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Objectives: Recent studies suggested obesity to be a possible risk factor for COVID-19 disease in the wake of the
coronavirus (SARS-CoV-2) infection. However, the causality and especially the role of body fat distribution in
this context is still unclear. Thus, using a univariable as well as multivariable two-sampleMendelian randomiza-
tion (MR) approach,we investigated for thefirst time the causal impact of body composition on the susceptibility
and severity of COVID-19.
Methods: As indicators of overall and abdominal obesity we considered the measures body mass index (BMI),
waist circumference (WC), and trunk fat ratio (TFR). Summary statistics of genome-wide association studies
(GWASs) for these body composition measures were drawn from the GIANT consortium and UK Biobank,
while for susceptibility and severity due to COVID-19 disease data from the COVID-19 Host Genetics Initiative
was used. For the COVID-19 cohort neither age nor gender was available. Total and direct causal effect estimates
were calculated using Single Nucleotide Polymorphisms (SNPs), sensitivity analyses were done applying several
robustMR techniques andmediation effects of type 2 diabetes (T2D) and cardiovascular diseases (CVD)were in-
vestigated within multivariable MR analyses.
Results:Genetically predicted BMIwas strongly associatedwith both, susceptibility (OR=1.31 per 1 SD increase;
95% CI: 1.15–1.50; P-value = 7.3·10−5) and hospitalization (OR= 1.62 per 1 SD increase; 95% CI: 1.33–1.99; P-
value=2.8·10−6) even after adjustment for genetically predicted visceral obesity traits. These associationswere
neither mediated substantially by T2D nor by CVD. Finally, total but not direct effects of visceral body fat on out-
comes could be detected.
Conclusions: This study provides strong evidence for a causal impact of overall obesity on the susceptibility and
severity of COVID-19 disease. The impact of abdominal obesity was weaker and disappeared after adjustment
for BMI. Therefore, obese people should be regarded as a high-risk group. Future research is necessary to inves-
tigate the underlying mechanisms linking obesity with COVID-19.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The global COVID-19 pandemic due to an outbreak of a coronavirus
infection (SARS-CoV-2) causes serious conditions such as respiratory
failure, pneumonia, and is associated with a high number of deaths
[1]. Therefore, it is essential to identify risk factors associated with a
higher susceptibility to COVID-19 or amore severe course of the disease
and subsequently to identify high risk groups that require special pro-
tection [2]. Prior observational studies and meta-analyses found that
SARS-CoV-2-patients with chronic diseases such as diabetes, cardiovas-
cular diseases, chronic kidney disease, and respiratory diseasesmight be
at increased risk of disease severity and mortality [3,4]. Recent
t UNIKA-T Augsburg, Ludwig-
any.
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observational studies and systematic reviews and meta-analyses re-
ported that also obese people may be vulnerable to a more severe
COVID-19 disease course [5–8]. However, results were inconsistent on
the association between BMI and COVID-19 [9–12]. Using a Mendelian
randomization (MR) approach, for very severe cases of COVID-19 pa-
tients with respiratory failure, BMI was already shown to have a causal
impact [13,14]. Another MR-study suggested genetically predicted BMI
as causal risk factor for susceptibility and severity of COVID-19 [15].
However, so far, research on the causal impact of body fat distribution
on the susceptibility and severity of a COVID-19 disease is missing.

MR studies use genetic variants reliably related to a modifiable risk
factor to obtain evidence regarding the causal influence of the risk
factor. Thus, it is possible tominimize confounding andpreclude reverse
causation because variants are randomly allocated from parents to off-
spring at conception. In this study we investigated for the first time
total as well as direct causal effects of an increase in BMI, waist
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Simplified illustration showing the difference between a direct and total effect using
two exposures in a multivariable Mendelian randomization setting. G represents a set of
valid genetic instruments of two exposures X1 and/or X2. Bi-directional arrows
represent possible violations of the IV assumptions induced by X2. The direct effect of
exposure X1 on outcome Y is illustrated by the path a between X1 and Y. By contrast, the
total effect of X1 is defined as the sum of all paths from X1 on Y (a, b and c).
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circumference (WC), and trunk fat ratio (TFR) on the risk of infection
and severe course of COVID-19 disease. We disentangled the suggested
effects of overall and visceral body fat using refined statistical methods.

