
Neuro-Oncology Advances
4(1), 1–19, 2022 | https://doi.org/10.1093/noajnl/vdac080 | Advance Access date 26 May 2022

1

Joshua D. Bernstock,†  Sam E. Gary,† Neil Klinger, Pablo A. Valdes, Walid Ibn Essayed ,  
Hannah E. Olsen, Gustavo Chagoya , Galal Elsayed, Daisuke Yamashita, Patrick Schuss, 
Florian A. Gessler, Pier Paolo Peruzzi, Asim K. Bag,‡ and Gregory K. Friedman‡

Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA 
(J.D.B., N.K., P.A.V., W.I.E., H.E.O., P.P.P.); Medical Scientist Training Program, University of Alabama at Birmingham, 
Birmingham, Alabama, USA (S.E.G.); Department of Neurosurgery, University of Alabama at Birmingham, 
Birmingham, Alabama, USA (G.C., G.E., D.Y., G.K.F.); Department of Neurosurgery, Unfallkrankenhaus Berlin, Berlin, 
Germany (P.S.); Department of Neurosurgery, University of Rostock, Germany (F.A.G.); Department of Diagnostic 
Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA (A.G.); Division of Pediatric Hematology 
and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA (G.K.F.); 
Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA (G.K.F.)

†These authors contributed equally to this work.
‡These authors jointly supervised this work.

Corresponding Authors: Joshua D. Bernstock, MD, PhD, MPH, Department of Neurosurgery, Harvard Medical School, Brigham and 
Women’s Hospital, Boston Children’s Hospital, Hale Building, 60 Fenwood Road, Boston, MA 02115, USA (jbernstock@partners.
org); Asim K. Bag, MBBS, MD, Diagnostic Imaging MS 220, Room I3104, St. Jude Children’s Research Hospital, 262 Danny Thomas 
Place, Memphis, TN 38105-3678, USA (asim.bag@stjude.org); Gregory K. Friedman, MD, Professor, Pediatrics, Neurosurgery, 
Surgery, Director, Developmental Therapeutics Program, Alabama Center for Childhood Cancer & Blood Disorders, Scientist, O’Neal 
Comprehensive Cancer Center, UAB, The University of Alabama at Birmingham, 1600 7th Ave S., Lowder 512, Birmingham, AL 
35233, USA (gfriedman@uabmc.edu)

Abstract
Glioblastoma (GBM) is the most common primary adult intracranial malignancy and carries a dismal prognosis 
despite an aggressive multimodal treatment regimen that consists of surgical resection, radiation, and adjuvant 
chemotherapy. Radiographic evaluation, largely informed by magnetic resonance imaging (MRI), is a critical com-
ponent of initial diagnosis, surgical planning, and post-treatment monitoring. However, conventional MRI does not 
provide information regarding tumor microvasculature, necrosis, or neoangiogenesis. In addition, traditional MRI 
imaging can be further confounded by treatment-related effects such as pseudoprogression, radiation necrosis, 
and/or pseudoresponse(s) that preclude clinicians from making fully informed decisions when structuring a thera-
peutic approach. A myriad of novel imaging modalities have been developed to address these deficits. Herein, we 
provide a clinically oriented review of standard techniques for imaging GBM and highlight emerging technologies 
utilized in disease characterization and therapeutic development.
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Gliomas are primary brain tumors that arise from glial cells 
or neuroglial progenitors and account for approximately 80% 
of adult central nervous system malignancies.1 Glioblastoma 
(GBM, WHO grade IV) is the most frequently occurring subtype, 
with an incidence of 3.2 per 100,000 people and a median sur-
vival of 14.6  months when receiving the current standard of 

care.1,2 Survival estimates may be longer for select patients with 
favorable molecular profiles or those who are able to comply 
with tumor-treating fields (TTFields) therapy.3,4 GBM’s uniformly 
poor prognosis has remained largely unchanged despite dec-
ades of research into tumor biology and hundreds of clinical 
trials. Treatment shortcomings can be attributed to intratumoral 
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heterogeneity, inability to completely resect infiltrating 
tumor edges, rapid development of treatment-resistant 
pathways, and pharmacokinetic limitations due to poor 
blood-brain-barrier (BBB) permeability.

The current standard of care for GBM is treatment with 
maximal safe surgical resection, post-operative radiation, 
and chemotherapy, followed by adjuvant temozolomide 
chemotherapy.2,5,6 Tumors invariably recur after treatment, 
with no standardized protocol for managing recurrence. 
Efforts to better understand the molecular pathogenesis of 
GBM and to extend lifespan have translated into only three 
FDA approved treatments—temozolomide, bevacizumab, 
and TTFields—all of which have minimal impact on overall 
survival.7–9 Recent research strategies have shifted to 
targeting GBM with immunotherapy-based approaches, 
though a number of phase III trial failures have left the field 
fairly stagnant.5,6,8–21

Radiographic evaluation plays a crucial role in managing 
patients with GBM, both during initial diagnosis and fol-
lowing treatment. Magnetic resonance imaging (MRI) is the 
modality of choice for diagnosis and assessment of treat-
ment response due to its wide availability, and superior soft 
tissue visualization over computed tomography (CT). The 
interpretation of imaging studies after treatment of GBM is 
challenging because treatment-related changes frequently 
mimic tumor progression (termed “pseudoprogression”). 
Similarly, some biologically directed therapies can mask the 
presence of persistent lesions (termed “pseudoresponse”).22

It is important to understand what imaging can offer in 
diagnosis and management of GBM so that the right im-
aging techniques can be employed. Herein, we review the 
prospects and limitations of various imaging techniques 
with data in the evaluation of GBM available in most aca-
demic medical centers.

Imaging for Diagnosis of GBM

Magnetic Resonance Imaging (MRI)

Conventional MRI.—T2-weighted, fluid attenuated inversion 
recovery (FLAIR) and pre- and post-gadolinium T1-weighted 
MRI are routinely used for diagnosis, pre-operative surgical 
planning, and evaluation of treatment response in patients 
with GBM.23 GBM characteristically presents on imaging as a 
heterogeneous enhancing mass with a central necrotic core 
and peritumoral edema.2,6,9,20,21 Associated features such 
as tumor volume, peritumoral edema, necrosis, degree of 
enhancement, and presence of cysts are additional param-
eters that can be used to predict outcomes and survival in 
patients with GBM24 (Figure 1A, 1B, 1C). Subtraction of the 
pre-contrast T1 weighted sequence from the identical post-
contrast T1 weighted sequence, also known as the delta T1 
map, can be very helpful for assessment of enhancing com-
ponent of the tumor (Figure 2D). Intratumoral susceptibility 
signal (ITSS) on susceptibility weighted imaging (SWI) can 
readily identify intratumoral hemorrhage, neoangiogenesis, 
and calcification.25 ITSS score correlates well with the cere-
bral blood volume (CBV)26,27 and high ITSS score is more 
common in larger GBMs and GBMs arising from or in close 
proximity to the subventricular zone.28

