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Abstract: The inflammatory response of macrophages is an orderly and complex process under strict
regulation accompanied by drastic changes in morphology and functions. It is predicted that proteins
will undergo structural changes during these finely regulated processes. However, changes in
structural proteome in macrophages during the inflammatory response remain poorly characterized.
In the present study, we applied limited proteolysis coupled mass spectrometry (LiP-MS) to identify
proteome-wide structural changes in lipopolysaccharide (LPS)-activated macrophages. We identified
386 structure-specific proteolytic fingerprints from 230 proteins. Using the Gene Ontology (GO)
biological process enrichment, we discovered that proteins with altered structures were enriched into
protein folding-related terms, in which HSP60 was ranked as the most changed protein. We verified
the structural changes in HSP60 by using cellular thermal shift assay (CETSA) and native CETSA.
Our results showed that the thermal stability of HSP60 was enhanced in activated macrophages and
formed an HSP10-less complex. In conclusion, we demonstrate that in situ structural systems biology
is an effective method to characterize proteomic structural changes and reveal that the structures of
chaperone proteins vary significantly during macrophage activation.

Keywords: structural proteomics; RAW264.7; LPS; Lip-MS; HSP60

1. Introduction

Macrophages play a major role in the host defense and inflammatory response.
Macrophages can be activated by a wide range of cytokines and microbial ligands via the
Toll-like receptor (TLR) signaling pathway [1-3]. When RAW264.7 macrophages are stimu-
lated by lipopolysaccharide (LPS), the TLR4 signaling pathway is activated, which in turn
activates the transcription factor nuclear factor k B (NF- kB) and secretes different cytokines,
such as tumor necrosis factor-o, IL1-, and IL-6. Upregulation of cyclooxygenase 2 (COX2)
and nitric oxide synthase (NOS) synthase and reactive oxygen species (ROS) production
further exacerbate inflammation [4-6]. Although the process of macrophage activation has
been well defined, the proteome-wide structural changes during macrophage activation
have not been well characterized.

Limited proteolysis mass spectrometry (LiP-MS) is a powerful approach to charac-
terize global structural changes [7,8]. Structural changes in proteins are attributed to
(1) the binding of proteins to ligands, (2) protein—protein interactions, (3) protein post-
translational modifications (PTM), or (4) protein aggregation [8]. An in-depth characteriza-
tion of proteome-wide structural changes during macrophage activation will help us to
have a deeper understanding of this process.
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The 60-kDa heat shock protein (HSP60) is normally located in the mitochondria and
plays an important role in the folding of imported mitochondrial proteins [9]. In mammals,
HSP60 is usually present as a heptamer [10]. The HSP60 heptamer forms a complex with
HSP10 in the presence of ATP to refold the misfolded proteins [11-13]. Models of the
HSP60 polymorphic form have been proposed in previous studies, e.g., the football-type
complex, the bullet-type complex, and the single-ring complex [10,14,15].

In the present study, we characterize the structural changes of the whole proteome in
LPS-activated RAW264.7 by LiP-MS and provide a new resource for better understanding
the inflammatory response.

2. Materials and Methods
2.1. Cell Culture and LPS Stimulation

The mouse macrophage cell line RAW264.7 was a generous gift from Xin Lin Lab-
oratory, School of Medicine, Tsinghua University, Beijing, China. RAW264.7 cells were
cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Wisent, Nanjing, China) with
10% fetal bovine serum (FBS) (Wisent, Nanjing, China) and 1% penicillin/streptomycin
(Wisent, Nanjing, China). Cells were plated in 10 cm dishes and cultured in an incubator
containing 5% CO, at 37 °C and, 95% relative humidity. After seeding for 24 h, cells were
treated with Escherichia coli lipopolysaccharides (LPS, 100 ng/mL, L2880, Sigma, St. Louis,
MO, USA) for 12 h or 24 h in the culture medium for macrophage activation.

2.2. Quantitative RT-PCR Assay

For quantitative RT-PCR, 2 x 10 cells were used, and the total RNA from cell lysate
was isolated using TRIzol extraction (TTANGEN BIOTECH, Beijing, China). Following
RNA concentration measurement and assessment of its purity, equal amounts of total RNA
(2 ug) from each sample were used for complementary DNA synthesis by using a reverse
transcription system (Cwbio, Beijing, China) according to the manufacturer’s protocols.
Quantitative RT-PCR was performed using SYBR Green reagent (Cwbio, Beijing, China).
The relative standard curve method and 2(—AACt) method were used for quantitation and
gene expression calculation, respectively. The sequences of primers used in this study are
listed in Table S1.

