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Cancer immunotherapies utilize the capabilities of the immune system to efficiently target
malignant cells. In recent years, chimeric antigen receptor (CAR) equipped T cells showed
promising results against B cell lymphomas. Autologous CAR-T cells require patient-
specific manufacturing and thus extensive production facilities, resulting in high priced
therapies. Along with potentially severe side effects, these are the major drawbacks of
CAR-T cells therapies. Natural Killer (NK) cells pose an alternative for CAR equipped
immune cells. Since NK cells can be safely transferred from healthy donors to cancer
patients, they present a suitable platform for an allogeneic “off-the-shelf” immunotherapy.
However, administration of activated NK cells in cancer therapy has until now shown poor
anti-cancer responses, especially in solid tumors. Genetic modifications such as CARs
promise to enhance recognition of tumor cells, thereby increasing anti-tumor effects and
improving clinical efficacy. Although the cell biology of T and NK cells deviates in many
aspects, the development of CAR-NK cells frequently follows within the footsteps of CAR-
T cells, meaning that T cell technologies are simply adopted to NK cells. In this review, we
underline the unique properties of NK cells and their potential in CAR therapies. First, we
summarize the characteristics of NK cell biology with a focus on signaling, a fine-tuned
interaction of activating and inhibitory receptors. We then discuss why tailored NK cell-
specific CAR designs promise superior efficacy compared to designs developed for T
cells. We summarize current findings and developments in the CAR-NK landscape:
different CAR formats and modifications to optimize signaling, to target a broader pool of
antigens or to increase in vivo persistence. Finally, we address challenges beyond NK cell
engineering, including expansion and manufacturing, that need to be addressed to pave
the way for CAR-NK therapies from the bench to the clinics.
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CAR-BASED IMMUNOTHERAPIES

Cancer immunotherapies utilize the capabilities of the immune
system to efficiently target tumor cells. In recent years, T cells
equipped with a chimeric antigen receptor (CAR) showed
promising results against B cell malignancies, proving to be a
possibly curative treatment option (1, 2). CARs are artificial
proteins that are composed of an antibody-derived extracellular
target-binding domain, predominantly of a single chain variable
fragment (scFv), that is connected to an intracellular signaling
domain by a hinge region and a transmembrane domain. Upon
binding, e.g., to tumor-specific or -associated antigens, intracellular
CAR signaling is activated, resulting in cytotoxicity of the
CAR-modified immune cell towards the target cell as well as
cytokine release (3).

As of 2021, five CAR-T cell products have been approved by
FDA and EMA.With BCMA (B cell maturation antigen), a second
target antigen in addition to CD19 has been granted market access
(1). Therefore, CAR immunotherapies are now available for the
treatment ofmultiplemyeloma and specific B cellmalignancies (2).
The steadily growing number of clinical CAR-T cell trials enables
the treatment of additional tumor indications. All currently
approved CAR-T cell products are autologous medications,
which require patient-individual manufacturing. This process is
complex and requires suitable production facilities, leading to high
prices. Additionally, the quality of autologous CAR-T cell products
is often affected by the heavy pre-treatment of patients, leading to
production failure. Especially in solid tumors, CAR-T cells
frequently lack clinical efficacy, caused by cellular exhaustion that
can result in therapy failure (4).These factors posemajorhurdles for
the implementation of future widely applicable CAR therapies.
Other drawbacks of CAR-T cell therapies are possibly severe side
effects, e.g. cytokine release syndrome (CRS) or neurotoxicities (1).
An additional risk whenmodifying cancer patient’s immune cells is
described in a case report: During the manufacturing process of
autologous, CD19-specific CAR-T cells, the CAR transgene was
mistakenly introduced into a single leukemic B cell resulting in
relapse with a B cell lymphoma clone resistant to CAR-T cell
therapy (5).