Diffusion weighted imaging (DWI),2 an MRI sequence 
that assesses cellular architecture by measuring the 
Brownian motion of water in tissue, has shown promise 
in predicting tumor grade, peritumoral infiltration, and 
treatment-related effects in GBM. The apparent diffusion 
coefficient (ADC) represents the average magnitude of 
diffusion at the voxel or region of interest level and has 
been shown to negatively correlate with the cellularity 
of brain tumors29–31 (Figure 2E). ADC values of around 
1000 × 10 mm2/s and less using routine B values (b  = 0, 
1000 s/mm2) can differentiate high grade gliomas from low 
grade gliomas with high sensitivity and specificity.32,33 ADC 
values may also be used to predict the genetic architecture 
of a GBM. IDH mutated tumors have significantly higher 
ADC values compared to the IDH wild-type tumors.34 
Additionally, some studies have used ADC to predict prog-
nosis, whereas low tumor ADC is associated with shorter 
survival times.35,36

Evaluation of GBM with qualitative DWI has become 
standard, however, the significance of DWI images should 
be interpreted carefully. The accuracy of DWI can be signifi-
cantly affected by hemorrhage, which is frequently present 
in GBMs. In addition, high-grade gliomas have been shown 
to upregulate aquaporin channels, notably AQP4 and 
AQP1, limiting the ability of ADC to truly capture restricted 
diffusion in a hypercellular environment.37–39 Moreover, 
ADC is a scalar quantity that measures isotropic diffusion 
of water and therefore lacks information regarding anisot-
ropy, precluding ADC from accurately differentiating areas 
of tumor infiltration from peritumoral edema and healthy 
nervous tissue.

Recently, many conventional imaging features have 
been identified that may serve as unique features in cer-
tain biomarkers of GBM. T2-FLAIR mismatch sign (Figure 
3), homogenously T2 hyperintense tumor with central 
hypointensity on FLAIR, can reliably predict IDH mutated 
1p/19q non-co-deleted GBMs.40,41 On the other hand, high 
ITSS score on SWI is associated with IDH wildtype and 
MGMT unmethylated GBMs.42

As previously alluded to, diagnosis of GBM using con-
ventional imaging alone is not always straightforward. 
Many other brain pathologies (e.g., tumefactive mul-
tiple sclerosis) can mimic GBM on conventional imaging 
sequences and can be difficult to differentiate from GBM. 
As such, conventional imaging in combination with other 
advanced imaging techniques have better diagnostic per-
formance and have been developed for this reason.

Advanced MRI Techniques.—Advanced MRI techniques, 
when available, should be routinely used for evaluation 
of GBM, both at diagnosis and during follow-up. Diffusion 
imaging, perfusion imaging, and MR spectroscopy (MRS) 
provide more detailed information about the tumor phys-
iology and metabolism that is essential to make an in-
formed decision about tumor management (Figure 2). 
Additionally, diffusion tensor imaging and functional im-
aging are very helpful for surgical planning.

Diffusion MRI
Diffusion Tensor Imaging. Diffusion tensor imaging 
(DTI) is another powerful diffusion imaging tool that 
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can detect more intricate tissue microarchitecture by 
tensor modeling of diffusion data to provide anisotropy 
and diffusivity measurements. DTI is often obtained 
pre-operatively to reconstruct white matter tracts in 
peritumoral regions, enabling surgeons to assess 
tumor infiltration and viability of peritumoral nervous 
tissue.43 Multiple studies have demonstrated increased 
progression-free survival and retention of functionality 
using DTI tractography to guide tumor resections.35,44,45 
The concurrent use of DTI with other methods such as 
functional-MRI (fMRI) and direct electrical stimulation to 
assess brain function when constructing a surgical plan 
permits more robust analysis of white matter integrity.

Its benefits notwithstanding, DTI tractography faces 
several limitations due to the complex pathology and 

microinfiltrative nature of GBM. The tendency of gliomas 
to invade adjacent white matter disrupts the diffusion of 
water in affected tracts,46–51 resulting in a decreased frac-
tional anisotropy, which may be modeled as an abrupt ter-
mination of the tract52,53 and lead surgeons to incorrectly 
conclude that healthy nervous tissue is unsalvageable. 
Furthermore, DTI tractography is unable to model the ge-
ometric complexity of the microscopic nervous architec-
ture such as crossing fibers, which may result in incorrect 
or incomplete reconstructions. Like all imaging obtained 
preoperatively, the use of DTI for intraoperative guidance 
is complicated by intraoperative brain shift. This may re-
sult in significant discrepancies between neuronavigation 
and the intraoperative anatomy.54–56 Finally, significant 
disagreement can be encountered between DTI and the 

  

Figure 1.  Typical imaging appearance of glioblastoma in a 12 year old male subject. Axial T2-weighted (A) and fluid attenuated inversion recovery 
(FLAIR) (B) images demonstrate a heterogeneously T2 hyperintense tumor centered at the left occipital lobe with extensive peritumoral edema 
(arrow). Axial post contrast T1 weighted imaging demonstrating classic heterogenous, rim enhancing lesion (C). The color coded fractional anisot-
ropy image (D) through the tumor demonstrates distrupted brain architecture at the necrotic tumor core (*). The left inferior longitudinal fasciculus 
is thinned out and displaced due to the mass effect of the tumor. The arrowheads at the tumor periphery demonstrate low intensity compared to 
the contralateral hemisphere suggesting, lower FA values. Cerebral blood flow (CBF) from 3D PCASL arterial spin labelling perfusion imaging (E) 
demonstrates high blood flow at the peripheral enhancing component of the tumor (arrows). The single voxel MR spectroscopy (F) demonstrates 
severely truncated choline (arrow) and N-Acetyl Aspartate (NAA) peaks (arrowhead) as well as a dominant lipid/lactate peak. This is a typical im-
aging feature when a spectroscopy voxel includes both tumor and necrotic tissue.
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intraoperative gold standard for identifying functional 
white matter tracts, direct electrical stimulation. Novel 
diffusion MRI techniques are being developed to over-
come DTI’s limitations and have shown promise in char-
acterizing tumoral vs. healthy white matter and correlating 
diffusion metrics to tumor histology in both adult and 
pediatric brain tumor specimens.57–59 Nevertheless, DTI 
currently serves as a valuable adjunct imaging method, 
with its limitations understood in light of other more ac-
curate intraoperative adjuncts such as direct electrical 
stimulation.54,55

Perfusion MRI
Dynamic Susceptibility Contrast (DSC) Perfusion Imaging. 
DSC-MR perfusion relies on dynamic loss of susceptibility-
induced signal during the passage of a bolus of highly par-
amagnetic gadolinium based contrast through a capillary 
bed. A dynamic echo-planar imaging sequence with a very 
high temporal resolution (<5 s for whole brain coverage) 
is used to scan the brain before, during and after injection 
of contrast. The dynamic signal intensity of each voxel is 
plotted against time, thereby generating a signal intensity 
vs. time curve. Using mono-compartmental modelling, 
this curve is then utilized to compute multiple perfusion 

parameters with or without incorporating the ∆R2* func-
tion. As disruption of the blood brain barrier is almost uni-
versal in GBMs, these parameters need to be corrected 
to account for contrast leakage. Of the many parameters, 
cerebral blood volume (CBV) is most widely used, which 
correlates with vascular endothelial proliferation, vascular 
density, and neoangiogenesis and has been shown to re-
liably correlate with histopathologic grading and survival 
outcomes in glioma patients60 (Figure 2F).