2. Methods

2.1. Study design

In a two-sample MR approach genetic variants were used to assess
causal effects of obesity considering also body fat distribution as risk fac-
tor on COVID-19 susceptibility and hospitalization due to an infection
with the SARS- CoV-2 virus. Regarding the random allocation of Single
Nucleotide Polymorphisms (SNPs) at the offspring (independent of
any confounders like gender and age and therefore no need for adjust-
ment), this kind of instrumental variable analysis mimics a randomized
controlled trial. The genetic variant(s) which are used inMR studies has
to fulfill three key assumptions: 1) the SNPsmust be robustly associated
with the risk factor; 2) the SNPs are not associatedwith any confounder
of the risk factor-outcome association (horizontal pleiotropy); 3) the
genetic variant(s) affect the outcome solely through the risk factor
and not through another causal pathway. While the univariable MR of-
fers the possibility to examine causality by using genetic variants as in-
struments, which are explicitly associated with one exposure, the
multivariable Mendelian randomization (MVMR) allows investigating
causality of SNPs that are associated with more than one exposure. In
this way, it is possible to distinguish between total and direct causal ef-
fects. The direct effect is defined as the effect of an exposure on the out-
come only via one path (direct) but not via any other path (Fig. 1). By
contrast, the total effect is defined as the sum of all possible paths
from the exposure on the outcome. Further details on the MR- and
MVMR-design were described elsewhere [16–19].

2.2. Obesity measurements and data availability

To quantify obesity and to assess body fat distributionwe used three
different body composition measures, namely BMI as indicator for
Table 1
Characteristics of the Single Nucleotide Polymorphisms (SNPs) used as instrumental variables f
sample Mendelian randomization analyses.

BMI

Sample size 694,649
Consortium GIANT, UK Biobank
Number of instrumental SNPsa 524
Explained variance 5.51%
F-statistic (mean, range) 72.29 (28.44–1270.71)
Reference Pulit et al., 2018

a Extraction of SNPs based on the threshold α = 5 · 10−8 and clumping cutoff r2 = 0.001.
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overall obesity, and WC and TFR as measures for visceral adiposity.
TFR, defined as proportion of body fat in the trunk was calculated by di-
viding the fat mass of the trunk by total body fat mass that were deter-
mined by segmental bioelectrical impedance analysis [20]. For BMI, the
summary statistics of a genome-wide association study (GWAS) con-
ducted by Pulit et al. [21] including 694,649 participants from the
GIANT consortium and UK Biobank (Table 1) were considered. To ac-
count for abdominal obesity we considered both the WC-GWAS of
Shungin et al. [22] based on 232,101 observations from the GIANT con-
sortium and the TFR-GWAS of Rask-Andersen et al. [20] with 362,499
subjects from the UK Biobank. The use of both datasets allowed us to
replicate and verify the results and thus strengthen evidence. Further-
more, for mediation analyses the latest GWAS for type 2 diabetes
(T2D) of the MRC IEU OpenGWAS Project [23] with 12,375 cases and
82,665 controls of the FinnGen Biobank and for cardiovascular disease
the summary level data of Schunkert et al. [24] with 22,233 cases and
64,762 controls from the CARDIoGRAM consortium were used. Both
mediation GWASs has the advantage that there is no sample overlap
with the selected datasets of metabolic traits what is important to
avoid issues regarding SNP-covariance estimation within mediation
analysis [25]. Finally, in additional analyses we used the GWAS of
Berndt et al. [26] with 98,697 participants from the GIANT consortium
that considered distinct BMI categories subdivided in normal weight
(BMI < 25 kg/m2), overweight (BMI ≥ 25 kg/m2), and obesity classes
1–3with thresholds 30, 35, and 40, respectively. All datasets include ob-
servations inmen andwomen of European ancestry. In all original stud-
ies, ethical approval had been obtained.

2.3. Selection of genetic instrumental variables for body composition
measures

As independent instruments we considered SNPs that were associ-
ated with the appropriate exposure at the genome-wide significance
threshold P < 5·10−8 and were not in linkage disequilibrium (LD)
using a clumping procedure with the cut-off r2 = 0.001. Therefore,
524 BMI-related, 42 WC-related and 33 TFR-related independent SNPs
were considered for univariable MR analyses after removing SNPs
with an imputation score ≤ 0.8 and palindromic SNPswith intermediate
allele frequencies (Tables A.1–A.3). These SNPs explained overall 5.51%,
1.09%, and 1.25% of the variance in BMI, WC, and TFR, respectively
(Table 1). Mean F-statistics, as measure for instrument strength, ranged
from 41.69 (TFR) to 72.29 (BMI) indicating strong instruments and
therefore lowpredisposition forweak instruments bias. Even the lowest
F-statistic F = 28.44 in BMI was above the suggested threshold for suf-
ficient instrument strength of F = 10.