To overcome the above stated limitations and to generate
more standardized, cost-effective immunotherapies against
cancer, strategies to generate CAR-T cells that are allogeneically
applicable are currently developed (6). In parallel, several
approaches are explored to use immune cells of healthy,
allogeneic donors as a source for immunotherapies. To this
end, different immune cell types are tested, especially focusing
on Natural Killer (NK) cells, as these immune cells, unlike T cells,
do not cause graft versus host disease (GvHD), even if donor and
recipient have an HLA mismatch (7).
NK CELLS IN IMMUNOTHERAPY –

A REVISITED CELL THERAPY

NK cells pose an interesting alternative to T cells for the
generation of CAR equipped cells as an “off the shelf” cell
therapy due to their potential to be safe and adoptively
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transferred from healthy donors to cancer patients. For over
twenty years, NK cells have been used as adoptive therapy both
in tumors of hematological and solid origin (8, 9). NK cells,
collected either from patients or healthy donors, are predominantly
activated and expanded ex vivo using cytokines like IL-2, IL-15,
IL-12, IL-18, IL-21 or combinations thereof, and then infused to
the patient (10–12). Additionally, in some clinical settings, patients
were subjected to cytokines like IL-2 after DLI (donor lymphocyte
infusion) in order to extend NK cell life-span and cellular activity
in vivo. Several studies showed that NK cells can be safely applied
in virtually unlimited numbers without the appearance of major
side effects (8, 9). In some studies, NK cell infusions to patients
recovering after hematopoietic stem cell transplantation showed
beneficial effects (13). The overall clinical benefit for patients
suffering from tumors of detectable burden, however, is fairly
limited in most studies, likely due to poor recognition of tumor
cells and quick exhaustion of NK cells in the immuno-suppressive
tumor microenvironment (TME) (9, 14).

The great clinical success of CAR-T cells is a stepping stone
for the development of next generation NK cell therapies. Using
artificial receptors to recognize tumor cells, the limited efficacy of
NK cells can be overcome, while retaining the favorable safety
properties of NK cells when used as an allogeneic “off-the-shelf”
therapy. Therefore, CAR-NK cells have been generated and
assessed for efficacy in many pre-clinical and clinical studies,
suggesting similar clinical benefits using CAR-NK cells as
compared to CAR-T cells (8).
T AND NK CELLS - TWO CYTOTOXIC
LYMPHOCYTES DIFFERENTLY
TRIGGERED

NK and T cells are both lymphocytes with cytotoxic or regulatory
functions. When encountering and killing target cells, both
exhibit similar mechanisms of action (15). NK cells can induce
cell death by activating death receptors like FAS or TRAIL, but
the predominant mode of action is the release of perforin and
granzyme B to induce cellular apoptosis (16, 17), also utilized in
CAR-mediated cytotoxicity.

In T cells, TCR signaling is the only genuine activating signal
and an ultimate requirement to trigger cytotoxicity. Additionally,
co-stimulatory signals exist that significantly modify the T cell
response when triggered simultaneously with the TCR, such as
CD28, 4-1BB, OX-40 or NKG2D (18, 19). These costimulatory
signals prevent cellular exhaustion, or stimulate persistence,
proliferation, differentiation or cytokine secretion, respectively.
In consequence, clinically used CAR-T designs consist of a
signaling domain assembled from CD3z signaling motifs (that
mimic TCR signaling) and a single co-stimulatory domain
(CD28 in Yescarta® and Tecartus™; 4-1BB in Kymriah®,
Breyanzi® and Abecma®) (2). In preclinical studies, additional
formats that enhance functionality or safety are being tested, e.g.
the combination of several co-stimulatory domains, the effects of
artificial, CAR signaling-dependent promoter elements or logic
gated CAR expression (20–24).
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NK cells encode a vast array of both activating and inhibitory
receptors which are, compared to the clonotypic TCR, germline
encoded (Figure 1). There are several activating receptors that
activate NK cells upon recognition of ligands on target cells, e.g.
virus infected cells or tumor cells. Diverse co-stimulatory
receptors distinctively guide the NK cell gene expression
profile and fine-tune their activation (25). Thereby, the extent
of signaling of each individual receptor is taken into account and
the multitude of integrated signals determines NK cell behavior
(25, 26). On top, the receptor expression of both activating and
inhibitory depends on NK cell residency in tissues, is dynamic
and surprisingly diverse on a single cell level (27–29). Depending
on cellular activation status, exposure to ligands or cytokines,
different receptors are being expressed. The fine-tuned interaction
of the receptors with inhibitory and activating signals determines
whether NK cells initiate cytotoxicity, cytokine secretion or
proliferation, or remain tolerant. Molecularly, upon ligand
binding, both activating and inhibitory signaling motifs are
phosphorylated by Src family kinases (30). Subsequently,
activating receptors recruit kinases which trigger phosphorylation
cascades when activated, whereas inhibitory receptors recruit and
activate phosphatases which counteract activating signaling by
removing phosphorylations, thereby in turn interrupting these
cascades. Therefore, the balance of kinase and phosphatase
activities determines NK cell tolerance and activation.
NK CELL SIGNALING - A FINE TUNED
INTERACTION OF ACTIVATING AND
INHIBITORY RECEPTORS