DSC-MRI is an attractive option given its short acqui-
sition time and simple postprocessing but is neverthe-
less subject to several limitations. Most notably, the 
fundamental basis of this technique is based on a single 
compartment vascular model (i.e., contrast stays within 
vessels), which is rarely the case in GBMs. Indeed, dis-
ruption of the BBB is routinely seen in GBMs, so rCBV 
measurements should be performed with proper leakage 
correction techniques.61,62

Dynamic Contrast Enhancement (DCE) Perfusion Imaging 
DCE-MR perfusion is a technique that estimates cerebral 
perfusion parameters by evaluating T1 shortening in-
duced by a contrast bolus passing through tissue. The 
most common parameter used in tumor imaging is the 
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Figure 2.  Importance of advanced imaging in the evaluation of GBM. Axial T2 FLAIR images (A) through the level of the centrum semiovale dem-
onstrate patchy areas of FLAIR hyperintensity in the deep cerebral white matter that are hypointense (arrow) on the pre-contrast T1-weighted se-
quence (B) with imperceptible enhancement (arrow) on the post contrast T1-weighted sequence (C). The enhancement is vivid (arrow) on the delta 
T1 map (D) that also demonstrates low (arrow) ADC value (E) suggesting hypercellularity; high (arrow) cerebral blood volume (CBV) (F) and a tall 
choline peak compared to NAA on MR spectroscopic imaging (G).
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volume transfer constant (Ktrans), which is a measure of 
microvascular permeability. Ktrans has diagnostic power 
in determining glioma grade, with increased Ktrans values 
reflecting a higher degree of BBB damage and vascular 
compromise.63 DCE-MRI is not subject to susceptibility 
artifacts and has therefore been used to differentiate 
pseudoprogression from recurrent GBM with 85% sen-
sitivity and 79% specificity.64 The major drawback of this 
method, as compared to the DSC referenced above is the 
sparse literature confirming imaging via histopathologic 
validation and a notable lack of FDA-approved/validated 
post-processing software.

Arterial Spin Labeling (ASL) Perfusion Imaging ASL is an 
MR perfusion technique that does not require intrave-
nous administration of an exogenous contrast agent and 
instead uses arterial water as an endogenous tracer to 
measure cerebral blood flow (CBF). ASL has proven utility 
as a noninvasive method of determining glioma grade and 
distinguishing between treatment effects and tumor re-
currence in postoperative gliomas.65–67 CBF has also been 
shown to correlate with IDH and ATRX mutation status, 
which are of prognostic relevance.68 ASL has a low signal 
to noise ratio and, unlike DSC perfusion, does not require 
leakage correction. However, like other dynamic perfu-
sion techniques, ASL is limited by poor spatial resolution 
(Figure 1E).

MR Spectroscopy (MRS)
MRS is a non-invasive imaging modality used to interro-
gate the tissue metabolic environment.69,70 The main prin-
ciple underlying MRS is that the distribution of electrons 
within an atom will cause small variations in the magnetic 
field experienced by different molecules, shifting the de-
tected resonance frequency. Common neurobiological sub-
strates include lactate, alanine, N-acetylaspartate (NAA), 
creatinine (Cr), choline (Cho), 2-hydroxyglutarate (2-HG), 

and glutamine/glutamate, and brain tumors demon-
strate markedly different spectra than healthy brain tissue 
(Figure 1F, 2G). High grade gliomas classically show de-
creased levels of NAA and creatinine and increased levels 
of choline, lipids, and lactate.71 In addition, 2-HG MRS can 
be used to determine the IDH-mutant status of low-grade 
gliomas and GBM.72,73 MRS also can identify distinct GSCs 
subclones with unique metabolic phenotypes using unsu-
pervised agglomerative hierarchical clustering, a machine-
learning approach for uncovering novel biomarkers that 
may be used for personalized therapies.74 Similarly, using 
MRS-guided analysis of GBM metabolomes to predict the 
likelihood of early response of chemotherapeutic drugs 
such as temozolomide is an exciting area of future study.75 
Some authors also report that MRS can be helpful in distin-
guish oligodendroglioma from astrocytoma.76 While MRS 
has been used to assess in vivo brain tumors, its applica-
tions have been limited to supplemental characterization, 
and as such this technique has not been widely adopted in 
clinical practice; this is due in part due to poor spatial res-
olution and large overlaps in metabolic profiles (e.g., be-
tween tumor and radiation necrosis).

Functional MRI
Functional magnetic resonance imaging (fMRI) indirectly 
measures neuronal activity via the blood oxygen level 
dependent (BOLD) signal, a measure of the ratio of oxy-
hemoglobin to deoxyhemoglobin.77,78 Gray matter is rela-
tively well-vascularized, enabling fMRI to assess function 
and preservation of underlying neurons in cortical areas. 
Due to fMRI’s dependence on activity-induced changes in 
adjacent vasculature and not the neurons themselves, di-
rect assessments of structural information, e.g., neuronal 
integrity and microstructural architecture, are impossible 
using BOLD fMRI alone.

Its limitations notwithstanding, fMRI is a valuable tool 
for surgical planning and in particular, when deciding on 
awake vs. asleep procedures. It can help direct cortical 
mapping to decrease the case length and time under an-
esthesia, and aid in cortical preservation when awake 
surgeries are impossible or fail. The combination of fMRI 
and DTI increases the accuracy of the preoperative plan-
ning across modalities.46,48,79–83 As stated above, DTI 
tractography may incorrectly reconstruct tracts in the pres-
ence of glioma-induced changes in diffusion of peritumoral 
white matter tracts, as well as shifting of tissue after resec-
tion.48,84 In addition, DTI’s modelling of the diffusion tensor 
currently limits identification of crossing fibers, leading to 
potential tractography errors in highly complex subcor-
tical areas. The addition of fMRI as a seeding tool for DTI 
tractography and as a confirmatory tool to assess function-
ally sensitive areas serves to minimize DTI’s shortcomings.

The utility of fMRI for preoperative planning of brain 
tumor resection has recently expanded to include assess-
ment of resting-state (non-task-based) activity of neural 
networks.85,86 Resting-state fMRI (rs-fMRI) records fluc-
tuations in brain activity as a result of spontaneous met-
abolic changes and has been shown to correlate with 
underlying anatomic networks in the somatomotor cor-
tices87 and language areas.88 Rs-fMRI has several advan-
tages over fMRI in the setting of GBM. First, rs-fMRI does 
not depend on motor and cognitive activity, which may 

  

Figure 3.  T2-FLAIR mismatch sign in an 11  year old female pa-
tient with a diagnosis of IDH-mutant, 1p/19q non-codeleted and 
p53-muted anaplastic astrocytoma in the left parietal lobe. (A) Axial 
T2-weighted image demonstrating an ill-defined tumor in the left 
paracentral lobule region with almost homogenous hyperintense T2 
signal at the center of the tumor (*) that is mostly hypointense on the 
corresponding FLAIR image (B).
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be affected in patients with GBM. Second, rs-fMRI can 
be used in combination with anesthesia to assess neural 
function in patients who may not comply with motion 
restrictions inside of a scanner (e.g., pediatric patients). 
Finally, rs-fMRI simultaneously records activity from mul-
tiple areas of the brain that fire spontaneously, eliminating 
the necessity to perform multiple tasks to assess multiple 
areas of the brain.