2.3. Detection of Cellular Reactive Oxygen Species

The reactive oxygen species (ROS) levels in RAW264.7 after LPS stimulation for 2,
4,6,12, 18, and 24 h were detected using CellROX® Deep Red Reagents (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s protocol. CellROX® Deep
Red Reagents were added at a final concentration of 5 pM and incubated at 37°C for 30
min. For each treatment, cells were analyzed on a BD FACSAria II Flow Cytometer (BD
Biosciences, San Jose, CA, USA). Cellular ROS levels were detected in triplicate. Data were
analyzed using Student’s t-test.

2.4. LiP-MS Analysis

LiP-MS experiments used untreated and LPS-treated RAW264.7 cells. Briefly, RAW264.7
cells were treated for 12 or 24 h with LPS treatment. Three 10-cm dishes (approximately
1 x 107 cells per dish) were used for each treatment to serve as three technical repetitions.
Cells were collected using a cell scraper, washed three times with PBS to remove the
interference of serum protein in the culture medium, and then centrifuged at 400x g
for 5 min to collect cells. After being centrifuged at 4 °C and 17,000 g for 5 min, the
supernatant was quantified using the BCA protein assay kit (Thermo Fisher Scientific,
Waltham, MA, USA) and diluted to 1 pg/uL. Finally, 400 pg of protein from each sample
was divided into four PCR tubes for subsequent experiments. Two of them were used
for LiP-digested samples and the other two tubes were used for trypsin-digested samples.
All samples were placed in a 25 °C PCR instrument and preheated for 5 min. Then,
1 g proteinase K (Sigma, St. Louis, MO, USA) per tube was added to the LiP-digested
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samples while 1 pg trypsin (Promega, Madison, WI, USA) per tube was added to the
trypsin-digested samples. Sample tubes were placed in a 25 °C PCR instrument for 3 min
and heated to 95 °C for 10 min to quench the digestion. Then, 100 uL of 10% sodium
deoxycholate (Sigma, St. Louis, MO, USA) was added to each tube and heated at 95 °C for
10 min. Every two PCR tubes of the same digestion procedure were combined into one
1.5 mL tube. Next, 40 uL of 25 mM dithiothreitol was added and heated in a metal bath at
95 °C for 10 min. Then, 40 uL of 55 mM iodoacetamide was added at room temperature
for 1 h in the dark to block the free sulthydryl groups. Then, for all the samples, trypsin
digestion was performed by adding 566 uL of 357 mM tetraethylammonium bromide
(TEAB, Sigma, MO, USA), pH 8.0, and 2 pg trypsin (Promega, Madison, WI, USA) per
tube, at 1200 rpm and 37 °C overnight. Afterwards, 20puL formic acid was used to acidify
the samples, and the samples were centrifuged at 12,000x g for 10 min to remove the
sodium deoxycholate precipitate. Sep-Pak C18 Vac cartridges (Waters, Milford, MA, USA)
were used to desalt the samples. The eluted peptides were labeled overnight with tandem
mass tags (TMT) 6-plex reagents (Thermo Fisher Scientific, Waltham, MA, USA), and the
labeling reaction was quenched with 5% hydroxylamine. The TMT-labeled peptides were
fractionated using a UPLC 3000 system (Thermo-Fisher Scientific, Waltham, MA, USA)
equipped with an XBridge C18 RP column (Waters, Milford, MA, USA). Samples were
separated into 48 fractions that were consolidated into 12 fractions and redissolved in 0.1%
formic acid for LC-MS analysis.

2.5. LC-MS Analysis

The labeled peptides were analyzed by LC-MS/MS with nano-LC combined with an
Orbitrap Fusion Lumos mass spectrometer. The digestion products were separated by a
120-min gradient elution at a flow rate of 0.30 uL/min using an UltiMate 3000 RSLCnano
System (Thermo Fisher Scientific, Waltham, MA, USA), which directly interfaced with a
Thermo Fusion Lumos mass spectrometer. The analytical column was a home-made fused
silica capillary column (75 pm ID, 150 mm length; IDEX, Northbrook, IL, USA) packed
with C18 resin (300 A, 5 um; Varian, Palo Alto, CA, USA). Mobile phase A consisted of
0.1% formic acid; mobile phase B consisted of 100% acetonitrile and 0.1% formic acid. The
Fusion Lumos mass spectrometer operated in the data-dependent acquisition mode using
Xcalibur 4.3 (Thermo Fisher Scientific, MA, USA) software, and there was a single full-scan
mass spectrum in the orbitrap (350-1550 m/z, 120,000 resolution) followed by 3-sec cycles
of data-dependent MS/MS scans at 34% normalized collision energy (HCD).

