 are widely divergent lineages (ANI,
ca. 95%) and are on the verge of qualifying as different species (Fig. S1). For our
subsequent analyses, we focused on clusters C1 and C2, which between them include
close to 90% of the strains, including the bulk of the diversity of clinical isolates. Indeed,
the low number of representatives in cluster 3 (C3) and cluster 4 (C4), combined with
their high clonality, did not provide enough genetic diversity to obtain meaningful
results. Nonetheless, future studies should analyze additional strains from C3 and C4,
with higher divergence, to obtain a more comprehensive view of the evolution and
emergence of additional V. vulnificus clusters.

Despite the genomic divergence among clusters, we could not identify a distinct
pattern linking strain phylogeny, source of isolation, and virulent capabilities (Fig. 1).
Nevertheless, C1 appears to contain a significantly higher proportion of strains isolated
from humans, while C2 is dominated by strains derived from multiple marine hosts,
including a large proportion of eels, and appears to be closely associated with aqua-
culture environments (Fig. 1B). An additional distinguishing feature is the relatively high
clonality of C2 strains, both clinical and environmental, compared to a much higher
divergence among strains belonging to C1 (Fig. 1A). Combined, these observations
point toward different evolutionary pathways taken by these clusters that may be
partially driven by anthropogenic influences.

Evolution and genomic diversity of V. vulnificus clusters. In order to further
elucidate the evolutionary drivers behind the divergence of the two main clusters, we
looked for signatures of genetic drift acting on the genome of each cluster. Assembly
of 12 clinical and environmental strains from each cluster showed that the synteny in
both chromosomes was remarkably well preserved within and also between clusters,
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including positions of the main features of the flexible genome (e.g., CPS and the
superintegron) (Fig. S2). The overall means of the estimates of the averages of non-
synonymous (dN) to synonymous (dS) substitution rates for the analyzed genomes
were 0.42 � 0.02 and 0.46 � 0.01 for C1 and C2, respectively, indicating weak stabilizing

FIG 1 Phylogenomic and population structure of V. vulnificus. (A) Maximum likelihood tree reconstructed from single nucleotide polymorphisms of the core
genome. Blue and red circles mark strains isolated from environmental and human samples, respectively. Members of the same cluster (C1 to C4) (ANI � 97%)
are indicated with the same color. The smaller inset shows the proportions of nonclonal human and environmental isolates in each cluster. (B) STRUCTURE plot
showing contribution to each strain from each of four ancestral populations (colored). Each vertical line represents one of the V. vulnificus strains. The color
chart at the top of the plot indicates the isolated source of the corresponding strains.
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selection on both clusters. Similar dN/dS values were obtained for bacterial pathogens
such as Chlamydia trachomatis (0.40) (31), Salmonella enterica serovar Typhi (0.45) (32)
and Burkholderia mallei (0.47) (33).

We found substantial differences in the degree of divergence of the genomes within
each cluster. Similarly to other Vibrio species, V. vulnificus possess two chromosomes
with different sizes. The size of the large chromosome is ca. 3.2 Mb, whereas the size of
the small chromosome is ca. 1.8 Mb. Despite having a lower relative abundance of
strains, both chromosomes of C1 were found to be genetically more diverse than those
of C2 and to be accumulating greater amounts of SNPs (Fig. S3). Furthermore, pairwise
nucleotide diversity was higher in both clusters in chromosome 2 (Chr2) (Fig. S3),
showing that genes are evolving faster in that chromosome than in chromosome 1
(Chr1). To further assess the relative effects of recombination and mutation between
the two chromosomes of strains belonging to the two main clusters, we estimated the
ratio of recombination events to point mutation events (R/�) (34). The mean R/� values
for all strains from both clusters were 0.38 � 0.02 for Chr1 and 0.41 � 0.01 for Chr2.
However, for strains within C1, ratios of recombination-associated replacements were
higher in Chr I (0.69 � 0.002) even though the R/� values were similar for the second
chromosome (0.32 � 0.001). Similar R/� values (0.85 � 0.008 for Chr I and 0.30 � 0.001
for Chr II) were estimated within C2 representatives.

These data indicate low gene flow between the clusters and limited recombination
between them, possibly leading toward speciation (Fig. 1). The most plausible scenario
that explains our findings is that physical isolation has decreased the probability of
encounter and recombination between the two clusters leading to allopatric speciation
and the generation of distinct ecotypes. This model of bacterial ecotype evolution and
separation restricting recombination has already been observed previously in patho-
gens such as Yersinia enterocolitica (35) and Campylobacter jejuni (36) and in popula-
tions of the hyperthermophilic archaeon Sulfolobus (37).