Despite the aforementioned, direct electrical stimulation 
remains the gold standard in identifying functional gray 
and white matter tissue, highlighting significant limita-
tions with fMRI.54,55 Guisanni et al89 found that fMRI had 
specificities and sensitivities ranging from 0% to 97% and 
59% to 100%, respectively, when compared to direct elec-
trical stimulation for language mapping. Further, fMRI 
does not always inform the surgeon of areas of the brain 
that can be safely resected due to the brain’s limited ability 
to compensate without them (e.g., fMRI positive areas 
that when stimulated intraoperatively with direct electrical 
stimulation do not induce a transient deficit). Therefore, 
pre- and intraoperative decision making based solely 
on fMRI can lead to patient under selection as well as in-
creased likelihood for limited tumor resection leaving sig-
nificant amounts of tumor infiltrated tissue behind.55

PET Imaging

Positron emission tomography is an imaging technique 
that involves intravenous injection of a positron-emitting 
radioisotope followed by detection of radioactivity to ana-
lyze patterns of accumulation and distribution throughout 
the body. In the oncology setting, PET provides valuable 
physiologic information not obtainable by conventional 
MR and CT imaging methods, and PET has utility in tumor 
grading, spatial reconstruction, surgical planning, post-
treatment monitoring, and prognostication.

18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) is the most 
widely studied and commonly used radiotracer.18F-FDG 
is a glucose analog and its uptake into cells is dependent 
upon both transport across the BBB and metabolism 
within tumor cells, which provides information on differen-
tiation and specificity. In line with other malignant tumors, 
GBM is highly18F-FDG avid due to its increased glycolytic 
metabolism and cellular proliferation. However, normal 
brain tissue has a relatively high rate of physiologic glu-
cose metabolism, leading to regional variation that may 
confound accurate radiographic interpretation. Contrast-
enhanced MR imaging is often performed in tandem with 
FDG-PET and the resulting images are fused to allow for 
tumor co-localization90. FDG-PET shows high sensitivity 
in differentiating high grade gliomas from other types of 
brain tumors and has also been shown to correlate with 
survival and time to tumor progression91–94. However, due 
in part to poor distinguishability of tumor from normal 
brain, FDG-PET alone is rarely used in routine clinical prac-
tice for evaluation of intrinsic brain tumors.

Large neutral amino acid (LNAA) PET tracers are an al-
ternative class of radiotracers commonly used for clinical 
studies in glioblastoma and include 11C-MET, 11C-AMT, 
18F-FET, and 18F-FDOPA.95 These compounds demonstrate 
high uptake in glioma cells and low uptake in inflammatory 

and normal cerebral tissue. They are therefore more useful 
in delineating tumoral boundaries, which are classically 
underestimated by conventional MRI and obscure with 
FDG PET due to high background metabolic activity96,97 
(Figure 4).

Dynamic FET PET is a powerful imaging tool that relies 
upon sequential scans to provide information on glioma 
grading92 and prognosis.98 Pharmacokinetic analysis 
yields physiologic data regarding uptake mechanisms and 
tumoral heterogeneity that allows for further differentia-
tion and superior tumor grading prediction as compared to 
static scanning.92 This method can detect high-grade trans-
formation in lesions otherwise presenting as suspected 
LGGs, and can be used to predict methylation status 99,100. 
As such, dynamic FET scanning has immense potential 
and may ultimately be employed to assess IDH1/2 muta-
tional and 1p/19q co-deletion status 101.

Imaging During Treatment of GBM

Intraoperative MRI (iMRI)

Gross total resection is the mainstay of GBM surgical man-
agement, with the extent of resection (EOR) correlating 

  

Figure 4.  Metabolic imaging of glioblastoma at recurrence. (A) 
Axial T2 FLAIR images through the level of the centrum semiovale 
demonstrate a large, ill-defined, heterogenous tumor involving the 
body of the left cingulate gyrus that demonstrates patchy enhance-
ment on the post contrast T1-weighted sequence. (B)18FDG PET (C) 
demonstrates hypermetabolism involving only the anterior aspect of 
the tumor, whereas the 11C-Methionine PET and (D) depicts the en-
tirety of the tumor more conspicuously.
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to symptomatic improvement and to significant improve-
ment in both progression free survival and overall sur-
vival. EOR is largely dependent upon tumor proximity to, 
and infiltration of, eloquent brain regions with a high risk 
of neurologic comorbidities conferred by a necessarily 
aggressive surgical approach. Innovative technological 
developments have better enabled surgeons to balance 
maximizing EOR and preserving function. In particular, the 
advent of intraoperative MRI (iMRI) has led to enhanced 
safety and noninvasive visualization of tumor location and 
adjacent structures with immediate radiographic feed-
back prior to closure. iMRI is associated with a greater ex-
tent of gross total resection and a quantitative increase 
in EOR as compared to conventional neuronavigation 
methods  16–18,20,21,102–104. While iMRI was associated with 
increased EOR and gross total resection in a multicenter 
retrospective study of 640 adult patients with newly diag-
nosed glioblastoma, it was not a predictor of overall sur-
vival 105. Therefore, further research is needed to determine 
the full benefit of iMRI. Despite its successes in increasing 
EOR and gross total resection, iMRI faces several limita-
tions, as reviewed by Kubben et  al.106 and has not been 
widely implemented outside of a limited number of high-
volume centers. Namely, iMRI is extremely cost prohib-
itive, with an individual machine in the range of several 
million dollars with additional costs incurred from ancil-
lary equipment and specialized training required for oper-
ating room personnel. Further, iMRI provides only a one 
time (per imaging scan) immediate feedback of the sur-
gical field of view, but similar to pre-operative MRI, once 
surgery resumes, any intraoperative brain shift that oc-
curs can lead to significant discordance between the iMRI 
images and the intraoperative reality due to registration 
errors. To combat this, hybrid iMRI and 3D ultrasound tech-
niques are being evaluated to compensate for brain shift in 
intraoperative navigation 107. Finally, iMRI has been shown 
to be time consuming with a significant increase in the sur-
gical time, limiting the number of scans obtained during 
the same surgical setting to one or two scans in most cen-
ters. It does not, however, appear to increase perioperative 
risk with respect to infection or complications arising from 
prolonged time under anesthesia 108,109.

