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Conformations of macromolecules and
their complexes from heterogeneous
datasets

P. Schwander, R. Fung and A. Ourmazd

Department of Physics, University of Wisconsin Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee,
WI 53211, USA

We describe a new generation of algorithms capable of mapping the struc-

ture and conformations of macromolecules and their complexes from large

ensembles of heterogeneous snapshots, and demonstrate the feasibility of

determining both discrete and continuous macromolecular conformational

spectra. These algorithms naturally incorporate conformational heterogeneity

without resort to sorting and classification, or prior knowledge of the type of

heterogeneity present. They are applicable to single-particle diffraction and

image datasets produced by X-ray lasers and cryo-electron microscopy, respect-

ively, and particularly suitable for systems not easily amenable to purification

or crystallization.
1. Introduction
Biomolecular interactions, through the formation of transient or robust complexes,

are at the centre of cellular function and life itself. There is increasing recognition

that biological macromolecular complexes exist in a range of conformations, and

that these can play a vital role in their function. The virulence of the dengue

virus, for example, strongly depends on transitions in its protein contacts and con-

formational rearrangements [1]. A deep understanding of the nature and role of

conformational variety in biological function would revolutionize our knowledge

of key processes ranging from basic cell function to pathological states.

Despite powerful contributions to the study of proteins and some complexes,

X-ray crystallography and NMR have limitations. With notable exceptions, the

constraints imposed by crystals have limited the role of X-ray crystallography

in elucidating conformational variety. NMR, while able to study conformations

in biomolecules of modest size, has not been extensively applied to larger systems.

Cryo-electron microscopy (cryo-EM), fortified with increasingly sophisticated

algorithmic approaches [2–4], has been extensively used to study macromolecu-

lar complexes. However, conformational variety presents a challenge to cryo-EM

methods, which often assume its absence. When conformational variety has been

explicitly addressed, the results, won with effort and ingenuity, have provided

tantalizing evidence of a rich variety of conformations, even in well-studied sys-

tems [4–6]. The difficulties faced in addressing macromolecular complexes and

interactions by otherwise successful structural means have led to the recognition

that dealing with heterogeneity represents an important challenge in need of

urgent attention. For example, there is currently no direct means for mapping

the continuum of three-dimensional structures assumed by conformationally

flexible complexes, such as the therapeutically important G protein-coupled

receptors [6].

Heterogeneity is pervasive, because the observation of an ensemble of macro-

molecules in reaction or interaction naturally leads to a collection of snapshots

from non-identical objects. The ability to extract structural information from

large datasets of snapshots obtained from configurationally and conformatio-

nally heterogeneous ensembles of complexes would substantially advance our
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understanding of macromolecular conformations and their

role in biology. However, structure recovery methods such as

cryo-EM [7,8] and emerging X-ray free-electron laser (XFEL)

‘diffract-then-destroy’ approaches [9–13] are generally predi-

cated on viewing a series of identical objects from different

angles. The obvious method of ‘sorting’ the data into classes,

each stemming from nominally identical objects is fraught

with difficulty: the number and types of classes are often

unknown; sorting must be performed at very low signal-to-

noise ratios (‘SNR’ less than or equal to 0.1); and residual

heterogeneities persist, even when the classes are small.

Indeed, there is evidence that the resolution achieved by

cryo-EM is often limited by sample heterogeneity.

Heterogeneity can be tackled by sorting with reference to

templates, which often can only be guessed at. The dangers in

this approach are well known [8]. For example, the image of

any individual, say Einstein or Newton, can emerge from

random noise, depending on whose portrait was used as a

template. Approaches based on Bayesian inference and maxi-

mum-likelihood are powerful [4], but inherently favour

the discovery of discrete conformations. Their computatio-

nal expense and scaling behaviour also limit their practical

application to a small number of conformations. In short,

the analysis of existing cryo-EM datasets and those emerg-

ing from XFEL techniques is severely hampered by the

absence of algorithms able to deal naturally and efficiently

with heterogeneity.

Methods recently developed in our group offer

the possibility to extract structural and conformational

information from heterogeneous datasets directly and effi-

ciently [14–18]. These methods combine techniques from

Riemannian geometry, graph-theoretical dimensionality

reduction (‘manifold embedding’) and scattering physics.

Fundamentally, however, they are based on the simple recog-

nition that each snapshot in a heterogeneous dataset provides

information about all states of the system under observa-

tion. For example, the view from the back of a person’s head

has valuable information about the full-frontal view, because

it reveals where the ears are—irrespective of whether the

person is smiling or not. Thus, the entire dataset can be used

to reconstruct each state of the system, even when the dataset

is heterogeneous. This approach substantially increases the

available information, allowing one to operate at significantly

lower signal levels than needed today. And it offers the possi-

bility to use the information from all conformations to recover

the three-dimensional structure of each.