Virulence factors and capsular polysaccharide diversity. Next, we compared data
corresponding to the presence and distribution of known virulence factors in both
clusters. In order to investigate this, we contrasted all protein-coding genes from the V.
vulnificus strains against the Virulence Factors Database (38). We considered putative
virulence factors for all genes sharing over 90% amino acid sequence identity with any
entry in that database (Fig. S4). All V. vulnificus strains possess a wide array of putative
virulence factors related to attachment and adhesion, iron acquisition, quorum sensing,
secretion, and cytotoxicity systems. Surprisingly, with the exception of the CPS cluster,
the virulence factors were similarly distributed in all strains regardless of cluster, source
of isolation, or clinical/environmental designation (Fig. S4). The prevalence of antibiotic
resistance genes, analyzed using the MegaRES database (39), pointed to an intrinsic
resistance to tetracycline, with tet(34) and tet(35) genes present in the core genome of
all the strains.

Since the CPS, which is part of the flexible genome of V. vulnificus (Fig. S2), was
found to be the most diverse virulence factor, we investigated whether its genetic
diversity might yield insights into the divergence of C1 and C2. First, we extracted and
generated a heat map based on data representing the similarity of the CPS genomic
islands using only one representative of each clonal frame within the V. vulnificus
species (Fig. 2A). Pairwise comparison showed that the variability of this region is very
high, even within members of the same cluster, since we did not find two identical
versions (Fig. 2A). Furthermore, genomic comparison revealed that the CPS cluster has
two separate hypervariable regions (Fig. 2B). SNP analysis of the common part of the
CPS showed a large number of SNPs, mostly synonymous, detected at one side of these
variable regions (Fig. 2B). This phenomenon has been suggested to be the result of
events of recombination between divergent genomes and might elicit the complete
replacement of the gene cluster (40).

Interestingly, we identified several syntenic groups in distantly related genomes.
Highly similar CPS clusters (ca. 70% to 80% tBLASTx identity) were found in compari-
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sons between V. vulnificus NV22 and Vibrio rotiferianus CAIM 577 (74.4% ANI, 50.5%
coverage [Cov]) (Fig. 2B), with preserved synteny and location in the genome. Similarly,
the CPS cluster of V. vulnificus AB17-319 shares a syntenic cluster with Pseudoaltero-
monas rubra DSM6842 (66.6% ANI, 10.3% Cov), a strain isolated from seawater in Nice,
France (Fig. 2B). This region contains genes that encode glycosyltransferases, amino-
transferases, and polysaccharide biosynthesis proteins, among other products.

With the exception of the CPS cluster, our analyses showed virulence factors to be
both widely distributed and highly conserved among all analyzed V. vulnificus strains.
Here we provide evidence of two hypervariable CPS regions that are frequently
exchanged by homologous recombination within and between species, as there is

FIG 2 Capsular polysaccharide and type VI secretions system genomic region comparison. (A) Hierarchical clustering of pairwise average nucleotide identity
comparison of the variable region of the capsular polysaccharide genomic island using one representative of each clonal frame within the V. vulnificus species.
The correspondence of each strain with its cluster is shown by a color-coded circle. (B) Schematic representation of the same cassettes that were found to still
be syntenic but at lower similarity in members of the genus Pseudoalteromonas. Color-coded arrows show locations of important genomic features. The plot
above the genomes indicates the number of SNPs in a 500-bp window. Variable regions 1 and 2 are highlighted in blue and green, respectively. (C) The location
of the 14 strains with two type VI secretion systems (T6SS) is highlighted with a purple star in the tree reconstructed from single nucleotide polymorphisms
of the core genome (Fig. 1). (D) Comparison of the two T6SS clusters found in strain CG100. Genes associated with this cluster are highlighted in blue. The plots
above the genome indicate the number of SNPs in a 500-bp window.
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evidence for their import from distant taxonomic units. It is well documented that CPS
is an essential virulence factor for V. vulnificus and other bacterial pathogens (19,
41–43). These highly variable regions are involved in the production of different sugar
skeletons that form or decorate the extracellular structure and allow the bacterium to
avoid predation by protozoa and other grazers in the natural environment (44, 45). The
high variability in the CPS region of closely related microbes indicates that, even
though it is essential for colonization and survival in the human host, it cannot be used
as a factor to differentiate between clinical and environmental strains or between C1
and C2 strains.