The repertoire of NK cell receptors can be clustered into different
families. The killer cell immunoglobulin-like receptors (KIRs)
comprise both activating and inhibitory receptors which
predominantly bind to HLA-A, -B and -C (26, 31). The
nomenclature of KIRs is derived from the length of the
cytoplasmic tail. Inhibitory KIRs have a long cytoplasmic tail
with an immunoreceptor tyrosine-based inhibitory motif (ITIM)
(31). Upon binding to their respective ligands, phosphorylation
of the ITIM motif leads to the recruitment of the Src homology
(SH) 2 domain-containing protein tyrosine phosphatases SHP-1
and SHP-2 and the inositol phosphatase SHIP. These
downstream phosphatases dephosphorylate phosphorylated
members of activating signaling cascades. SHIP, e.g.,
dephosphorylates the second messenger PIP3 within the PI3K
pathway, a central signaling pathway that is crucial for NK cell
cytotoxicity (31–33). In contrast, activating KIRs generally have a
short cytoplasmic domain and lack a signaling domain.
However, by means of a positively charged amino acid residue
in their transmembrane domain, they recruit the activating
signaling adapter DAP12 containing immunoreceptor tyrosine-
based activation motifs (ITAM) that leads to the subsequent
activation of Syk and PI3K (31, 34). Inhibitory and activating
KIRs can share the same ligand, e.g. activating KIR2DS1 and
inhibitory KIR2DL1 both bind to HLA-C2 (31). Additionally,
Frontiers in Immunology | www.frontiersin.org 3
some KIRs recognize non-classical HLA class I molecules, such
as HLA-G, recognized by KIR2DL4 (35), or HLA-F, recognized
by KIR3DS1 (36). Recently, HHLA2, a non-HLA ligand, has
been described to interact with the inhibitory receptor KIR3DL3,
an interaction suggested as a potential target for immune
checkpoint inhibition (37, 38).

Inhibitory KIRs are considered the major mediator to maintain
tolerance towards healthy tissues by sensing HLA class I, along
with the inhibitory receptor NKG2A (39). NKG2A belongs to the
C-type lectin superfamily that also comprises inhibitory and
activating receptors (40). NKG2A, as well as its activating
counterpart NKG2C, forms heterodimers with CD94 and
recognizes the non-classical HLA class I molecule HLA-E. The
intracellular tail of NKG2A contains two ITIM motifs to recruit
phosphatases that inhibit NK cell signaling. Interestingly, in the
sequence of NKG2C, both relevant tyrosine residues are mutated,
therefore the ITIM motifs are dysfunctional. Instead, the NKG2C
receptor recruits DAP12 to induce an activating signal via Syk
(41). The homodimeric activating receptor NKG2D can recruit the
DAP10 signaling adapter that contains a YxxM motif which
signals via PI3K (42). This receptor recognizes a family of HLA
class I-like, stress-induced ligands, named MICA, MICB and
ULBP1-6, that frequently appear on the surface of tumor cells,
and is critically involved in immune-surveillance (43). Two
additional lectin-like NK cell receptors are NKp80, which
recognizes AICL, and NKp65 which binds KACL. Both
receptors encode a modified ITAM motif with reduced signaling
capacity termed hemi-immunoreceptor tyrosine-based activation
motif (hemITAM) (44, 45).