The MS/MS spectra from each LC-MS/MS run were searched against the selected
database (Uniprot mouse reviewed proteome 7 March 2021) using in-house Proteome
Discoverer 2.3 software (Thermo Fisher Scientific, Waltham, MA, USA). The search criteria
were as follows: No-Enzyme (Unspecific) was required, carbamidomethylation (C) and
TMT plex (K-terminal and N-terminal) were set as the fixed modifications, oxidation (M)
and acetyl (protein N-terminal) were set as the variable modifications, the precursor ion
mass tolerances were set at 10 ppm for all MS acquired in an orbitrap mass analyzer, and
the fragment ion mass tolerance was set at 0.02 Da for all MS2 spectra acquired. Relative
protein quantification was also performed using Proteome Discoverer software (version 2.3)
according to the manufacturer’s instructions on the reporter ion intensities per peptide.

2.6. LiP-MS Data Analysis

The quantitative information of LiP-MS was analyzed by R language, and the R pack-
ages used were magrittr, tidyr, stringr, protti, tidyverse, ggthemes, ggrepel, dendextend,
pheatmap, viridis, seriation, vioplot, GOplot, clusterProfiler, and dplyr. In brief, unique
peptides were selected for quantitative calculation. All peptides with missing quantitative
information were removed. All peptides from trypsin digestion or proteinase K digestion
were normalized. The normalized reporter ion intensities from each replicate were used to
calculate the Z-scores, which were converted into T-scores for ratio calculation. Considering
that the protein abundance changes may affect the accuracy of the LiP peptide selection, we
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corrected the LiP peptide abundances with the protein fold changes. One-way analysis of
variance (ANOVA) following Benjamini-Hochberg multiple testing (FDR = 5%) was used
to evaluate the overall significance of the peptide and protein ratios; Tukey’s HSD was used
to compare differences between the two groups [16]. Peptides or proteins analyzed with
ANOVA and Tukey’s HSD adjusted p-value less than 0.05 were considered significantly
changed (Figure Sla—d). Proteins with significantly changed LiP peptides were selected for
GO enrichment analysis to draw chord mapping using the GOplot package.

2.7. Cellular Thermal Shift Assay (CETSA)

The CETSA experiment was performed according to the published method [17,18].
Briefly, cells were harvested, washed three times with PBS, resuspended in PBS containing
1x protease inhibitor, frozen in liquid nitrogen, centrifuged at 17,000x g to obtain cell
lysates, stabilized at 25 © C for 5 min, and then heated using a PCR instrument (Temperature
gradient: 37, 40.4, 44, 46.9, 49.8,52.9, 55.5, 58.6, 62, 66.3 °C, heating time: 3 min). The heated
cell lysates were placed on ice for 10 min. The lysates were centrifugated at 100,000x g
for 20 min using Max-XP (Beckman Optima, Brea, CA, USA), and the supernatant was
subjected to Western blotting.

2.8. Western Blot Analysis

Protein samples obtained from the CETSA experiment above were loaded onto three
12% SDS-Page gels in 2x loading buffer and electro transferred onto polyvinylidenece
difluoride (PVDF) membranes at 200 mA for 1 h. For the native CETSA analysis, 8-20%
precast gel (Solarbio, Beijing, China) was used. The membranes were blocked in 5% milk in
TBST buffer (20 mmol /L Tris-HCI, 150 mmol /L NaCl, and 0.1% Tween 20) for 1 h at room
temperature. Each blocked membrane was incubated with primary antibodies against
HSP60 (Cell Signaling Technology, Danvers, MA, USA, 1:2000, 12165S), HSP10(Abclonal,
Woburn, MA, USA, 1:2000, A7437) and then HRP-conjugated secondary antibodies (1:2000
dilution, Cell Signaling Technology, Danvers, MA, USA). Samples were washed on the
membranes with TBST three times, and the protein bands were visualized using an en-
hanced chemiluminescence reagent (Santa, Santa Cruz, CA, USA). To detect different
antigens within the same blot, PVDF membranes were stripped with Restore Western Blot
Stripping buffer and reprobed. Finally, the quantification of protein bands was performed
by densitometry using Bio-Red Image lab 6.0.