Presence of two type VI secretion systems in V. vulnificus. The type VI secretion
system (T6SS) functions as an antibacterial mechanism facilitating elimination of com-
peting bacteria during host colonization (46–48). We hypothesized that the distribution
of this key virulence factor within Vibrio species may thus shed light on the evolution
of virulence in V. vulnificus (49). Our bioinformatic analysis revealed T6SS-associated
genes in all V. vulnificus strains in our census. Moreover, these genes were invariably
located in a conserved region on Chr2. Interestingly, 14 of the isolates, belonging to
different clusters, harbored a second T6SS homolog (T6SS-2) on Chr2 (Fig. 2C). A
phylogenetic analysis of the concatenation genes encoding the TssB and TssC proteins
(Fig. S5), previously suggested as markers for evolutionary relationships between
distantly related T6SS systems (50), revealed the core T6SS (T6SS-1) to be highly
congruent with the phylogeny of the whole genome, suggesting vertical transmission
(Fig. S5). In contrast, T6SS-2 clustered into four different groups, with similarity to other
species within the genus Vibrio but no apparent correlation with overall phylogeny
(Fig. S5). Fig. 2D shows a schematic of the two T6SS homologs from strain CG100, which
encodes both systems. While T6SS-1 from this strain shared 99% similarity with the
T6SS cluster from reference strain V. vulnificus CMCP6, the T6SS-2 (absent in CMCP6)
showed 97% similarity to a T6SS cluster in V. anguillarum JLL237, isolated from fish
tissue. To our knowledge, this is the first report of a human pathogen encoding two
T6SS. It remains to be determined whether T6SS-2 contributes to the virulence of V.
vulnificus. Redundancy in T6SS gene clusters has been previously described in Vibrio
fluvialis (strain 85003) and Vibrio proteolyticus (51, 52). It is possible that this novel T6SS
might have specificity for some bacterial or protozoal species, thus increasing the
fitness of V. vulnificus in its natural environment and increasing the ability of the
bacterium to outcompete the intestinal microbiota or to overcome the host’s immune
system.

V. vulnificus panmobilome. Mobile genomic regions enable the rapid recombina-
tion of genetic elements, which may facilitate the expansion of physioecological range
of a microbe, including the dissemination of antimicrobial resistance and virulence
factors within a population (53–55). We analyzed the panmobilome of different V.
vulnificus strains to identify unique mobile genetic elements (MGEs) associated with the
different clusters.

(i) Plasmids. Several virulence plasmids were described in V. vulnificus, primarily in
strains associated with C2 (23), that were suggested to provide resistance to the innate
immunity of eels (56, 57). Here we describe a novel megaplasmid (404 kb) in C1 strain
V. vulnificus CECT4608, originally isolated from the water of an eel tank (Spain, 1990),
that is highly similar to and syntenic with (ANI, 98.7%; Cov, 92.9%) a megaplasmid
found in V. coralliilyticus strain RE98 (p380; 380 kb) isolated from a shellfish hatchery
(United States, 2000) (Fig. S6A). We also identified a 290-kb conjugative plasmid in
strain CECT898 (Japan, 1979) which shows significant gene and organizational similar-
ities to plasmids found in three Vibrio species (Vibrio harveyi, V. cholerae, and V.
parahaemolyticus) isolated over a period of 35 years from different hosts and locations
in Southeastern Asia (Fig. 3A; see also Fig. S6B). An important feature of this plasmid
was the presence of a region with high GC content (ca. 66% compared with ca. 43% in
the rest of the plasmid) flanked by a class 1 integron-integrase gene (Fig. 3B). In close
proximity to this region, we identified a complete mer operon conferring mercury
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resistance and showing high similarity to genes in distantly related microbes such as
Acinetobacter baumannii, as well as to two antibiotic resistance genes, aadA5 and
qacEdelta1, conferring resistance to streptomycin and quaternary ammonium com-
pounds, respectively (Fig. 3B). The presence of the integron-integrase gene, along with
the 3=-conserved region containing qacEdelta1 and sul1 genes, clearly classifies this
segment as a class 1 resistance integron, widely distributed among clinical strains
involved in the capture and spread of antibiotic resistance genes (58).

(ii) V. vulnificus chromid. Two megaplasmids (ca. 900 kb), containing all the
hallmarks of a “chromid” (59), were found in V. vulnificus strains FORC_36 and SC9729,
belonging to C1 and C2, respectively. Despite substantial divergence between the
hosting strains (ANI, 95.7%), the chromids share markedly high similarity (ANI, 98.49%;
Cov, 95.3%) (Fig. 3C). Furthermore, the GC content of these chromids is 37.2%, sub-
stantially lower than the 46.5% average GC content determined for V. vulnificus strains.
Interestingly, we found five nearly identical chromids hosted by three additional Vibrio
species (V. parahaemolyticus, V. fluvialis, and V. cholerae) (Fig. 3C). To our knowledge,
this is the first evidence of the widespread distribution of this kind of conjugative
element and also of its presence across the species barrier of any known microbe.