2.4. GWAS summary statistics for COVID-19 disease

Genetic associations with COVID-19 susceptibility and hospitaliza-
tion were acquired from the growing COVID-19 Host Genetics Initiative
[27], which provides publicly accessible summary statistics of GWAS in
relation to several COVID-19 outcomes from different studies (e.g. UK
Biobank, FinnGen). In the third release from June 29, 2020 in total
6696 positively tested COVID-19 cases (vs. 1,073,072 controls) and
or bodymass index (BMI), waist circumference (WC), and trunk fat ratio (TFR) in the two-

WC TFR

232,101 362,499
GIANT UK Biobank
42 33
1.09% 1.25%
55.26 (29.34–447.02) 41.69 (30.26–124.77)
Shungin et al., 2015 Rask-Andersen et al., 2019
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Table 2
Univariable Mendelian randomization estimates (total effects) for the association be-
tween bodymass index (BMI),waist circumference (WC), and trunk fat ratio (TFR) related
Single Nucleotide Polymorphisms (SNPs) and COVID-19 susceptibility.

Method nSNP OR 95% CI P Exposure

Radial IVW (Mod.2nd) 519 1.312 (1.147–1.500) 7.3·10−5 BMI
Radial IVW (exact fixed
effects)

519 1.317 (1.148–1.510) 8.1·10−5 BMI

Radial IVW (exact random
effects)

519 1.317 (1.153–1.504) 5.5·10−5 BMI

IVW (mult. random effects) 519 1.312 (1.147–1.500) 7.3·10−5 BMI
RAPS 519 1.317 (1.146–1.513) 1.0·10−4 BMI
PRESSO 519 1.312 (1.147–1.500) 8.3·10−5 BMI
Weighted median 519 1.333 (1.077–1.650) 0.008 BMI
Weighted mode 519 1.414 (0.887–2.255) 0.146 BMI
MR-Egger 519 1.297 (0.884–1.905) 0.184 BMI
Radial IVW (Mod.2nd) 41 1.377 (1.065–1.780) 0.015 WC
Radial IVW (exact fixed
effects)

41 1.384 (1.040–1.843) 0.026 WC

Radial IVW (exact random
effects)

41 1.384 (1.089–1.760) 0.011 WC

IVW (mult. random effects) 41 1.377 (1.065–1.780) 0.015 WC
RAPS 41 1.384 (1.033–1.855) 0.029 WC
PRESSO 41 1.377 (1.065–1.780) 0.019 WC
Weighted median 41 1.362 (0.904–2.053) 0.139 WC
Weighted mode 41 1.296 (0.670–2.507) 0.445 WC
MR-Egger 41 1.817 (0.654–5.050) 0.259 WC
Radial IVW (Mod.2nd) 32 1.417 (1.126–1.783) 0.003 TFR
Radial IVW (exact fixed
effects)

32 1.424 (1.069–1.897) 0.016 TFR

Radial IVW (exact random
effects)

32 1.424 (1.136–1.785) 0.004 TFR

IVW (mult. random effects) 32 1.417 (1.126–1.783) 0.003 TFR
RAPS 32 1.424 (1.061–1.913) 0.019 TFR
PRESSO 32 1.417 (1.126–1.783) 0.006 TFR
Weighted median 32 1.411 (0.944–2.109) 0.093 TFR
Weighted mode 32 1.526 (0.766–3.041) 0.238 TFR
MR-Egger 32 1.746 (0.564–5.405) 0.341 TFR

Abbreviations: OR, odds ratio; CI, confidence interval; IVW (Mod.2nd) inverse-variance
weighted model with modified 2nd order weights.
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3199 hospitalized COVID-19 patients due to severe symptoms (vs.
897,488 controls) were available. However, neither age nor gender
was reported for the cohort. Further information and new releases can
be taken from the COVID-19 Host Genetics Initiative homepage [27].