A group of activating Ig-like receptors termed natural
cytotoxicity receptors (NCR) plays an important role in the
recognition of both tumor cells and virus infected cells. The
family comprises the three type I transmembrane receptors
NKp30, NKp44 and NKp46. NCRs recognize heterogenous
host- and pathogen-derived ligands. NKp46 and NKp30 recruit
the activating downstream adaptors CD3z or FcRg. Interestingly,
different isoforms of the NKp44 have shown to transduce either
inhibitory signals via a cytoplasmic ITIM motiv, or activating
signals by associating with the downstream adaptor protein
DAP12 (46, 47). Of note, NK cells encode multiple so-called
paired receptors (48). These receptors are either activating or
inhibitory but share the same ligands, usually with the inhibitory
receptor possessing higher affinity and therefore being dominant
when expressed at the same time. An example for these paired
receptors pose the Ig superfamily receptors DNAM-1, TIGIT,
CD112R/PVRIG and CD96/TACTILE which bind to tumor
associated ligands of the Nectin or Nectin-like (Necl) family.
Binding of DNAM-1 to its ligands such as CD155 promotes the
cytotoxicity of NK cells against a range of tumor cells, mediated
by an immunoglobulin tail tyrosine (ITT)-like motif with
downstream Grb2 signaling (49). The inhibitory receptors
TIGIT, CD112R and TACTILE act suppressive when binding
to the same family of ligands (50). CD112R contains an
inhibitory ITIM consensus sequence. TIGIT possesses both an
inhibitory ITIM and an ITT-like motif that directly interacts
with downstream regulators, e.g. SHIP1 and Grb2 (51, 52). The
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role of TACTILE remains unclear as it contains both an
inhibitory ITIM motif and an YxxM motif that is found on
various activating receptors (53, 54).

NK cells have three signaling lymphocytic activation molecule
(SLAM) receptors, namely 2B4/SLAMF4, NTB-A/SLAMF6 and
CRACC/SLAMF7 (55, 56). These Ig-like receptors play an
important role in fine tuning cytotoxic responses of NK cells.
Whereas SLAMF4 binds to CD48, SLAMF6 and SLAMF7 bind
themselves in a homophilic manner in cis and trans (55, 56).
They act activating, upon phosphorylation of the cytoplasmic
immunoreceptor tyrosine based switch motifs (ITSMs) and the
downstream adaptors SLAM-associated protein (SAP) and
Ewing sarcoma-associated transcript (EAT-2). SLAMF6 can
additionally act inhibitory upon downstream recruitment of
SHP-1, SHP-2 and SHIP1 phosphatases that compete with
SAP for the same, phosphorylated ITSMs (55, 57–60).

There are additional NK cell specific receptors like KLRG1 (61)
andSiglec familyof receptors (62)which arenot describedhere.The
repertoire of NK cell receptors is very complex and few synergistic
effects between receptors have been described (63–65). However,
research on (novel) receptors, ligands and functional mechanisms
Frontiers in Immunology | www.frontiersin.org 4
to better understand NK biology, but also their potential for
immunotherapy, is still ongoing. The balance of activation or
inhibition of NK cells via phosphorylation by kinases and
dephosphorylation by phosphatases is a fine-tuned process with
some variables still under investigation (26, 66–68). Therefore, the
exact transcriptional changes induced in NK cells when
encountering a target cell are barely predictable using our current
knowledge about potential additive, synergistic or counteracting
signaling pathways. A systematic assessment of the signaling
pathways with a particular focus on the interplay of activating
signals is still lacking, and CAR technology may provide a suitable
means of addressing such open questions in NK cell biology.
NK CELL TAILORED CAR DESIGNS
PROMISE GREAT POTENTIAL TO
ENHANCE IMMUNOTHERAPIES

Although the cell biology of T and NK cells deviates dramatically
in terms of signaling acquisition and integration, the
development of CAR-NK cells follows frequently within the
FIGURE 1 | Overview of NK cell receptors and their signaling adapters. Inhibitory receptors are situated on the left (violet membrane), receptors with activating and
inhibitory signaling motifs central (orange membrane) and activating receptors on the right (green membrane). ITAM, immunoreceptor tyrosine-based activation motif;
hemITAM, hemi-immunoreceptor tyrosine-based activation motif; ITSM, immunoreceptor tyrosine based switch motifs; ITIM, immunoreceptor tyrosine-based
inhibitory motif; ITT, immunoglobulin tail tyrosine.
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footsteps of CAR-T cells, and T cell technologies are simply
adopted for NK cells. Accordingly, in the first published clinical
trial of CAR-NK cells, the CAR signaling domains are derived
from the TCR and 4-1BB like used for CAR-T cells. These T cell
based CAR constructs showed promising efficiency against B cell
malignancies (69). The large repertoire of NK cell activating
receptors and adaptor proteins, however, provides a pool of
signaling domains that might improve CAR signaling responses
for NK cells (Figure 2).