(iii) Prophages. We have found 77 prophage-related elements in the V. vulnificus
genomes associated with all clusters, located on both chromosomes and ranging in size
from 3.7 to 59 kb. The most prevalent element, found in 29 V. vulnificus genomes, was
a small (ca. 12-kb) prophage encoding two toxins, similarly to V. cholerae KSF-1� phage
(60, 61) (Fig. S7A). The phylogenomic analysis of both proteins clustered them sepa-
rately into two well distinguishable branches (Fig. S7B and C). The largest protein was

FIG 3 Panmobilome of V. vulnificus. (A) Circular representation of the CECT898 plasmid (290 kb). The rings are defined from outside to inside as follows: circles
1 and 2, coding DNA sequence (CDS) in the positive strand and negative strand, respectively; circles 3, 4, and 5, BLAST against Vibrio harveyi ZJ0603, Vibrio
cholerae 116-14, and Vibrio parahaemolyticus VPS92; circle 6, CG content; circle 7, GC skew. The region bounded by red shows the enlarged region in section
B. (B) Regions homologous to CECT898 plasmid with high GC content in Vibrio harveyi ZJ0603 and Klebsiella pneumoniae CGMHLK78 plasmid pLK78. (C)
Schematic representation comparing the first two chromids described in V. vulnificus with other, similar examples found in several Vibrio species. CRISPR-Cas
system, clustered regularly interspaced short palindromic repeat-Cas system.
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annotated as zonula occludens toxin (Zot), required for phage morphogenesis, which
was shown in V. cholerae to increase the permeability of the intestinal epithelium (62,
63). These two proteins are also found in the lysogenic V. cholerae CTX� phage,
although the similarities among them were lower than 30%. Furthermore, the RtsA and
RtsB proteins, which are also encoded in CTX� and KSF-1�, were conserved in all the
V. vulnificus sequences. In CTX�, RstA is required for DNA replication, whereas the RtsB
gene facilitates the integration of the prophage into the V. cholerae genome (60).

Overall, our findings indicate that despite divergence between C1 and C2, ex-
changes of MGEs appear to happen frequently and indiscriminately. Nonetheless, this
phenomenon also occurs between different species, as shown by the detection of
identical elements in distant relatives (Fig. 3; see also Fig. S6). Our results further
highlight the importance of plasmids for the dispersion of harmful genetic determi-
nants among groups of strains even beyond the family barriers. Furthermore, they
support the idea of the role of aquatic ecosystems as antibiotic resistance reservoirs.
This poses a serious problem with respect to treatment of emergent V. vulnificus strains
as they have the clear potential of becoming a multidrug-resistant pathogen.

V. vulnificus pangenome. Given the marked divergence between the two main
clusters (ANI, ca. 95%), we decided to investigate the evolutionary differences in their
overall gene content through pangenome analysis. Despite the nearly 3-fold-larger
number of C2 genomes, the C2 pangenome was only 12.7% larger than that of C1,
possibly due to the high clonality within C2. Nevertheless, analysis of the core genome
of each of the clusters indicated that C1 has a core genome that is nearly 40% larger
than that of C2 (2,263 versus 1,641 genes). It seems that the core genome has already
reached a plateau in both clusters (Fig. S8). The pangenome curve in both clusters has
not saturated, indicating an open pangenome and high genetic diversity in V. vulnificus
(Fig. S8). This interpretation is further supported by the high prevalence of “cloud
genes” (e.g., genes found in up to 15% of the strains), which corresponds to approxi-
mately 70% of both pangenomes.

(i) Origins of pangenome divergence. Next, we aimed to elucidate the origins of
the V. vulnificus divergence by identifying a potential common ancestor node among
the four clusters. Using V. cholerae as an outgroup, we determined that V. vulnificus
clusters started branching out at a node close to C3 and C4 (Fig. 4A). We unified the
pangenome of both C3 and C4 to generate what we termed the V. vulnificus common
ancestor (VVCA). We reasoned that subtraction of VVCA from the pangenome of the
highly divergent C1 and C2 clusters would provide us with a reference point and give
us an unbiased and specific in-depth evolutionary history of each group at the
functional level. We compared the functional classifications of the gene coding se-
quences from the pangenomes of C1 and C2 after subtraction of VVCA. After this
process, while the core of C1 was reduced by 40% to 650 genes, the core of C2 was
reduced by up to 54%, leaving the number of genes possessed in common at 1,238.
Comparison against the SEED Subsystems database (64) revealed differences between
the clusters in the relative abundances of genes analyzed using a cutoff criterion of fold
change greater than 1.5 in comparison to their prevalence in the VVCA (Fig. 4B).

In C1, we identified an increased proportion of genes related to the functional
classification “carbohydrates” (monosaccharide and aminosugars), as well as to “mem-
brane transport,” mainly, a greater proportion of type II secretion systems, which
represent the vehicle for the secretion of the degradative enzymes (e.g., proteases,
nucleases, phospholipases, and chitinases) that support bacterial persistence in differ-
ent environments. Interestingly, this system plays a major role in the colonization and
virulence of V. cholerae through degradation of intestinal mucin and cholera toxin
secretion (65, 66). We also found more genes involved in chemotaxis, within the
“motility and chemotaxis” classification, the process by which motile cells modulate
flagellar rotation in response to the surrounding environment (67). Finally, genes
involved in “dormancy and sporulation” were significantly enriched in C1 (Fig. 4B).
These genes appear to regulate entry into and resuscitation from a persister-like state
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called viable but nonculturable, which is essential for both pathogenesis and survival in
the environment in V. cholerae and other pathogens (68, 69). “Cofactors, vitamins,
prosthetic groups, and pigments” and “RNA metabolism” are two additional categories
that are overrepresented in C1. Overall, differential functional characterization of C1
suggested an opportunistic (r-strategist or bloomer) lifestyle, typical of microbes that
grow rapidly, taking advantage of the sporadic inputs of organic matter that appear in
the environment.