Intraoperative Ultrasound (iUS)

Intraoperative ultrasound (iUS) is a cheap, rapid, and re-
peatable imaging technique used since the 1980s to max-
imize EOR and functional protection postoperatively. In 
addition, iUS is appealing because it can be implemented 
several times to correct for brain shift throughout re-
section, but the literature is unclear on whether it is ef-
ficacious for detecting and grading glioma and tumor 
remnants during/after surgery as compared to other im-
aging methods. Standard gray-scale (B mode) iUS has 
been the most widely implemented iUS method and has 
been shown to reveal tumor areas as hyperechogenic 
and cystic tumoral areas as hypoechogenic compared to 
adjacent parenchyma, enabling visibility of low and high 
grade gliomas.110,111 Woydt et  al. identified solid tumor 
tissue in 89% (47 of 53)  of biopsies taken from central 
areas of high grade and low grade gliomas, 72% (34 of 

53) of which were inconspicuous on microscopic assess-
ment. Furthermore, iUS enabled detection of histologically 
validated residual tumor in 22 of 25 cases in which gross 
total removal was suspected. Collectively, these find-
ings suggested potential efficacy of iUS to delineate cen-
tral areas of tumors compared to tumor rims, as well as 
to detect residual tumor that is indistinct by initial micro-
scopic evaluation. However, iUS detection of hyperechoic 
rims was not specific to tumor tissue, as 44% (11 of 25) of 
biopsies were histologically assessed as normal brain 
tissue. Results from a more recent study demonstrate in-
feriority of iUS to detect tumor remnants after resection 
compared to iMRI.112 Additionally, interuser variability, low 
signal-to-noise ratio, and low resolution have limited fur-
ther applications of iUS. To address these limitations, dif-
ferent approaches have been created to improve iUS. One 
of the more detailed approaches was performed by Liang 
et al. who overlayed contrast-enhanced iUS images with 
preoperative MRI images, which improved gross total re-
section rate from 31.58% (6 of 19 cases) to 84.62% (22 of 
26 cases) and improved post-operative morbidity.113 As re-
viewed by Del Bene et al.,114 numerous other studies have 
attempted to use contrast-enhanced iUS, Doppler iUS, and 
multimodal imaging overlays with iUS. No randomized 
controlled trials have been completed to definitively deter-
mine whether any iUS method provides significant benefit 
for delineating gliomas, detecting residual tumor tissue, or 
improving overall survival or morbidity compared to other 
intraoperative imaging techniques, thereby limiting confi-
dence for which iUS can be used clinically. iUS is therefore 
used as an adjunct imaging modality to supplement iMRI 
and other intraoperative methods and to repeatedly image 
resections after brain shift.

Fluorescence-Guided Surgery

Fluorescence-guided surgery (FGS) is an intraoperative 
imaging modality that has become a mainstay of treat-
ment world-wide for GBM, as it has been shown to signif-
icantly increase the EOR.115–117 The main advantage of FGS 
over conventional iMRI or image-guided technologies is 
the ability to provide immediate, intraoperative feedback 
regarding the surgical field of view while the neurosur-
geon continues to actively perform surgery. As such, FGS 
does not encounter intraoperative accuracy problems due 
to brain shift, which is a major problem with image-guided 
technologies using pre-operative MRI, or the delayed, one-
time feedback from iMRI.56

In FGS, patients are administered a drug prior to surgery, 
which leads to significant accumulation of a fluorescent bi-
omarker in tumor tissues.116,118 The three most used drugs 
are 5-aminolevulinic acid (5-ALA), indocyanine green 
(ICG), and fluorescein.119,120 5-ALA leads to endogenous 
formation of protoporphyrin IX (PpIX), which is a fluores-
cent tumor biomarker that emits a red-pink fluorescence 
in the visible range of the spectrum of light (620–710 nm). 
Fluorescein emits a green-yellow fluorescence with a 
maximum fluorescence at 521 nm. ICG is a near-infrared 
agent, and as such is invisible to the human eye, emitting 
a maximum fluorescence at 835 nm.121,122 During surgery, 
neurosurgeons use a surgical microscope modified with 
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light sources for exciting the fluorophores, appropriate fil-
ters to selectively collect the emitted fluorescent light, and 
sensors such as color cameras or near-infrared enabled 
cameras. These fluorescence-enabled microscopes allow 
the surgeon to visualize the fluorescence light emitted 
from tumor infiltrated tissue either with their eyes, using 
surgical oculars, or digitally by means of camera detec-
tion.116,119,120 Tumor infiltrated tissue will then display a dis-
tinct color that enables the surgeon to differentiate it from 
adjacent, normal brain. Figure 5 demonstrates an example 
of a patient undergoing 5-ALA FGS, with a conventional 
white light image on the left (Figure 5A), and a fluores-
cence image on the right (Figure 5B), showing the violet-
blue background from tissue illumination and the red-pink 
5-ALA-induced PpIX fluorescence emitted from a nodular 
tissue region.

A pivotal phase III clinical trial comparing standard of 
care resection using conventional white light guided re-
section versus FGS with 5-ALA, showed that FGS almost 
doubled the EOR (65% vs. 36%) and significantly increased 
the overall 6-month progression free survival of patients 
(41% vs. 21.1%).117 5-ALA is the most widely used agent 
for FGS in GBM, with approval in the USA and Europe. 
However, the first FGS studies in neurosurgery date back 
to 1948 with the use of fluorescein, which accumulates in 
extracellular spaces and in areas of a broken blood brain 
barrier.120,123 ICG, which historically has served as a fluores-
cence agent for cerebrovascular imaging in neurosurgery, 
has seen an increase in research studies applied to GBM. 
Recent studies use what is known as second window ICG 
imaging, which entails administration of ICG 24 h prior to 
surgery. Then, likely due to biological processes dependent 
on the enhanced permeability and retention effect, ICG 
significantly accumulates in GBM, allowing for strong 
tumor-to-background signal and differentiation of tumor 
tissue from normal brain.121 In addition, several neurosur-
gical trials are evaluating novel FGS agents, adding to the 
already existing armamentarium of 5-ALA, ICG, and fluo-
rescein, which includes endothelial growth factor receptor 

(EGFR) targeting antibodies, EGFR-targeting affibodies, 
protease activated fluorescent agents, and fluorophore la-
beled peptides.115

FGS has been shown to be a useful adjunct for maxi-
mizing the EOR in GBM surgery, though still has its limi-
tations. First, current approaches using 5-ALA are limited 
to just surface assessments of tissue fluorescence. Near-
infrared approaches such as ICG are also limited to depth 
assessments of tissue fluorescence of approximately 
1 cm in depth.121,122 Second, each fluorescent biomarker 
may have a differing tumor-targeting profile that is de-
pendent on the biology of the tumor tissue.115,119,121,122 
Third, assessment of tissue fluorescence to date are all 
based on subjective, non-quantitative assessments of the 
raw, visible fluorescence observed by the naked eye or 
detected by a digital camera. These technologies do not 
take into account the heterogeneous effects of how light 
interacts with different tissues, which can lead to assess-
ments of tissue fluorescence which are inaccurate (i.e., 
low sensitivity). These inaccurate assessments do not 
detect diagnostic levels of fluorescent tumor biomarker 
and may ultimately leave significant amounts of residual 
tumor tissue unresected.116,119,124,125 Finally, fluorescence 
agents to date provide the surgeon only with immediate 
structural feedback, but not with immediate functional 
feedback to differentiate functional from non-functional 
brain parenchyma (which can be provided only with direct 
electrical stimulation). As such, surgical resection based 
purely on FGS can lead to undesirable functional deficits 
if not properly used.126

To summarize, FGS has become a useful adjunct for 
improving the EOR in GBM. FGS provides the neurosur-
geon with immediate feedback of the surgical field, dis-
tinguishing tumor infiltrated tissue from normal tissue, 
meanwhile the surgeon continues to actively perform sur-
gery. However, like any surgical adjunct, the neurosurgeon 
needs to clearly understand its limitations to perform the 
most extensive tumor resection, meanwhile ensuring pres-
ervation of functional brain.