Among the many NK cell activating receptor and adaptor
protein domains that could be explored as CAR signaling
domains, the signaling domains of the activating receptor 2B4,
Frontiers in Immunology | www.frontiersin.org 5
and the adaptor proteins DAP10 and DAP12 have shown to
induce superior cytotoxic activity of CAR-NK cells towards their
respective targets. Two early studies explored the CAR constructs
with a DAP12 derived signaling domain in the NK cell line
YTS and showed potent cytotoxicity towards target cells (70, 71).
In a study targeting Mesothelin, combinations of costimulatory
domains upstream of a CD3z domain were screened. Notably,
in addition to intracellular signaling parts, NK cell receptor
derived transmembrane domains CD16, NKp46, NKp44 and
NKG2D were included in the screening. As transmembrane
domains of several activating NK cell receptors, like KIR2DS1,
NKp46, NKG2D, possess a charged amino acid in their
FIGURE 2 | Different CAR formats. Upper left: 2nd generation CAR format that is approved on the market for T cells. Other CAR designs improve signaling for NK
cells, couple CAR expression and activation to transcription factor systems, target a broader pool of antigens or aim to overcome inhibitory signals of the tumor
immunosuppressive environment. TF, Transcription factor; aCAR, activating CAR; iCAR, inhibitory CAR.
March 2022 | Volume 13 | Article 822298
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transmembrane region capable of directly interacting with
downstream signaling adapters (72–74), CAR constructs
including an NKG2D transmembrane domain as well as
DAP10 and 2B4 costimulatory domain were identified as the
most promising candidate to increase CAR-NK cell mediated
cytotoxicity (75). A recent study explored DNAM1- and 2B4-
derived costimulatory domains in CAR constructs in a
combination with CD3z for NK-92 cells, a NK cell line with
cytotoxic abilities, showing that the NK cell-specific
costimulatory signal increased the persistency, proliferation
and cytotoxicity of CAR-NK92 cells compared to CD3z alone
or combined with CD28 signaling (76).

In an alternative approach, the design of the CAR construct is
solely based on the NK cell specific receptor KIR2DS4 as
transmembrane and intracellular domain, without a fused
signaling adapter (77). Instead, KIR2DS4 adaptor protein
DAP12 is co-expressed with the CAR, separated by a P2A site.
Although DAP12 in this case is expressed independent of CAR
target binding, the CAR-NK cells show a specific cytotoxicity
against target tumor cells. The CAR in this study is directed
against HLA-G, an antigen that is expressed on numerous solid
tumors but restricted on healthy tissues, mostly in immune-
privileged sites (77). Generally, finding suitable antigen targets
for CAR therapies is crucial as targets need to be specific for the
tumor while not being expressed on healthy tissue. Multiple
novel targets are tested for CAR therapies, mostly on T cells,
results however might be applied to NK cells (78). As single and
tumor specific targets are hard to find, binding domains of
receptors targeting ligands on diseased cells can be used to
target a broader spectrum of antigens. Therefore, some CAR
constructs exploit and enhance the natural tumor recognition of
NK cells. NKG2D can bind up to eight stress induced ligands that
are frequently upregulated in tumor cells and less expressed on
healthy tissues. NKG2D-based CAR-NK cells have been shown
effective against multiple myeloma (MM) cells in a preclinical
setting (79), in a clinical study with colorectal cancer patients
(80) and in various other studies using a NKG2D construct in T
cells. Similarly, multiple tumors were targeted with NK cell
receptor based NKp44 or NKp46 -CAR in T cells (81, 82).

By using two or more antigen directed scFvs within CAR cells,
the spectrum of targets can be broadened further. These tandem
or bispecific CARs combine two scFv domains within the same
CAR binding domain such as in two phase I CAR-T cell studies
targeting CD19 and CD22, CD19 and CD20 or BCMA and
CD38. Targeting more than one antigen might thereby reduce
the risk of antigen negative relapse (83–85). Alternatively, two
CARs targeting different antigens can be coexpressed in the same
cell. This approach was followed in a CAR-T cell study targeting
CD19 and CD123 and prevented antigen negative relapses in
xenograft models (86). The intracellular costimulatory and
stimulatory domains of the two individually expressed CARs can
either be identical or different to each other. Given the large variety
of NK cell activating receptors and adaptor proteins, only few
combinations of intracellular signaling adapters or domains were
tested as CAR-NK signaling domains. There might be a hidden
potential in assessing synergistic but also inhibiting effects. This
Frontiers in Immunology | www.frontiersin.org 6
potential has been recently tapped in NK cells by developing a
logic-gated approach of an inhibitory CAR (iCAR) which will
inhibit the cytotoxic signaling of an activating CAR (aCAR) upon
target binding. In this approach, healthy tissue is shielded while
more antigens can be explored on tumor cells (87).