Here, we describe our approach and present results

demonstrating its capabilities in the context of simulated

XFEL diffraction and cryo-EM image snapshots. Section 2

outlines the approach in conceptual terms. Mathematical

underpinning can be found in [17,18] and the references

therein. Section 3 presents results on simulated diffraction

snapshots of an enzyme undergoing large conformational

changes. More subtle changes are likely to remain beyond

the reach of XFEL experiments for some time. Section 4

describes results on simulated ultra-low signal cryo-EM snap-

shots of objects undergoing more subtle conformational

changes, imaged in the presence of large systematic changes

such as defocus variation. These results pertain to structures

often used to benchmark different approaches, in order to

facilitate comparative assessment. We discuss our results

and future challenges in §5, and summarize and conclude

the paper in §6.
2. Conceptual outline of approach
Our approach is able to recover three-dimensional structural

and conformational information from ultra-low signal, hetero-

geneous datasets without templates or pre-classification. This

stems from the recognition that (i) datasets from ensembles

of macromolecules in reaction or interaction are necessarily

heterogeneous and (ii) the information content of the entire

dataset can be used to recover the three-dimensional structure

corresponding to each conformation of the system. Rather than

avoiding heterogeneity by careful experimental means or

through sorting the snapshots into nominally identical classes,

the approach exploits heterogeneity to increase the available

information substantially.

A more technical, but equally important aspect rests on the

recent discovery that snapshots produced by scattering exper-

iments reside on data manifolds with specific symmetries [17].

These symmetries stem from the nature of operations in space,

rather than from the object itself, and are thus entirely general.

This allows one to project complex, noisy datasets on known

manifolds, much as one fits data to a polynomial of known

type. Because the fit is determined by the entire dataset, this

represents an efficient and noise-robust means of extracting

information. In principle, multiple species result in multiple

manifolds, and the properties of each manifold (‘coefficients

of each fit’) can be used to deduce the three-dimensional struc-

ture and conformational continuum of each species. Slightly

more technically, modern graph-theoretic manifold embed-

ding techniques [16,19–27] can be used to find manifolds

produced by scattering. Similar manifolds have been pre-

viously encountered in certain general relativistic models of

the universe, and are thus well known [28,29]. Laplacian eigen-

functions of manifolds produced by scattering can be deduced

from such models, and used to extract structural and con-

formational information from scattering data [17,18]. Our

algorithms are noise-robust, computationally efficient, work

with existing and emerging large datasets comprising up to

20 million snapshots, and can be incorporated into existing

structure recovery platforms for enhanced reach and impact.

Our approach can be simply understood by considering,

for example, a particle with three orientational degrees of

freedom. As the particle orientation is changed, the changes

in the pixel intensities are a function of only three parameters.

This imposes a strong correlation among the pixel intensities,

which can be used to determine the snapshot orientations, and

thus determine the three-dimensional structure [16,18,30,31].

Specifically, a snapshot consisting of p pixels can be represented

as a p-dimensional vector, with each component representing

the intensity value at a pixel. The fact that the intensities are a

function of only three parameters means that the p-dimensional

vector tips all lie on a three-dimensional hypersurface

(‘manifold’) in the p-dimensional space of intensities

(figure 1). This manifold is an expression of the correlated

way in which the pixel intensities change with the particle

orientation. In fact, each point on the manifold represents a

snapshot from a specific object orientation.

Discovering the manifold in a noisy dataset constitutes the

first step in the analysis. Starting with the Euclidean distance

between vectors representing snapshots in the p-dimensional

data space, a number of powerful graph-theoretic techniques

can be used to discover low-dimensional manifolds underlying

the high-dimensional data [19,23–26,32–34]. Each algorithm

has its strengths and limitations, with the most common



p-dimensional space

three-dimensional manifold

Figure 1. Manifold as expression of correlation. An object has only three
orientational degrees of freedom. This means that the p pixel intensities
in a snapshot change in a correlated fashion with object orientation. This
correlation is described by a three-dimensional manifold in the p-dimensional
space of pixel intensities. (Online version in colour.)
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problem being noise sensitivity [35]. Our approach incorpor-

ates three different manifold embedding approaches based

on generative topographic mapping [19,20], Isomap [26] and

Diffusion map [25,32,36]. In each case, extensive effort was

required to achieve noise-robustness. The resulting algorithms

can operate at signal levels as low as 220 dB (1/100 on a linear

scale), depending on the application [18].