On the other hand, genes involved in protein biosynthesis (“protein metabolism”)
and synthesis of amino acids (“amino acids and derivatives”) were more abundant in C2,
suggesting possible adaptation to long-term colonization of nutrient-rich environ-

FIG 4 Pangenome analysis and carbon utilization of V. vulnificus strains. (A) Maximum likelihood tree reconstructed from single nucleotide polymorphisms of
the core genome using V. cholerae as an outgroup. The black circle shows the root of the tree. Members of the same cluster are indicated with the same color.
VVCA, Vibrio vulnificus common ancestor. (B) Functional characterization of the pangenome using the SEED Subsystems database and the difference between
the two clusters and VVCA pangenome. The red stars indicate the results that differed using a cutoff criterion of fold change greater than 1.5 between the
clusters. (C) Biolog phenotypic microarrays measuring bacterial ability to metabolize a variety of carbon sources by the use of PM1 phenotypic microarray plates.
The heat map shows the average levels of carbon utilization of C1 representatives (CMCP6 and ATL9824) and C2 representatives (ATCC 43382 and ORL1506)
in comparison to the negative control. Analyses were carried out in duplicate.
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ments. The skin mucus of fish and eel is rich in proteins and carbohydrates and
supports diverse commensal microbial populations (70). In fact, only V. vulnificus
isolates of C2 have been recovered from diseased eels cultured in brackish and
freshwater farms (23). We found that systems conferring resistance against phage
predation such as restriction-modification and toxin-antitoxin (“regulation and cell
signaling”) were enriched in the C2 pangenome. It has been demonstrated that
bacteriophages are present in higher concentrations in the mucus layers than in the
surrounding environment as a defense mechanism that ultimately protects the under-
lying epithelium from bacterial infections (56–58). Preferential colonization of mucosal
surfaces is one possible explanation for the lower level of divergence and smaller core
genome of C2, as strains from this cluster might not have to encounter conditions that
are as variable as those encountered by the strains that typically inhabit the water
column. Finally, C2 contained an enrichment of genes involved in aromatic carbon
catabolism (“metabolism of aromatic compounds”).

(ii) Carbohydrate utilization. The most abundant functional classification in both
clusters involved genes associated with carbohydrate metabolism, with a significant
overrepresentation in strains from C1 (Fig. 4B). The ability to utilize a diverse set of
carbon sources has been shown to be crucial for the pathogenicity and emergence
of other pathogenic vibrios (71). We further analyzed the genomic potential for
carbohydrate metabolism using the Carbohydrate-Active enZYmes (CAZy) database
(72). We found a significantly higher percentage of glycoside hydrolases (GHs) and
polysaccharide lyases in the C1 pangenome, suggesting a greater carbohydrate
degradation capacity in this cluster (Fig. S9A). With the exception of two
�-mannosidase families (GH38 and GH92), all GH families were found in equal or
greater numbers in the C1 pangenome, including 9 families that were found only
in that cluster (Fig. S9A). Mannose is among the main monosaccharides that
constitute mucus glycoproteins, together with N-acetyl-�-galactosamine, N-acetyl-
�-galactosamine, N-acetylglucosamine, fucose, and neuraminic acid, the latter two of
which are found in the terminal residues of mucin glycoproteins (73).

The highest differences in abundances between the clusters corresponded to GH13
(�-amylase), GH23 (lysozyme with activity for several polysaccharides, including chitin),
and GH109 (�-N-acetylgalactosaminidase) that might degrade the peptidoglycan of cell
walls and mucus (74) (Fig. S9A). In order to experimentally determine the potential
differences between C1 and C2 in carbohydrate utilization, we analyzed the growth of
a couple of strains from each cluster (CMCP6 and ATL9824 [C1] and ATCC 43382 and
ORL1506 [C2]) in a diverse range of carbon sources. We tested their ability to metab-
olize a variety of carbohydrates and other carbon sources using Biolog phenotypic
microarray PM1 (Fig. 4C). Our analysis indicated that C1 is capable of utilizing a much
larger range of carbon sources, in agreement with the genomic data of the pangenome
(Fig. 4C; see also Fig. S9B). While members of the C1 grew better than the C2
representatives in 70 carbon sources, C2 outgrew C1 in only 14 (Fig. 4C). Specifically, C1
had at least twice the final optical density (OD) of C2 in D-mannitol, B-methyl-D-
glucoside, a-D-lactose, and D-malic acid (Fig. 4C). Interestingly, the C2 ATCC 43382 strain
was capable of utilizing L-fucose, a major component of the terminal glycans found in
mucins, as a sole carbon source, whereas C1 representatives did not grow in the
presence of L-fucose as a sole carbon source (Fig. S9B). Genome analysis results
confirmed the phenotypic assay results, since ATCC 43382 contains genes encoding
L-fucose permease in its genome, while CMCP6 does not. It has been demonstrated that
uptake and utilization of L-fucose by Campylobacter jejuni, a prevalent gastrointestinal
pathogen in humans, provided a distinct competitive advantage in its pathogenesis
(75).