In a modular approach, CAR modified cells are directed
against multiple and or varying targets. An antigen targeting
element, mostly scFv derived, is fused to a tag or another CAR
binding property. The CAR consists of a tag or adaptor binding
region and the usual signaling module. Although mostly applied
in the T cell setting (88, 89), this setting has been successfully
translated to NK cells (90) and, in terms of targets, this approach
is rather flexible and multiple targets can be addressed at once.

A special interest should be taken to T cell malignancies with
currently poor clinical outcomes. As in B cell settings, T cells
express unique targets which cannot be addressed with the
common autologous CAR-T cell setting due to self-targeting
leading to fratricide (91). NK cells can overcome this limitation
as they are negative for the two mostly used T cell markers CD3
and CD4. In a preclinical study, anti CD3-CAR-NK-92 cells
significantly prolonged survival of mice challenged with Jurkat
cells line (92).

CAR therapies are restricted to surface antigens. In contrast,
T cell receptor (TCR) recognizes degraded intracellular proteins
presented by MHC. In TCR based cell therapies, effector cells
express an artificially designed high-affinity TCR (93). Although
TCR-based cell therapies are also mostly explored on the T cell
platform, the feasibility of TCR NK cells in the NK-92 model was
previously shown (94, 95).

Besides addressing more targets, CAR design can also focus
on enhancing immune responses of NK cells. A limitation of NK
cell therapies is the short lifetime and persistence in vivo (96).
The integration of autocrine growth factor IL-15 as a
downstream IL-15 cassette has shown increased life span and
persistence in the first published clinical CAR-NK study (69, 97).
An inducible MyD88/CD40 protein switch in CAR-NK cells,
which lead to increased cytokine secretion upon activation and
further synergistic effects with transgenic IL-15 was previously
reported. A different approach to activate NK cells with IL-15 is
taken in the clinical trial NKX101 where a membrane bound IL-
15 is tested to increase persistence of NKG2D-OX40-CD3z
CAR-NK cells (97). To safeguard from potential toxicity of
engineered CAR-NK cells, an inducible caspase was included
in addition to the CAR in several studies (69, 98).

Especially in solid tumors, the TME is immunosuppressive,
due to limited supply of nutrients, decreased levels of oxygen and
an accumulation of inhibitory molecules and cells. Overcoming
but also exploiting and redirecting this suppressive environment
is key to combating solid malignancies. Based on the success of
checkpoint inhibitor therapies, making CAR immune cells more
resistant to inhibitory signals is also strived for. A reduced
surface expression of the immune checkpoint receptor NKG2A
showed increased cytotoxicity against HLA-E-expressing tumor
cells (99). The blockage of another immune checkpoint in NK
cells, TIGIT, prevented NK cell exhaustion (99, 100). Another
negative regulator of IL-15 signaling is the cytokine-inducible Src
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homology 2–containing (CIS) protein. Genetic knockout of its
gene, CISH, via CRISPR-Cas9 showed enhanced fitness of NK
cells that additionally expressed IL-15 and a CD19 specific CAR
(101). Blocking of inhibitory cytokine sensing receptors such as
the of the TGF-b receptor TGF-bR2 has increased the resistance
of NK cells under TGF-b inhibitory conditions (102). In a
different approach, the immune inhibition is reversed by fusing
the exodomain of inhibitory cytokine sensing receptors to an
activating endodomain or CAR signaling domain. These
chimeric cytokine receptors rather enhance than inhibit the
antitumoral response of effector cells within an inhibitory
tumor microenvironment (103, 104).