Once the data manifold has been determined and

embedded in a suitable space, one must discover how to inter-

pret the outcome. Specifically, one needs to identify the

operations connecting any two points on the manifold. For

example, in order to reconstruct a three-dimensional image

of a given conformation, one must identify all points on the

manifold which can be reached by SO(3) operations (three-

dimensional rotations) alone. Similarly, to map conformations,

all points on the manifold connected by conformational oper-

ations alone must be identified. This constitutes the second

important step in our approach.

Manifolds are best described in differential geometrical

terms, with the metric—the local measure of distance—playing

an important role. Using a differential geometric formulation of

scattering, we have been able to relate changes in the data mani-

fold to specific operations [18]. In non-technical terms, one would

like to relate infinitesimal changes in the intensity distribution in

a snapshot to the corresponding infinitesimal operations affect-

ing the orientation and/or conformation of the object. In other

words, one would like to relate the metric of the data manifold

to the metric of the manifold of operations. This would allow

one to determine the rotation and/or conformation operations

connecting any pair of snapshots. Achieving this is tantamount

to having a model of the object, in the sense that, given any snap-

shot, any other corresponding to a desired object orientation and

conformation can be produced on demand. The problem, how-

ever, is that the metric of data manifolds produced by

scattering is not simply related to that of the manifold of oper-

ations. For cases involving orientational changes only, we have

solved this problem in two steps. First, we have shown that the

metric of data manifolds produced by scattering onto a two-

dimensional detector can be decomposed into two parts, one

with high symmetry, plus an object-specific ‘residual’ with low

symmetry [17]. Second, using results from general relativity

and quantum mechanics, we have shown that the (Laplace–

Beltrami) eigenfunctions of the high-symmetry part are directly

related to those of the manifold of rotation operations under a

wide range of scattering conditions [17]. This allows one to

deduce the orientation corresponding to each snapshot.

Figure 2 demonstrates three-dimensional structure recovery by

this approach down to very low signal levels [18].
3. Conformations from diffraction snapshots
We have previously shown that experimental XFEL diffrac-

tion snapshots stemming from an unknown mixture of

species can be sorted with high accuracy [15]. This potentially

offers a post-processing route to mitigating the solution puri-

fication problem. Here, we are concerned with determining

conformations of a single macromolecule or macromolecular

assembly. Experimental single-particle XFEL snapshots are

currently dominated by extraneous effects, such as stochastic

variations in the beam intensity and inclination, the diameter

and position of the liquid jet containing the particles, and

detector saturation and nonlinearity. These overwhelm the

signal from the particle itself, and cannot be alleviated, for

example, by increasing the incident beam intensity. Experi-

ence in cryo-EM, however, has shown that such effects can

be alleviated by advances in experimental and algorithmic

techniques. Until improved datasets are generally available,

algorithm development must rely on simulated snapshots.

(a) Discrete conformations
We have previously shown that when simulated single-particle

XFEL snapshots emanate from different discrete conformations

of the same complex, our approach automatically sorts the

diffraction snapshots into separate conformational classes

and determines their orientations [14]. Figure 3 shows the

results of a manifold embedding analysis, when a mixture of

randomly oriented diffraction snapshots from the closed and

open conformations of the enzyme adenylate kinase (ADK,

PDB identifier: 1ank and 4ake, respectively) were presented

to the algorithm at the signal level corresponding to 0.04 pho-

tons per Shannon pixel at 0.18 nm with shot noise [14]. Because

of their chemical identity, the conformations of ADK are

difficult to separate. As shown in figure 3, our algorithm auto-

matically sorts the snapshots into different manifolds, and

determines the orientations of the members of each set of snap-

shots. No prior information was provided to the algorithm

regarding the type or number of conformations present.

The confidence with which sorting was performed can

be deduced as follows. Noise causes the vectors representing

the snapshots not to lie exactly on the manifolds, thus impart-

ing a certain ‘thickness’ to each manifold. This can be

quantified in terms of the widths (standard deviations) of

the distributions of vectors about the manifolds. At the

signal level of 0.04 photon per pixel with shot noise, the smal-

lest separation between the two manifolds is approximately

10 s.d. This means that diffraction snapshots from the differ-

ent conformations are sorted with extreme fidelity, even in

the presence of substantial noise. This level of confidence

clearly cannot be expected with experimental data. Neverthe-

less, results obtained with simulated data provide an

indication of the efficiency with which different confor-

mations of a molecule may be identified and separated. We

note that larger objects, such as macromolecular complexes,

produce larger signals, and should thus be more readily

amenable to our approach.