Adaptations to eel mucosa colonization. Our analyses (phenotype and genomic
evolution) and the distribution of the isolates indicate that the two main clusters of V.
vulnificus have different lifestyles. Thus, we speculated that these phylogenetically
distant clusters occupy different niches, possibly differing in their natural hosts or
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habitat. This physical isolation would result in distinct evolutionary pressures that
would decrease the probability of encounter and recombination, ultimately leading to
genetic isolation and the generation of distinct ecotypes. To test our hypothesis, we
analyzed the abundance of both clusters through recruitment in the metagenome of
the eel skin mucus and seawater (76). Even though all the sequenced strains isolated
from healthy and diseased eels from worldwide locations belonged to C2 (Fig. 1),
metagenomic recruitment showed that both clusters were present in the eel mucus.
However, C2 was consistently found at greater frequencies than C1 (Fig. 5A) further
supporting a scenario where it preferentially lives as a commensal of marine organisms.
None of the clusters were detected in seawater metagenomes (Fig. 5A). V. vulnificus
genomes do not generate a large number of reads from marine metagenomes, and
most analysis of the possible host microbiota derived from 16S rRNA has shown that
detection at the cluster level is impossible. It would be revealing to investigate the
presence of members of the different clusters in other V. vulnificus hosts in future
studies.

The consistent enrichment of C2 in the eel mucus metagenome prompted us to
investigate the physiological adaptations that might lead to these differences. First, we

FIG 5 Adaptations of V. vulnificus strains to colonization of eel mucosa. (A) Relative abundances of members of the C1 and C2 based on metagenomic
recruitment in eel skin mucus and seawater metagenome samples. Data are expressed as RPKG (reads recruited per kilobase of genome per gigabase of
metagenome). (B) Motility assays of representatives of C1 (CMCP6 and ATL9824; green) and C2 (ATCC 43382 and ORL1506; blue) minimal media supplemented
with mucin and LB at RT. Graphics represent the average diameter of motility zone of three replicates and error bars the standard deviation at 0 h, 3 h, 6 h,
9 h, and 12 h. (C) Growth of representatives of C1 (CMCP6 and ATL9824; green lines and white dots) and C2 (ATCC 43382 and ORL1506; blue lines and black
dots) at different salinities (0% to 3% NaCl). Error bars represent standard deviations of results from three replicates.
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investigated the motility response of C1 (strains CMCP6 and ATL9824) and C2 (strains
ATCC 43382 and ORL1506) in the presence of mucin. We compared their motility
characteristics in soft-agar plates containing M9 minimal media supplemented with
0.1% mucin or Luria-Bertani (LB) (Fig. 5B). We measured their motility zones at different
time points for a period of 12 h. Strains from C1 exhibited greater motility in mucin than
in LB media on average, while no significant differences between the two conditions
were found for C2 (Fig. 5B). Therefore, C1 appears to react to some mucin components,
increasing its motility in their presence. This has been previously identified in patho-
genic strains of V. cholerae and other vibrios (77, 78). Our results are consistent with the
differences in the pangenome for “motility and chemotaxis” in the SEED classification
between the clusters and support the idea of a bloomer lifestyle for C1, chemotactic
with respect to novel carbon sources, and of a commensal lifestyle for C2, adapted to
live in a rich environment. The physicochemical parameters of the environment within
the eel mucus differ from those of the surrounding environment. There are pH
fluctuations, and the mean osmolarity of the eel mucus (�1% NaCl) is lower than that
of seawater (76). Thus, we examined the response of the two clusters to different
pH-related conditions by testing their growth on Biolog phenotypic microarray PM10
(Fig. S9B). We found no major differences among the four strains from the two clusters
that we analyzed under these conditions (Fig. S9C). We also tested growth under
conditions of increased salinity (0% to 3% NaCl) (Fig. 5C). Interestingly, there were
differences in growth on LB over the entire range of salinities (including the average
mucus salinity level [1%]), where the C2 strains showed better growth than the
representatives from C1 (Fig. 5C), which could be another important factor that explains
the predominance of C2 in the metagenomes of the eel mucus.

DISCUSSION

In order to emerge as a human pathogen, a bacterium must acquire numerous novel
properties such as resistance to antimicrobials, avoidance of host immune defenses, or
the ability to effectively colonize specific host tissues (66, 79). The acquisition and
evolution of some of these pathogenic determinants are the results of the interaction
of the bacterium with its natural habitat. These interactions prompt the selection of
certain traits that increase its fitness in that ecological setting and also play a role in the
context of the human host (26, 27). In this study, we investigated the population
structure and genomic evolution of the marine pathogen V. vulnificus in order to
understand the drivers that led to its emergence and cluster divergence.