2.5. Statistical power

The a priori statistical power for the binary traits susceptibility and
hospitalization due to COVID-19 disease was calculated according to
Burgess et al. [28]. Given a type I error of 5%, the power for susceptibility
was higher than for hospitalization and higher for BMI than for WC or
TFR regarding the explained variance in exposures as well as the num-
ber of cases/controls in the outcomes (Table A.4). Therefore, our analy-
ses were sufficiently powered (i.e. >80%) when the true OR per one
standard deviation of the respective exposure was ≥1.4 for COVID-19
susceptibility and ≥1.5 for hospitalization due to COVID-19 in geneti-
cally instrumented BMI, WC and TFR.

2.6. Statistical analyses

Causal estimates of the relationships between body composition
measures and Covid-19 susceptibility as well as severity were calcu-
lated, applying an inverse-variance weighted (IVW) meta-analysis
using modified second order weights within the radial regression
framework. This approach provides the highest statistical power if the
key assumptions of the MR (described in the study design) are met.
To assess and validate these assumptions we performed a series of sen-
sitivity analyses that consider different patterns of violations. Among
others, the MR-PRESSO (Pleiotropy RESidual Sum and Outlier) method
was used for two issues: the global test (based on observed residual
sumof squares) detected horizontal pleiotropy and theoutlier test iden-
tified potential outlier SNPs at a threshold of 0.05 (Table A.5).

Under the Instrument Strength Independent of Direct Effect (InSIDE)
assumption, the radial MR-Egger intercept test was applied for
assessing directional pleiotropy (Table A.5). Substantial heterogeneity
within the IVW and MR-Egger methods was quantified and tested
using Cochran's aswell as Rücker's Q statistics (Table A.6). Furthermore,
we investigated influential SNPs based on the respective Q statistic and
several plots (e.g. radial, funnel, leave-one-out, and SNP-exposure-
outcome association plots). If necessary, outliers were excluded as a
part of a sensitivity analysis within an iterative approach (Table A.7).

To assess consistency of causal estimates in case of horizontal pleiot-
ropy aswell as outlier occurrence, we additionally performed four types
of robust estimation methods. The first was the MR-Egger regression,
which provides under the InSIDE assumption a consistent estimator,
even if there is directional pleiotropy. The secondwas theweightedme-
dian approach that requires at least 50% of the genetic variants to be
valid instruments. The third was the weighted mode method, which is
consistent even if less than 50% of the genetic variants are valid. Fourth,
we conducted a many weak instruments analysis using the RAPS (Ro-
bust Adjusted Profile Score) method and controlled for systematic plei-
otropy in form of overdispersion, if necessary.

The used body compositionmeasures for overall and visceral obesity
are not independent from each other. Furthermore, the causal effect es-
timates of these traits on the susceptibility and severity of COVID-19
disease may be mediated through obesity-related diseases. Therefore,
to calculate the direct effects of each body composition measure and
to investigate possible mediation mechanisms of type 2 diabetes and
cardiovascular diseases (CVD), we additionally performed MVMR anal-
yses. In the main analysis we performed the robust IVW method with
multiplicative randomeffects,wherewemutually adjusted BMI asmea-
sure for overall body fat for the association of variants with genetically
predicted levels of one of the visceral obesity traits (WC, TFR) or comor-
bidity (type 2 diabetes, CVD). Within sensitivity analyses the MR-Egger
with multiplicative random effects and theMedian approach were per-
formed. In addition to this, we determined Q-minimized point
3

estimates that take into account weak instruments and substantial het-
erogeneity using estimated phenotypic correlations. To assess substan-
tial heterogeneity and directional pleiotropy, we calculated the global
Q-statistics and applied the MR-Egger intercept test to all models, re-
spectively (Tables A.8–A.11).

To verify the results regarding overall fat content from univariable
MR and make statements about obesity as a disease compared to non-
obese subjects, additional analyses were performed using an indepen-
dent GWAS with categorized BMI (five BMI groups) [26].

After application of the Bonferroni correction to account formultiple
testing issues, P-values with P < 0.008were considered statistically sig-
nificant. All reported ORswere expressed per one standard deviation in-
crement of each body composition measure. Significance thresholds
were set to α = 0.01 for testing particular Q statistics and α = 0.05
for the PRESSO global test. Analyses were performed using primarily
the TwoSampleMR (version 0.5.4), MendelianRandomization (version
0.5.0), MVMR (version 0.2) and MRPRESSO (version 1.0) packages of
the statistical Software R (version: 4.0.0).