(b) Continuous conformations
Macromolecular complexes are even more likely to possess con-

formational continua than discrete conformations. However,

one must walk before learning to run. We have therefore used

the unfolding of ADK to demonstrate the principle of mapping
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Figure 2. Three-dimensional reconstructions of chaperonin molecule from cryo-EM snapshots [18]. Left: noise-free simulation. Centre: with experimental images at
20 electrons Å22. Right: with images obtained by processing experimental snapshots to approximate a dose of 1.7 electrons Å22. Insets show typical snapshots at
each electron dose. (Online version in colour.)
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Figure 3. Sorting snapshots from different conformations. A mixture of simulated diffraction snapshots from the molecule ADK in its open and closed conformations at 0.04
photons per pixel at 0.18 nm with shot noise is automatically sorted into different manifolds and the orientation of each snapshot determined [14]. (Online version in colour.)
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conformational continua. The unfolding process of ADK was

simulated by molecular dynamics as follows. The coordinates

of ADK from E. coli in the open state (Protein Data Bank identi-

fier: 4ake) were placed in a spherical droplet of water and

simulated at a nominal temperature of 850 K using NAMD

[37]. Diffraction snapshots (12 500) were simulated from 100

conformations, with each conformation assuming 125 orien-

tations about one axis. Snapshots were provided to a modified

version of the Isomap manifold embedding algorithm [26],

and the resulting manifold displayed through its projections

along the first three principal components (figure 4). It is clear

that orientational and conformational variations give rise to a

tubular manifold. Qualitatively, the closed cross sections of

the tube represent orientational change, whereas paths termi-

nating at the tube ends include conformational change. It can

be readily shown that the manifold is Riemannian. Owing to

the SO(3) symmetry operations involving molecularorientation,

the manifold has SO(3) symmetry in some directions. Such

manifold have received considerable attention in general relativ-

ity [28,29]. We have demonstrated that these techniques,

suitably modified, can be used to recover the three-dimensional

structure of biological objects with computational complexities

104 times higher than previously possible [17]. Following gen-

eral relativistic models for the evolution of the universe [29],
we are exploring extensions of this approach to mapping con-

formational continua (A. Ourmazd et al. 2013, unpublished

data). Figure 5, for example, shows projection on the first diffu-

sion map eigenfunction of the manifold produced by snapshots

of melting ADK free to assume any orientation in three
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dimensions. From the molecular dynamics simulation

described above, 2.4 million diffraction snapshots were simu-

lated from 12 conformations separated by equal time steps of

37.5 ps, with each conformation assuming 200 000 orientations

in three dimensional space. The snapshots were then analysed

with the diffusion map algorithm. As depicted in figure 5a,

the histogram clearly distinguishes all 12 conformations

except the last two, which overlap. Thus, the first eigenvector

directly provides conformational information, confirming

the possibility to identify directions of orientational and con-

formational change on the manifold. These results offer a

potentially promising route to using heterogeneous XFEL

datasets to map conformational continua in macromolecular

complexes. The possibility to use single-particle techniques to

map conformational continua is new, and expected to remove

a major bottleneck in the study of complexes, where structural

flexibility can play a prominent role.
4. Conformations from cryo-electron microscopy
images

Conformational changes are, as a rule, far more subtle than

those displayed by an unfolding macromolecule. In such

cases, the effect of even small orientational changes can over-

whelm the signal owing to typical conformational variations.

Under these circumstances, a different approach is needed to

map conformations.

We now outline a manifold-based approach capable of

sorting with high fidelity, simulated noisy single-particle

cryo-EM snapshots of mildly heterogeneous particles, and

demonstrate this capability in the context of ribosome com-

plexes with and without growth elongation factor (EFG;

figure 6). In order to facilitate comparison with the results

obtained by other approaches, we use a dataset often used
for benchmarking the performance of conformational sorting

algorithms [38]. A mixture of 200 000 snapshots from ribo-

some able to assume any orientation in three-dimensional

with and without EFG was simulated at defocus values

ranging from 21.5 to 22.5 mm with added background and

shot noise corresponding to an SNR of 212 dB (0.06 on a

linear scale). These parameters are typical of experimental

cryo-EM snapshots.

The analysis proceeds as follows. First, the snapshot

orientations are determined, irrespective of the (unknown)

conformational states of the particles. This is possible,

because the effect of orientational change dominates. Any

algorithm capable of determining orientation can be used

for this purpose. Both standard cryo-EM [8] and manifold-

based approaches are able to determine orientation with

an accuracy of about one Shannon angle. Conformational

discrimination is achieved by means of a special kernel for

the diffusion map algorithm to extract the small confor-

mational signal in the presence of large changes owing to

orientation, viz.