3. Results
3.1. Modification of the LiP-MS Workflow for Characterization of the Structure-Ome

We used LiP-MS to detect protein structural changes under LPS-induced inflammation.
The original LiP-MS workflow was modified [8]. We obtained the cell lysates from un-
treated and LPS-treated cells by liquid nitrogen quick-freezing extraction. LiP experiments
with proteinase K were performed to characterize the protein structural changes in an
LPS-induced acute inflammation model. Peptides from trypsin digestion were used to
characterize the changes in protein abundance. Then, we quantified the peptides gener-
ated by the LiP method with a TMT-6plex labeling reagent, which can relatively quantify
six samples at the same time, allowing the detection of low abundance peptides [8,19]
(Figure 1a). For the data analysis, we optimized the data processing workflow of LiP-MS.
To reduce the error caused by changes in the protein content, we adjusted the peptide
content of the LiP samples with the protein abundance change (Figure 1b).
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Figure 1. LiP-MS analysis for characterization of the structure-ome. (a) Workflow of LiP-MS analysis; (b) Workflow for

LiP-MS data analysis.

3.2. Landscape of the Structure-Ome during Macrophage Activation

We found that the mRNA levels of 1l-6 and II-13 in RAW264.7 cells significantly
increased after LPS stimulation (Figure 2a). Through cellular ROS detection during
macrophage activation, we selected 12 h and 24 h as the time points for our observa-
tion (Figure 2b). The LiP-MS results identified a total of 60,591 peptides belonging to
6365 proteins: 21,177 peptides were quantified in all channels, of which 6166 were LiP
peptides and 15,011 were trypsin peptides. The principal component analysis (PCA) plot
showed that the LiP-MS results were reproducible (Figure 3a). A total of 1925 proteins
were differentially expressed, and 386 LiP peptides from 230 proteins were structurally
changed in LPS-activated cells. The differentially expressed proteins and structurally-
altered proteins were used for the subsequent GO-enrichment analysis. GO biological
process enrichment analysis showed that differentially expressed proteins and structurally
altered proteins were different, suggesting that LiP-MS provided structural information
different from protein abundance changes (Figures 3b,c and S2-57).
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Figure 2. The production of ROS during macrophage activation. (a) Il-6 and II-13 mRNA levels in RAW264.7 cells treated
with LPS; (b) Detection of cellular ROS during macrophage activation. **: p < 0.01. ***: p < 0.001. ****: p < 0.0001.

3.3. GO Analysis of Structural Reads from Changed Proteins during Macrophage Activation

We obtained the proteins with significant structural changes in LiP-MS experiments,
and GO enrichment analysis was carried out for biological process enrichment analysis
of these proteins. To show the extent of the structural changes detected, we summed the
adjusted p-value of the LiP peptide ratios for each protein, named this the SUM LiP score,
and presented our data in the form of a chord plot [20] (Figure 4). Chord plots show the top
nine terms of the GO biological process. Protein folding was the most significant term of
the biological process, ranked by adjusted p-value, containing Hspd1, Hsp90b1, P4hb, Hspas$,
Cctba, Cct8, Hsp90aal, Cct5, and Cct3 (Table 1). Protein folding is a process of assisting
with the covalent and noncovalent assembly of single-chain polypeptides or multisubunit
complexes into the correct tertiary structure. For the first time, we characterized the
structural changes of protein folding in the inflammatory response. We chose the Hsp60
protein that had the highest SUM LiP score for further study of its structural changes.

Table 1. Structural changes of protein folding-related genes after macrophage activation for 24 h.

Gene Names

Protein Description

24h

Sum LiP Score

Hspd1 Hsp60
Hsp90b1
P4hb
Hspa8 Hsc70 Hsc73
Cctba Cct6 Cctz Cctzl
Cct8 Cctq
Hsp90aal
Cct5 Ccte
Cct3 Cctg

60-kDa heat shock protein, mitochondrial
Heat shock protein 90-kDa beta member 1
Endoplasmic reticulum resident protein 59
Heat shock cognate 71-kDa protein
T-complex protein 1 subunit zeta
T-complex protein 1 subunit theta
Heat shock protein HSP 90-alpha
T-complex protein 1 subunit epsilon
T-complex protein 1 subunit gamma

48.8701551
35.57114236
15.61354634
11.97500326
11.27109261
7.959656493
6.882919007
6.202519596
5.911248248
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Figure 3. Landscape of the structure-ome during macrophage activation. (a) principal component analysis (PCA) of LiP-MS
results; (b,c) Top 20 GO biological process enrichment comparison of protein abundance and structural changes after LPS
stimulated for 12 h or 24 h.
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Figure 4. Gene ontology enrichment analysis of structural reads from significantly changed proteins during 24-h macrophage
activation. The chord plot presents the linkages of genes and GO biological process terms.