The combined results of the different analyses in this study suggest that the
population of V. vulnificus is made up of four distinct clusters. Although the ANI values
within the different clusters were �97%, the divergence between the two largest
clusters, C1 and C2, indicates that they are widely divergent lineages that are on the
borderline of qualifying as different species. We speculate that the acquisition of
different ecological determinants allowed the development of diverse lifestyles within
the same environment, which has led to higher divergence. Interestingly, despite the
genomic and ecological divergence of C1 and C2, the exchange of MGEs appears to
happen frequently and indiscriminately, even between different species, as shown by
the detection of identical elements in distant relatives (80).

It appears that C2 members have a competitive advantage for colonization and
growth in different hosts following a commensal lifestyle, which might be a reason
explaining why the greatest number of isolates has been obtained from this cluster
(Fig. 6B). This specialization model could explain the smaller core genome and lower
divergence of the members of C2 and their prevalence in nutrient-rich environments
such as mucous surfaces. Our results indicate that C1 is a bloomer that grows when the
conditions are favorable due to the high potential to degrade carbohydrates, a greater
proportion of secretion systems, or a higher abundance of genes related to “dormancy
and sporulation,” which support a “feast to famine” lifestyle allowing bacterial cells to
endure long periods of unfavorable environmental conditions (68, 69) (Fig. 6B). Their
ability to use a greater pool of nutrients and to tolerate a larger range of stressors in
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the environment likely provides an advantage to V. vulnificus C1 in coping with the
rapid and drastic ecological transition under the unfavorable conditions of the oligo-
trophic aquatic environments.

Our scenario proposes that strains from the two clusters occupy different niches that
lead over time to a greater divergence of the two ecotypes. We contend that these
continuing divergences would likely eventually lead to speciation of the two clusters
(Fig. 6B). Interestingly, it appears that with the advent of aquaculture we have created
an artificial environment where the two clusters can be isolated in sympatry; while C2
is commensal of the eel in aquaculture, the confinement of the fish, together with the
organic matter that is added and their depositions, might produce the ideal environ-
ment for a continuous bloom of members of C1 (Fig. 6C). Furthermore, this newly
created artificial environment increases the possibility of contact between the clusters,
thus maximizing the probability of transfer of genetic material and of recombination.
This could entail a risk of emergence of novel clusters with potentially devastating
consequences for both aquaculture and human health.

Overall, our results shed light on some of the underlying genomic properties
associated with the emergence of pathogenic V. vulnificus. We consider that our
findings could provide information relevant to the pursuit of strategies to prevent and
foresee the potential emergence of strains with importance to both human health and
aquaculture. Finally, our evolutionary model and genomic approaches are broadly
applicable to other pathogenic vibrios and facultative bacterial pathogens.

FIG 6 Evolutionary model of cluster divergence in V. vulnificus. (A) VVCA. Clonal lineages start diverging from the
V. vulnificus common ancestor (VVCA). (B) Divergence. The acquisition of different ecological determinants allowed
the development of diverse lifestyles within the same environment, which has led to a higher divergence. This
divergence led to a recombination and gene flow decrease, although frequent exchange of mobile genetic
elements is found within the species and with other species. (C) Convergence. With the advent of aquaculture, we
have created an artificial environment that has led to colocalization of strains from the two major clusters.
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MATERIALS AND METHODS
Bacterial isolates and population structure. We downloaded all the genomes present in the NCBI

belonging to the V. vulnificus species. Genomic features, cluster affiliations, and origins of the 113 V.
vulnificus strains used are listed in Table S1 in the supplemental material. Reciprocal BLASTN and
TBLASTX searches were carried out between the genomes, leading to the identification of regions of
similarity, insertions, and rearrangements. The values representing ANI between strains were calculated
using JSpecies software package v1.2.1 and default parameters (81).

SNPs, population structure, and recombination analyses. The population structure of V. vulnificus
was reconstructed using STRUCTURE (82). The number of hypothetical ancestral populations (K) was
estimated to be equal to K � 4. The optimum K value was evaluated by the ΔK method (83) using
independent runs for a number of populations K ranging from 2 to 10. The Harvest Suite, a software
package which includes tools such as Parsnp and Gingr, was used to perform the core alignment and to
obtain the SNPs between strains (84). Indels and SNPs between small regions of the genome such as
genomic islands were identified using the nucmer program in the MUMmer3� package (85). Clonal-
FrameML (34) was also used with default parameters to take into account recombination events and to
calculate the R/theta ratios (relative rates of recombination and mutation). GenBank files from all the
strains downloaded from the NCBI were converted to GFF files. These files were used to estimate the
pangenome using the Roary pipeline with a 70% identity cutoff value (86).