Immune response modulating capacities are further exploited in
T cells redirected for antigen-unrestricted cytokine-initiated killing
(TRUCKs) (105). In the often so called 4th generation of CAR-T
cells, CARs are modified to express transgenic cytokines upon CAR
stimulation: Antigen binding and resulting downstream
phosphorylation cascades via the intracellular CAR signaling
domain also phosphorylate NFAT transcription factor which can
subsequently bind to NFAT response elements. In TRUCK design,
stimulatory cytokines such as IL-7, IL-12, IL-15, IL-18, IL-23 are
genetically introduced after NFAT response elements and their
induced expression at the tumor site promotes on site effect, e.g.
activating other immune cells (105, 106). Another transcription
factor driven system is the SynNotch System. In a CAR setting this
system can be applied to as in TRUCKs to induce expression of
cytokines like IL-12 (107). However, the expression of various other
(effector) proteins is imaginable and currently explored, possibly
overcoming some issues of finding tumor specific antigens. A
system in which a SynNotch receptor first specifically binds to
neoantigens EGFRvIII which induces the expression of tandem a-
EphA2/IL13Ra2 CAR was previously described. This system shows
high antitumor activity with restricted off-target effects and the
opportunity to target cancer-associated but not completely tumor
specific antigens (22).

In summary, there are many recent innovations in CAR design,
with emphasis to broaden the pool of addressable antigens, and to
enhance safety or efficiency of CAR cells. Many methods initially
developed in the CAR-T cell context are now utilized in NK cells.
However, to further enhance CAR-NK cell tumor cell killing and
in vivo persistence, the latest CAR-based technologies developed
in the T cell context (e.g. TRUCKS) need to be translated to CAR-
NK cells as well, and by acknowledging NK cell characteristics in
terms of activation, or by selecting the most suitable cytokines for
overexpression, the chances are best to succeed. The application
and development of CAR innovations on the NK cell platform is
still a large playground with a lot of potential to overcome the
limitations of the CAR-T cell market.
CHALLENGES IN NK CELL BASED
THERAPIES

Signaling enhancement and tailored adaptation of the CAR
construct for NK cells constitutes just one step to success
for NK-cell based immunotherapies. Deciphering critical
Frontiers in Immunology | www.frontiersin.org 7
parameters that affect in vivo persistence and anti-cancer efficacy
of NK cells beyond the CAR-mediated effects will be critical for a
clinical “off-the-shelf” product, and additional genetic
modifications or combination therapies with chemo-, radio-, or
immune checkpoint inhibitor therapies may be required to yield
optimal results of immunotherapeutic approaches. On top,
beyond biological properties and in vivo behavior of engineered
NK cells, there are several additional technological hurdles to
overcome to get NK cell technologies market-ready.

Currently, several sources for NK cells are under investigation.
NK cells collected from peripheral blood (PB-NK) are easily
accessible from healthy donors, but show high donor variation
in terms of expansion rate, transgene-expression and efficacy, and
possess overall a heterogenous and mature phenotype following
expansion. NK cells derived from cord blood (CB-NK) are less
mature before and after expansion, easier to engineer and easily
accessible as well (108). Additionally, NK cells can be
differentiated from hematopoietic stem cells (HSCs) (109, 110),
induced pluripotent stem cells (iPSCs) (75) as well as from other
immune cells using direct reprogramming (drNK) within a few
days (111). These cells are more difficult to manufacture in
research facilities due to the added complexity of differentiating
NK cells in a first step, however, stem cells pose a virtually
unlimited source of homogenous, highly active NK cell
populations. However, if signaling and immune-suppressive
factors of the TME affect NK cells of all sources in the same
manner is still an open question, as most studies utilize just a
single source of cells, with few exceptions (111), and side-by-side
comparisons, especially under challenging conditions, are scarce.
Possibly, genetic engineering has to be adjusted both to source
and the anticipated tumor environment that needs to be
overcome, therefore, differential CAR signaling, metabolic
reprogramming or deletion of different inhibitory receptors
need to be functionally assessed and predictive markers for NK
cell in vivo efficacy established. On top, it is yet unclear if the
heterogeneous, blood-derived NK cell products may perform
better in patients compared to uniform, homogeneous stem
cell-derived NK cells as they may react more plastic to immune
suppression and possibly elicit a more varied anti-tumor response
(112). Next to primary NK cells, also the cell line NK-92 is under
clinical investigation (113).