3.4. Structural Changes in HSP60 during Macrophage Activation

HSP60 plays an important role in the maintenance of mitochondrial protein homeosta-
sis during inflammation. HSP60 knockdown inhibits the inflammatory response during
inflammation [21]. We color-marked the LiP peptides and LiP sites in three published
human HSP60 structures by amino acid sequence alignment (Figures 5a—c and S8) [9,13,14].
We verified whether HSP60 had significant structural changes by measuring its thermal
stability after 24-h LPS treatment using CETSA assay (Figure 5d). The CETSA assay con-
firmed that the thermal stability of HSP60 was enhanced during macrophage activation. We
found that significantly changed LiP sites were supportive of the transition of the HSP60
protein complex. This new type of complex prefers to dissociate HSP 10 and to undergo a
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transition from a bullet-type complex into a conformation similar to a single-ring complex.
To confirm this hypothesis, we performed native CETSA analysis. HSP60 and HSP10 were
observed to form a tight-binding complex in untreated cells, as observed on the native
gel. After the 24-h LPS treatment, HSP60 dissociated from HSP10 to form a an HSP60-only
complex (Figure 5e).

a b c
d 37 40.4 44 46.9 49.8 52.9 555586 62 663 (°C) e
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. - HSP60 HSP10
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Figure 5. Structural changes in HSP60 during macrophage activation. (a) HSP60-HSP10 football-type complex. (PDB
ID: 4PJ1); (b) HSP60-HSP10 bullet-type complex. (PDB ID: 6MRD); (c) HSP60 single-ring complex. (PDB ID: 7AZP)
(Blue: Proteinase K cleavage site significantly decreased in LiP-MS analysis. Red: Proteinase K cleavage sites significantly
increased in LiP-MS analysis. Pale yellow: HSP60 protein that has a different conformation to the other HSP60 proteins in
this complex.); (d) CETSA analysis of HSP60; (e) native CETSA analysis of HSP60 and HSP10. (Hollow triangles indicate
the complex formed by HSP60 and HSP10; the filled triangles indicate the complex formed by HSP60 without HSP10.).

4. Discussion

In the present study, we characterized the structure-ome during macrophage activa-
tion and revealed changes in the complex state of the chaperone protein HSP60 during
inflammation. The current study of protein structure is mainly focused on the structural
analysis of the conformation in vitro, while the conformation of proteins in vivo is altered
by their solvent environment, ligand binding or post-translational modification. There
are only a few effective approaches that allow probing of in vivo proteome-wide protein
structural changes. LiP-MS can characterize the structural changes of proteins in a complex
cellular environment, which greatly deepens our understanding of the protein functions in
biological processes. Compared to the thermal proteome profiling (TPP) that is a widely
used method for identification of changes in ligand-induced protein conformation in both
cell lysates or living cells, LiP-MS can provide site-specific structural changes with sim-
ple experimental procedures and low cost [18]. On the other hand, LiP-MS suffers low
reproducibility and accuracy, and LiP-MS results need to be validated. Moreover, LiP-MS
is mainly used to probe the structural changes of cytoplasmic proteins in cells. LiP-MS
is becoming a useful tool in structural biology and can be applied to probe ligand- and
posttranslational modification-induced protein conformation changes.

HSP60 is one of the major chaperone molecules that are ubiquitously expressed in
all life forms [22]. HSP60 plays a crucial role in assisting with the folding, assembly,
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and transport of cellular proteins [23,24]. The mHsp60-mHsp10 complex assists in the
refolding of denatured proteins [25,26]. Although various conformations including the
football-type, bullet-type, and single-ring HSP60-HSP10 complex were observed with
the crystallographic structural analysis or cryo-electron microscopy, there is still a lack
of information on HSP60 structures during macrophage activation [10,14,15]. The LiP-
MS results suggest that HSP60 undergoes conformational changes during macrophage
activation. In the present study, we identified and validated that HSP60 exhibited a
conformation change during macrophage activation. However, lack of access to advanced
technology prohibited us from determining the biological functions of the HSP60 structural
changes. We speculate that oxidative stress plays an important role in triggering HSP60
oxidation and structural changes. Advancement in technologies hold the key to deciphering
in vivo structure-function relation.

In summary, we modified and applied LiP-MS to the identification of structure-ome
changes in LPS-activated macrophages and found that heat shock proteins underwent
conformational changes. Our results provide a valuable resource for understanding protein
structure changes during macrophage activation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10123507/s1, Figure S1. The volcano plot of protein abundance and LiP peptide changes
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