  

Figure 5.  Fluorescence guided surgery using 5-ALA induced PpIX. Intraoperative images of a GBM patient undergoing 5-ALA induced PpIX fluo-
rescence guided surgery. (A) Conventional white light image and (B) fluorescence image of the same surgical field of view as (A), demonstrating a 
region with red-pink fluorescence corresponding to a tumor tissue with significant accumulation of the tumor biomarker, PpIX.
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Imaging After Surgery

In the postoperative setting, MR imaging is typically per-
formed within 72 h to evaluate the extent of surgical resection 
and to identify potential surgical complications such as sub-
acute hemorrhage and/or ischemia.127 It is important to diag-
nose infarct at the surgical margin at this early stage because 
subacute infarct can mimic progressive tumor on imaging. 
Immediate post-operative MRI is often used for planning of 
radiation therapy (Figure 6). This immediate post-operative 
imaging is also important in helping to differentiate between 
true tumor progression, pseudoprogression, or additional 
treatment effects when developing future therapeutic strat-
egies. Various strategies (detailed below) have been proposed 
for interpretation of these imaging techniques. In addition, 
it is important to keep in mind that some therapies such as 
implantable BCNU wafers are known to change signal inten-
sities and enhancement within the resection bed.128

Imaging During Radiation Therapy

Even though the immediate post-operative MRI is rou-
tinely used for radiation planning, recent data suggest 

that this might not be the optimal practice. Some aggres-
sive residual tumors can grow between the post-operative 
MRI and the start of radiation therapy. Additionally, the T2/
FLAIR hyperintense areas around the resection margins, 
which is included in the radiation fields, often improves 
and normal brain tissue can be erroneously included in 
the field of view. Similarly, near the end of the radiation 
therapy schedule, the targeted tumor infiltrated tissue 
may shrink. This may not be readily appreciated, as intra-
therapy imaging is not routinely performed. To circumvent 
this problem, many comprehensive cancer centers are 
routinely imaging the tumor to achieve near real-time ad-
aptation of the radiation field with the role of imaging in 
radiation planning having been recently reviewed.129

Imaging of Post-treatment GBM

Assessment of Treatment Response

MacDonald Criteria.—The MacDonald criteria, based on 
the largest cross-sectional diameter of contrast-enhancing 
tumors, has been used to assess tumor response via 
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consecutively evaluating the lesions using MRI and in-
cludes steroid use and clinical findings which facilitate the 
classification of patients into four groups, namely, (a) com-
plete response: disappearance of all enhancing lesions on 
consecutive MRIs at least one month apart, patient off ster-
oids with stable or improved neurological exam; (b) par-
tial response: >50% reduction in the size of the enhancing 
lesions on consecutive MRIs at least one month apart, pa-
tient on stable or reduced steroid dose with stable or im-
proved neurological exam; (c) progressive disease: >25% 
increase in size of the enhancing lesions or appearance 
of new lesion, patient on stable or increased steroid dose 
with worsened neurological exam; or (d) stable disease 
encompassing all remaining radiographic and clinical 
scenarios.130 Responses according to these criteria need to 
be stable for >1 month. Notably, these criteria have been 
largely phased out in favor of the RANO criteria.

Response Assessment in Neuro-Oncology (RANO).—The 
response assessment in neuro-oncology group has pro-
posed standardized imaging practices for use in both 
clinical management and translational therapeutic proto-
cols. In response to the failure of existing classification 
systems to account for (a) changes in enhancement sec-
ondary to corticosteroid use, antiangiogenic agents, 
postsurgical changes, radiation effects, and other inflam-
matory processes and (b) changes in the non-enhancing 
T2-hyperintense components secondary to use of 
antiangiogenic agents, Wen et  al. introduced modified 
RANO guidelines for high-grade gliomas. These criteria 
measure enhancing lesions and additionally incorporate 
abnormalities in T2/FLAIR signaling to better differentiate 
between true tumor response and pseudoprogression 
or pseudoresponse in the setting of concomitant 
temozolomide and antiangiogenic therapy.90 Using these 
criteria, clinicians are more accurately able to distinguish 
between responses to therapies and progression of dis-
ease. By detailing timeframes with which to discuss treat-
ment effects or failures, it allows time for the therapeutic 
agent, and in particular trial agents, to develop a more ro-
bust response before determining whether or not there is 
disease progression.131

Immunotherapy Response Assessment in Neuro-Oncology 
(iRANO).—As described above, conventional therapies 
have done little to improve the survival of patients with 
GBM. As such, novel therapies are increasingly being in-
vestigated; immunotherapies are at the forefront of such 
approaches. Critically, patterns of imaging response to 
immunotherapies are quite unique from those of conven-
tional therapies thereby necessitating the development of 
a response criteria capable of accounting for such differ-
ences. In line with this Okada et al. published the immuno-
therapy response assessment in neuro-oncology (iRANO) 
predominantly based on the experience of immunother-
apies in non-CNS tumors.132 These criteria are better than 
RANO and have limited the premature withdrawal of 
subjects from clinical trials. However, given the complexity 
of immunotherapy centered approaches, it is remains 
difficult to use one set of criteria for all therapies/clinical 

trials. Results from recent clinical trails continue to shed 
light on how imaging can be used for assessment of novel 
immunotherapies.133

Response Assessment in Pediatric Neuro-Oncology 
(RAPNO).—Since the inception of the RANO criteria, it 
has been used almost exclusively for assessment of GBM, 
including pediatric GBM. However, it is prudent to note 
that the biology of high-grade gliomas in children is dif-
ferent from that in adults, and children frequently require 
different management. To mitigate these discrepancies, 
the Response Assessment in Pediatric Neuro-Oncology 
working group has recently published recommendations 
for response assessment for pediatric patients with high-
grade gliomas.134

Prediction of Response

Prediction of treatment response in GBM is immensely 
challenging. The enhancing components of GBM at pres-
entation are inversely associated with survival135; simi-
larly, residual contrast-enhancing tumor following surgery 
is also negatively associated with survival in patients 
with newly diagnosed GBM.136 Pretreatment ADC his-
togram and CBV-based thresholding values have been 
shown to predict response in recurrent GBM treated with 
antiangiogenic therapies.137,138 Early reduction of CBV fol-
lowing bevacizumab treatment in recurrent glioblastomas 
can predict survival as well.139

Assessment of Pseudoprogression vs. True 
Tumor Progression

Pseudoprogression is a well-documented phenomenon 
observed in 20–30% of patients in which new tissue en-
hancement is detected within three months of comple-
tion of radiation with concurrent temozolomide therapy 
in the absence of true tumor growth, as determined by 
the presence of necrosis or gliosis on biopsy.140,141 The 
mechanism of pseudoprogression remains poorly under-
stood, but it is thought to represent edema and increased 
vascular permeability secondary to chemoradiotherapy-
induced tumor and endothelial cell death. Notably, 
O6-methyl guanine-DNA methyl transferase (MGMT) 
methylated tumors have a higher incidence of 
pseudoprogression due to their increased sensitivity to 
temozolomide.90,130,141–145 Pseudoprogression is also ex-
pected with targeted therapy and/or immunotherapy.146 
Pseudoprogression carries significant clinical impact 
as studies have shown this subgroup of patients ex-
perience improved median survival if correctly identi-
fied.145,147,148 Pseudoprogression typically stabilizes or 
resolves without a corresponding change in treatment. 
The apparent enlargement of the tumor on MRI due to 
pseudoprogression can be difficult to reliably distin-
guish from true tumor progression although patients 
with pseudoprogression are less likely to experience 
worsening of neurological symptoms. Critically, the 
ability to distinguish pseudoprogression has become 
ever more relevant in the era of immunotherapy.
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MRI is essential in assessing response to treatment and 
tumor progression during the disease course. The ability to 
identify surrogate imaging biomarkers allows for a nonin-
vasive way to risk-stratify patients and to refine individual 
therapeutic approaches. An overview of the techniques 
currently in use along with their specific advantages and 
limitations is provided below.