Wij ¼
exp �

D2
ij

s2

 !
, Duij , u1

0, otherwise,

8><
>:

where Wij is the weighting factor for a pair of snapshots i and j
separated by a great-circle angular distance Duij and a modified

Euclidean distance Dij (to be defined below), u1 an upper

bound for Duij and s the Gaussian kernel width. At a suffi-

ciently small u1, the conformational signal dominates. By

assigning zero weight to snapshot pairs separated by more

than u1, this weighting scheme is primarily sensitive to

changes in conformation only. To enhance this further, we

retain only a small number of the shortest distances in the

diffusion map analysis.



Figure 6. Variance-normalized, simulated noisy cryo-EM images of ribosome with and without EFG in different orientations, in random order. (Online version in colour.)
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Because cryo-EM snapshots can also differ by the defocus

at which they were obtained, the effect of the defocus on

two otherwise identical snapshots must be eliminated.

This is achieved by the following definition of the Euclidean

distance Dij:

D2
ij ¼

X
p
jPSFj � Ii � PSFi � Ijj2

¼
X

p
jPSFj � (PSFi � Pi)� PSFi � (PSFj � Pj)j2

¼
X

p
jPSFi � PSFj � {Pi � Pj}j2:

For each snapshot i, Ii represents the image intensity dis-

tribution, PSFi is the microscope point-spread function and Pi

is the projected potential and � is the convolution operator.

This ‘double-filtering’ scheme ensures a zero Euclidean dis-

tance between two snapshots stemming from the same

projected potential, but differing in defocus values. For com-

putational efficiency, the distances are calculated in Fourier

space, so that convolution becomes multiplication. With ~Ii

the Fourier transform of the image and CTFi the Fourier

transform of the point-spread function, application of

Parseval’s theorem [39] yields

D2
ij ¼

X
q
jCTFj � ~Ii � CTFi � ~Ijj

2
:

Figure 7 shows the results obtained by appropriate

embedding of ribosome with and without EFG, as outlined

above, with following parameters: u1¼ 0.08 corresponding

to two Shannon angles, the number of nearest neighbours

retained ¼ 3, and s determined as described in [40]. In this

plot, each snapshot is represented by its coordinate in the

plane defined by the second and third diffusion map eigen-

vectors, with the snapshots coloured red and blue

corresponding to ribosome with and without EFG, respect-

ively. The cutting line (black) separates the two clusters

with a sorting fidelity of 99.96%.
Table 1 shows a compilation of the results at constant and

varying defocus, and different means of obtaining orientational

information, in comparison with benchmarks from the

literature [38,41,42].

In summary, these results show that the two conforma-

tions can be identified with 99.96% accuracy in the presence

of experimental noise and defocus variations, compared

with the previously best published fidelity of 87% [38].
5. Discussion
The techniques most commonly used to investigate confor-

mations of macromolecules implicitly assume the presence

of discrete conformations, sometimes requiring starting ‘tem-

plates’ for each conformation, or at least some knowledge of

the number of conformations present. The investigation

of conformational continua, perhaps one of the most impor-

tant aspects of molecular function, has remained difficult, if

not beyond reach. The approach we have outlined offers a



Table 1. Compilation of the results.

defocus (2ve mm) orientational accuracy (uShannon) sorting fidelity (%) benchmarks (%) remarks

2 �1 100 known orientations

2 2 99.9995 99.7 diff. map orientations

1.5 – 2.5 �1 99.97 known orientations

1.5 – 2.5 �1 99.96 87 SPIDER orientations
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natural means of dealing with conformations, whether

discrete or continuous, without bias or a priori knowledge.

Both diffraction and image snapshots are amenable to this

approach, even in the presence of overwhelming noise and

(known) systematic variations such as defocus.

The majority of results presented here, however, pertain

to simulated snapshots, and successful experimental demon-

stration remains an important future task. In the case of XFEL

snapshots, this must include means of dealing with the

effects of unknown stochastic variations in the intensity,

position and inclination of the incident beam, and the geo-

metrical parameters characterizing the way the particle was

illuminated in each shot.
6. Summary and conclusion
We have described an approach naturally suited to investi-

gating macromolecular conformations and conformational
continua using heterogeneous sets of diffraction or image

snapshots, without the need for prior assumptions regarding

the nature of the conformational variety present. Simulations

show the approach to be capable of operating with extreme

fidelity at signal-to-noise levels typical of experimental data,

at least in the case of cryo-EM snapshots. This offers a prom-

ising route to investigating conformational variety in

macromolecular systems and its role in biological function.
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