Next to biological obstacles, technical hurdles still exist. NK
cells are considered hard-to-engineer and hard-to-expand
compared to T cells. Recently, lentiviral transductions were
significantly enhanced by introducing new transduction
enhancers that facilitate viral entry (114) or suppress anti-viral
cellular signaling (115). On top, a novel viral envelope derived
from the baboon endogenous virus (BaEV) showed superior
efficacy as compared to other lentiviral envelope proteins to
successfully gene-edit NK cells (116, 117) that outperforms also
alpha-retroviruses previously tested (118). There is a high donor-
to-donor-variation in terms of expansion rates, transduction
efficiency and in vitro anti-tumor efficacy, however, thinking of
an “off-the-shelf” CAR-NK cell therapy, a thorough donor-
selection for the most suitable NK cell starting material is
likely to be performed. Transposon-based DNA delivery
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systems are currently assessed in clinical trials for the generation
of CAR-T cells as an alternative approach for long-term
transgene expression (119–122). Although the occurrence of T
cell lymphomas in few patients using PiggyBac transposon
system mediated gene transfer poses a setback for this
technology (123, 124), the transposon technology will likely be
further developed and be assessed for the generation of CAR-
NK cells.

To expand NK cells efficiently, feeder cell-free and feeder cell-
based protocols were established. On the one hand, feeder cell-
based approaches, mostly performed with genetically optimized
K562 feeder cells, show considerably superior expansion rates
and were successfully used for the generation of CAR-NK cells
used in the only clinical phase I trial published (69, 125). On the
other hand, feeder cell-free systems are still considered and
widely favored for their anticipated ease in the regulatory
approval processes. Additionally, feeder free processes can be
performed in existing, closed (semi-)automated production lines
without major adaptations required for feeder cell line
cultivation and irradiation (126–129).

Lastly, storage of an NK cell based cell product is essential to
serve as an “off-the-shelf” therapy which is produced in large
batches for multiple patients. However, NK cells are very
sensitive to cryo-induced damages. Although cytokine
activated cells exhibit higher survival rates and cytotoxic
capabilities than unactivated NK cells, still, important
parameters that determine efficacy in vivo, like proliferation or
migration (130), are majorly impaired following a freeze-thaw
cycle. Importantly, such parameters are frequently not addressed
in quality control protocols to assess quality of NK cell products
(131), therefore, reasons for potential treatment failures may also
be due to undetected, limited NK cell fitness. Efficient
cryopreservation protocols, preferentially without the use of
toxic cryoprotectant DMSO, are still under investigation (132),
and need to ensure long-term product stability, safe means of
transport, and enable direct infusion of the cell product into
patients from cryobags.
FUTURE OF NK CELL BASED THERAPIES

It is widely accepted that allogeneic products will be the next step
in the development of anti-cancer cell therapies, as they promise
high quality standards, immediate availability, significant cost
reductions and a reduced utilization of manufacturing capacities.
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However, CAR-NK cell based therapies need to prove their
abilities in additional clinical trials so as to show that they are at
least as effective as CAR-T cell therapies which currently
monopolize the market of CAR therapy. Postulated advantages
of NK cells, like innate anti-cancer immunity to possibly
overcome antigen escape and cancer heterogeneity (133) or a
different cytokine profile that may direct other immune cells like
dendritic cells (134) into the tumor site, need to prove clinical
relevance. The limited efficacy in the treatment of solid tumors
observed in CAR-T cells in vivo may pose a similar challenge for
CAR-NK cells as studies on allogeneic, activated NK cells imply
that they face cellular exhaustion and poor infiltration into
tumor sites (14, 135–137). To overcome immune suppression
in the TME, additional arming of immune cells through genetic
engineering is pushed for, e.g., by genetic ablations (138, 139) or
metabolic reprogramming of NK cells (140, 141).

The generation and clinical administration of CAR-T cells is
widely performed, and clinical manufacturing pipelines are
established and approved. In contrast, technologies required
for the optimization of cellular behavior and manufacturing
processes of engineered NK cells still need refinement.

Both NK cell and T cell therapies require further research to
overcome their respective limitations and to turn them into
efficient and affordable living anti-cancer drugs applicable
beyond B cell malignancies. Therefore, the question if T cells or
NK cells are to become the dominating platform for allogeneic,
“off-the-shelf” CAR cell therapies remains unanswered.
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