Delta T1 Map.—Delta T1 map can be very helpful in eval-
uation of enhancement in the post treatment setting, par-
ticularly after treatment with bevacizumab that induces 
intratumoral heterogenous T1 hyperintensity149,150 (Figure 
7). Moreover, the delta T1 map can also predict survival 
with bevacizumab therapy.149

DWI.—ADC can aid in differentiating radiation-induced 
effects from tumor progression or recurrence.90,130,143,144 
Enlarging tumors usually have lower ADC (~1.0–1.3  µm2/
ms) compared with pseudoprogression (>1.3 µm2/ms).151,152 
In the presence of extremely heterogeneous tumor micro-
environments, the presence of therapy-related hemorrhage 
confounds the ADC measurement. Similarly, bevacizumab 

therapy is associated with a distinct persistent diffusion re-
striction (Figure 7) that is associated with better survival 
and can mimic diffusion restriction related to tumor recur-
rence.153 DWI alone therefore inadequately differentiates 
pseudoprogression from GBM progression.

Perfusion MRI.—Perfusion MRI has also been success-
fully used to differentiate pseudoprogression from true 
tumor progression with estimated sensitivity and spec-
ificity approaching 90%.154 Median CBV is usually lower 
in pseudoprogression compared to true tumor pro-
gression.152 Fractional tumor burden (FTB) calculation 
is a technique of histogram-based thresholding that 
can be an excellent tool to quantitatively differentiate 
pseudoprogression from true tumor progression and pre-
dict survival.155,156 A  simple dichotomous “true progres-
sion” and “pseudoprogression” approach is challenging 
in clinical practice because enlarging enhancement, 
most of the time, is contributed to by both tumor tissue 
and tissue with treatment related effects. Unfortunately, 
if a voxel contains both tumor tissue and tissues with 
pseudoprogression, the sensitivity and specificity of per-
fusion imaging in differentiating pseudoprogression 
from true tumor progression decline. Additionally, there 
is wide variability in DSC-MRI acquisition, and post proc-
essing approaches can contribute to variation in results. 
Standardized acquisition techniques and post processing 
techniques have been recently recommended for consist-
ency and inter-institutional comparability.157,158

Density-based Magnetic Resonance Image Clustering 
for Assessing Tumor Heterogeneity (DEMARCATE).—
DEMARCATE is a novel MRI-based technology used to 
analyze tumor heterogeneity.159 This method generates a 
tumor density profile comprising voxel intensities corre-
sponding to specific regions within the tumor. Probability 
density functions applied in a Fisher–Rao Riemannian 
framework are used for metric-based clustering of patients. 
The outputted patient clusters demonstrate significant 
associations with tumor morphology, driver gene muta-
tions, and prognostic clinical outcomes and additionally 
map with known GBM subtypes (cluster 1 with proneural 
and cluster 2 with mesenchymal, neural, and classical).160 
Whereas most methods employ scalar summary measures 
to analyze tumor heterogeneity, DEMARCATE gains predic-
tive and correlative power by using the entire density of an 
individual tumor density profile to capture highly refined 
information that can be used to detect small-scale and sen-
sitive changes in the tumor due to treatment effects.

MR Spectroscopy.—MR spectroscopy has been used to 
identify tumor progression as well. Chuang et  al. have 
also shown that Cho/Cr and Cho/NAA ratios are signifi-
cantly higher in tumor recurrence compared with radiation 
injury.161

Quantitative MRI.—Itakura et  al. identified three distinct 
phenotypic GBM subtypes utilizing a quantitative MR im-
aging analysis of lesion shape, texture, and edge sharp-
ness with subsequent consensus clustering. The three 

  

Figure 7.  Imaging appearances of a glioblastoma following treat-
ment with bevacizumab. Axial diffusion weighted image (A) through 
the level of centrum semiovale demonstrates a confluent area of 
high signal (arrowheads) surrounding the cystic resection cavity 
associated with low values (arrowheads) on the corresponding 
ADC map suggestive of diffusion restriction developed after treat-
ment with bevacizumab. The precontrast axial T1-weighted image 
(C) at the same level demonstrates irregular T1 hyperintensities. 
Enhancement, if any, is hard to appreciate on the post contrast T1 
weighted image (D) at the same level, demonstrating the importance 
of the delta T1 map (not shown).
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clusters, pre-multifocal, spherical, and rim-enhancing, 
mapped to distinct sets of molecular signaling pathways 
(e.g., c-Kit, FOXA) using molecular activity estimates from 
The Cancer Genome Atlas and notably demonstrated dif-
ferential probabilities of survival.162

PET Imaging.—PET imaging is increasingly used in situations 
when MRI inadequately differentiates pseudoprogression 
from true progression. Although 18FDG PET has been used 
in this setting, LNAA PET can reliably distinguish tumor pro-
gression from treatment-related effects and can in turn iden-
tify responders to antiangiogenic therapy with near complete 
diagnostic accuracy.163–165 The European Association of 
Nuclear Medicine (EANM), the Society of Nuclear Medicine 
and Molecular Imaging (SNMMI), the European Association 

of Neurooncology (EANO), and the working group for 
Response Assessment in Neurooncology with PET (PET-
RANO) have jointly published guidelines for appropriate use 
of PET imaging in evaluation of gliomas.166

Assessment of Pseudoresponse

Pseudoresponse describes the rapid reduction in tumor 
enhancement and surrounding vasogenic edema fol-
lowing the administration of an anti-angiogenic agent 
that is not representative of a true anti-tumor response. 
Treatment with bevacizumab, an anti-VEGF monoclonal 
antibody approved for use in GBM refractory to first line 
radiation, temozolomide, and lomustine, commonly 
causes pseudoresponse as it decreases microvascular 
proliferation and BBB permeability (Figure 8). Though the 

  

Figure 8.  Pseudoresponse following bevacizumab therapy in a 15 year old male patient with recurrent high grade glioma with histone H3.3 G34 
mutation in the left temporal lobe. Extensive heterogenous enhancement (A, post-contrast T1-weighted image) and edema with mass effects 
(D, FLAIR image) have been significantly reduced 3 weeks after the start of bevacizumab therapy (B, E, post-contrast T1-weighted image and 
FLAIR image, respectively); however, there is evidence of worsening of enhancement (C, motion degraded post-contrast T1-weighted image) and 
infiltrative tumor component (F, FLAIR image), on a follow-up MRI obtained 8 weeks after the start of bevacizumab therapy.
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radiographic findings do not correspond to true tumor 
response, and treatment with bevacizumab does not 
confer any survival benefit, it has been associated with 
symptomatic improvement and reduced steroid depend-
ence.167 This is likely the result of reduced mass effect and 
vasogenic edema. Of note, patients requiring a drug hol-
iday due to toxicities have been shown to demonstrate 
rebound enhancement and edema with a subsequent 
“re-response” after restart.168,169