Phylogenomic reconstructions. The core genome SNP analyses for all the strains were performed
using the KSNP v3.0 program (87) with the optimum kmer size of 19, which was determined by Kchooser.
Maximum likelihood trees for the two chromosomes were generated individually using RAxML (version
7.2.6) (88), and the core alignment was obtained with Parsnp software. Then, the file was edited using
iTool v3 software (89).

Evolutionary rate. To calculate the nonsynonymous (dN) and synonymous (dS) substitutions for an
ortholog in a pair of V. vulnificus strains, we used the orthologr package (90). Briefly, this package
identifies orthologous gene pairs by choosing the best reciprocal hit using BLASTp and performs codon
alignments of the orthologous gene pairs using PAL2NAL (91). Finally, GESTIMATOR (92) computes the
dN/dS values of the codon alignments. A low ratio (dN/dS � 1) indicates purifying selection, whereas a
high ratio (dN/dS � 1) is a clear signal of diversifying selection.

Functional classification. Putative functionality, the presence of virulence factors, and the presence
of antibiotic resistance factors encoded in the genomes were inferred by comparing all the proteins
against the SEED subsystem database (64), virulence factor database (VFDB) (38), and MEGARes database
(39), respectively. Proteins were compared using the different databases and DIAMOND (93) (blastp
option, top hit, �50% identity, �50% alignment length, E value of �10 	 5). Using dbSCAN (94), we
analyzed the presence of glycoside hydrolases, comparing all the proteins against the Carbohydrate-
Active enZYmes (CAZy) database (72).

Strains and culture conditions. The experimental analyses utilized Vibrio vulnificus isolates CMCP6
and ATL9824 as representatives of C1 (laboratory collection) and ATCC 43382 (American Type Culture
Collection, Rockville, MD) and ORL1506 (Paul Gulig) as representatives of C2. All strains were routinely
grown in Luria-Bertani (LB) broth or agar plates containing 2% (wt/vol) NaCl for 16 h aerobically at 37°C,
unless otherwise specified.

Biolog phenotypic microarrays. Differences in carbon utilization and pH tolerance were assessed
using the Biolog microbial identification system (Biolog, Hayward, CA). Phenotypic MicroArray 1 (PM1)
and PM10 analyses were carried out in duplicate following the manufacturer’s instructions. Briefly,
colonies from agar plates were suspended in 1
 IF-0a (PM1) or IF-10 (PM10) inoculation media
supplemented with NaCl for a final concentration of 1% (wt/vol), as recommended by the manufacturer,
and a 1:5 dilution (PM1) or 1:200 dilution (PM10) of this suspension was prepared to obtain an
absorbance of 0.07 at 600 nm. Aliquots (100 �l) of the final cell suspension were added to each well. The
plates were incubated under aerobic conditions at 37°C for 48 h with shaking. The optical density (OD)
was measured at 595 nm every hour for 48 h using a Tecan Sunrise microplate reader, and the results
were evaluated using Magellan plate reader software. Growth curves were plotted using GraphPad Prism
V7, and area under the curve (AuC) values were calculated. Data were normalized by taking the ratio of
the AuC of the respective carbon sources or pH conditions to that of the negative control. Normalized
data were used to plot a heat map to compare the strains.

Metagenomic read recruitments. C1 and C2 members were used to recruit reads from eel mucus
and seawater metagenomics data sets (76) using BLASTN and a cutoff value of 99% nucleotide identity
over a minimum alignment length of 50 nucleotides. Hits obtained were used to compute the RPKG
(reads recruited per kilobase of genome per gigabase of metagenome) values that provide normalized
numbers that are comparable across various metagenomes.

Growth curves at different salinities. For the growth curve analysis, the overnight cultures of V.
vulnificus strains were centrifuged to obtain a pellet, washed with LB, and resuspended in LB media
containing no salt. Dilutions (1:100) of the cell suspensions were prepared in LB media containing final
concentrations of 0%, 1%, 2%, and 3% (wt/vol) NaCl. Aliquots (200 �l) of each suspension were added
to a 96-well microtiter plate. The experiment was performed in triplicate, with three independent
biological replicates. Growth curves were plotted using GraphPad Prism V7.

Motility assays. Assessment of motility was performed using soft-agar motility plates containing
0.3% (wt/vol) agar and either LB or M9 minimal media supplemented with 0.1% (wt/vol) mucin from
porcine stomach (Sigma). Single colonies were stabbed in the center of the �10-cm-diameter soft-agar
plates using a sterile inoculating loop. Plates were incubated at room temperature (RT). The diameter of
the motility zone was measured at the time points indicated in the x axis. Experiments were conducted
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in triplicate. Graphs were plotted using GraphPad Prism software, V7. The motility characteristics of the
two strains on the different media were compared using Student’s t test (*, P � 0.05; **, P � 0.005).
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