The differentiation between clinically distinct radio-
graphic phenomena from a true tumor response has crit-
ical implications for patient care as failure to correctly 
identify tumor progression or regression may result 
in inappropriate modification or cessation of effective 
treatment.140,141,170,171

Assessment of Radiation Necrosis

Radiation necrosis is a delayed manifestation of tissue 
injury that typically occurs three months to one year fol-
lowing radiotherapy. Radiation necrosis occurs as a re-
sult of disruption of the BBB with consequent occlusive 
vasculopathy, thrombosis, and ischemia. Histologic exam-
ination shows extensive glial and white matter damage, 
fibrinoid necrosis of small vessels, and vessel wall 
hyalinization.172,173 Radiographically, radiation necrosis 
presents as a heterogeneously enhancing lesion with a 
characteristic “soap-bubble” or “Swiss cheese” appear-
ance and surrounding vasogenic edema. MR findings are 
useful in differentiation from both pseudoprogression and 
tumor progression. For example, development of a lesion 
in an area of radiation-induced leukoencephalopathy or in 
the bed of a previously non-enhancing tumor with min-
imal to no mass effect and associated hemosiderin and 
calcifications is suggestive of radionecrosis. In addition, 
an elevated lipid-lactate peak on spectroscopy and a low 
normalized cerebral blood volume (CBV) ratio, a biomarker 
for angiogenesis, also carry diagnostic value.

Emerging Imaging Techniques

Mass Spectrometry Imaging

Technological ingenuity over the past several decades 
has rendered ex vivo mass spectrometry imaging (MSI) 
a feasible and valuable tool in guiding intraoperative de-
cision-making during tumor resection.174,175 MSI is an im-
aging modality that analyzes the molecular composition of 
thin tissue sections based on the mass-to-charge ratios of 
the ionized compounds that constitute the surface. Unlike 
traditional liquid chromatography methods, MSI does not 
require chromatographic purification and thus preserves 
spatial information and tissue architecture. The two most 
common ionization techniques for surface analysis of bi-
ological tissue are matrix-assisted laser desorption ioniza-
tion (MALDI) and desorption electrospray ionization (DESI).

MALDI and DESI-MSI have numerous applications in 
GBM research. MALDI-MSI has been used to detect in 
situ, spatial histone variation in patient-derived xenograft 
models,176 which may provide novel genomic targets for 

antibody-mediated therapy. DESI-MSI has also been used to 
analyze the ganglioside composition of healthy and malig-
nant nervous tissue and could reliably distinguish between 
tumor, grey matter, and white matter, while also identifying 
ganglioside forms present exclusively in GBM tissue.177 
Looking forward, a multicenter effort to investigate GBM 
tissue protein composition using liquid chromatography-
tandem mass spectrometry could be used to construct a 
GBM proteome and identify actionable serum GBM bio-
markers.178,179 MSI has additional functionality in deter-
mining tissue penetration and efficacy of various therapeutic 
agents, e.g. boron neutron capture therapy relies on fission 
reactions to selectively kill tumor cells that have reached a 
sufficient intracellular density of boron, a measure that can 
be reliably studied using secondary ion MSI.180 In addition, 
the efficacy of oncolytic viral therapy in GBM treatment is 
highly dependent upon the selective targeting of tumori-
genic cells, which can be assessed with MALDI-MSI.181

Artificial Intelligence

In recent years, there has been great interest in applying 
artificial intelligence (AI) within multiple medical fields, in-
cluding imaging. Sotoudeh et al. have recently reviewed 
AI techniques in the context of brain tumor imaging.182 In 
short, supervised and unsupervised machine learning and 
different neural network techniques can be used to train 
algorithms via a series of known values (e.g., imaging, 
histological, genetic, and clinical substrates in variable 
combinations) thereby facilitating the prediction outcomes 
based on initial training datasets.

Interestingly, AI has been employed as a method to au-
tomate complex imaging analyses in an unbiased and re-
producible manner. Machine learning is a subfield of AI 
where machines can perform pattern recognition without 
any explicit instruction. In this way, patterns and models 
may be generated based on datasets without the influence 
or unconscious bias of human input. Given sufficiently 
large datasets, machines are able to determine the optimal 
combination of relevant features to explain a given phe-
nomenon. For example, machine learning can determine 
radiomic parameters that may be present in histopatho-
logically and molecularly distinct subgroups of glioma 
in any given imaging modality. This abstraction becomes 
especially powerful given our relative inability to process 
a near infinite volume of voxel data.183 Importantly, these 
methods are able to be employed in even the most complex 
of tumoral environments. Convolutional neural networks 
are among the most powerful machine learning techniques 
applied to imaging interpretation in GBM. They are able 
to operate without any human training. By eliminating 
human error, deep convolutional neural networks have 
been used to differentiate glioblastoma subcompartments 
based on MR imaging by generating rapid and accurate 
three-dimensional segmentations of the tumor. Radiomic 
features have been identified that accurately predict sur-
vival in patients with GBM.184 Radiomic features derived 
from these segmentations are particularly useful in helping 
to predict genetic biomarkers.185,186 For example, artifi-
cial intelligence has been used to predict IDH, ATRX, and 
CDKN2 family mutations in addition to chromosome 7/10 
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aneuploidies with astonishing sensitivity and specificity.187 
Another promising application of artificial intelligence was 
demonstrated with stimulated Raman imaging, a form of 
optical imaging, where clinicians showed that a convolu-
tional neural network driven stimulated Raman imaging 
technology had a noninferior performance compared to 
pathologist interpretation of histologic images for tissue 
diagnosis during brain tumor surgery (94.6 % vs. 93.9% ac-
curacy).188 While still in its infancy, AI represents a prom-
ising future direction for imaging analysis in patients with 
GBM and may ultimately prove helpful in multiple aspects 
of brain tumor management, including tumor diagnosis/
grading, the prediction of genomic and histopathologic ar-
chitecture, and/or operative/radiation planning.

Conclusion(s)

In the last two decades, there have been significant 
changes in the way GBM is imaged. Advanced imaging 
techniques now play a significant role in the current di-
agnostic and treatment paradigms. Diffusion and perfu-
sion MRI are now routinely used for diagnosis of brain 
tumors. DTI and fMRI in combination are now part of cur-
rent standard(s) of care for brain mapping prior to surgical 
resection. Intra-operative MRI, ultrasound, and fluores-
cent techniques are increasingly being adopted for more 
precise tumor surgery with significantly better operative 
outcomes. Advanced MRI techniques are also routinely 
used for assessment of treatment responses which is crit-
ical in the era of biologic/immune centered therapies. Such 
advanced imaging modalities are critical and physicians, 
surgeons and scientists look to advance treatments and 
improve clinical outcomes for patients in dire need.
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