3. Results

3.1. Total effects

Genetically predicted BMI was strongly positively associated with
both, COVID-19 susceptibility (OR=1.31; 95% CI: 1.15–1.50; P-value
= 7.3·10−5) and hospitalization (OR = 1.62; 95% CI: 1.33–1.99; P-
value = 2.8·10−6) due to severe symptoms of COVID-19
(Tables 2–3). While genetically predicted TFR showed a strong rela-
tionship with disease susceptibility (OR = 1.42; 95% CI: 1.13–1.78;



Table 3
Univariable Mendelian randomization estimates (total effects) for the association be-
tween bodymass index (BMI),waist circumference (WC), and trunk fat ratio (TFR) related
Single Nucleotide Polymorphisms (SNPs) and hospitalization due to severity of COVID-19
disease.

Method nSNP OR 95% CI P Exposure

Radial IVW (Mod.2nd) 518 1.623 (1.325–1.989) 2.8·10−6 BMI
Radial IVW (exact fixed
effects)

518 1.635 (1.336–2.002) 1.8·10−6 BMI

Radial IVW (exact random
effects)

518 1.635 (1.340–1.996) 1.7·10−6 BMI

IVW (mult. random effects) 518 1.623 (1.325–1.989) 2.8·10−6 BMI
RAPS 518 1.635 (1.332–2.008) 2.6·10−6 BMI
PRESSO 518 1.623 (1.325–1.989) 3.6·10−6 BMI
Weighted median 518 1.544 (1.103–2.161) 0.011 BMI
Weighted mode 518 1.271 (0.629–2.571) 0.504 BMI
MR-Egger 518 1.270 (0.721–2.237) 0.407 BMI
Radial IVW (Mod.2nd) 41 1.472 (0.971–2.232) 0.069 WC
Radial IVW (exact fixed
effects)

41 1.483 (0.971–2.265) 0.068 WC

Radial IVW (exact random
effects)

41 1.483 (0.992–2.217) 0.062 WC

IVW (mult. random effects) 41 1.472 (0.971–2.232) 0.069 WC
RAPS 41 1.483 (0.962–2.285) 0.074 WC
PRESSO 41 1.472 (0.971–2.232) 0.076 WC
Weighted median 41 1.441 (0.788–2.633) 0.235 WC
Weighted mode 41 1.240 (0.442–3.477) 0.685 WC
MR-Egger 41 1.640 (0.365–7.360) 0.523 WC
Radial IVW (Mod.2nd) 33 1.560 (1.013–2.404) 0.044 TFR
Radial IVW (exact fixed
effects)

33 1.577 (1.036–2.402) 0.034 TFR

Radial IVW (exact random
effects)

33 1.576 (1.028–2.418) 0.045 TFR

IVW (mult. random effects) 33 1.560 (1.013–2.404) 0.044 TFR
RAPS 33 1.577 (1.025–2.427) 0.038 TFR
PRESSO 33 1.560 (1.013–2.404) 0.052 TFR
Weighted median 33 1.643 (0.906–2.979) 0.102 TFR
Weighted mode 33 1.700 (0.519–5.566) 0.387 TFR
MR-Egger 33 3.254 (0.565–18.751) 0.196 TFR

Abbreviations: OR, odds ratio; CI, confidence interval; IVW (Mod.2nd) inverse-variance
weighted model with modified 2nd order weights.

Fig. 2. Causal total effect estimates (odds ratios and 95% confidence intervals) from the univa
(WC), and trunk fat ratio (TFR) with COVID-19 susceptibility and hospitalization. Grey point
SNPs (Table A.7). For reasons of clarity MR-Egger estimates were omitted regarding wide con
modified 2nd order weights.
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P-value = 0.003), the association with severity was weaker (OR =
1.56; 95% CI: 1.01–2.40; P-value = 0.044). Beyond that, there was
evidence of a positive association betweenWC and COVID-19 suscepti-
bility (OR = 1.38; 95% CI: 1.07–1.78; P-value = 0.015) but not
with hospitalization due to COVID-19 (OR = 1.47; 95% CI: 0.97–2.23;
P-value = 0.069).

We conducted a series of sensitivity analyses to assess the robust-
ness of the results. Neither the MR-Egger intercept test nor the MR-
PRESSO global test nor the calculated Q-statistics provided evidence
for any pleiotropy (Tables A.5–A.6). Outlier exclusion (Table A.7) had
no substantial effect on the appropriate estimates (Fig. 2). Therefore,
causal estimateswere obtained by the radial IVWmodel usingmodified
second order weights. All robust approaches within sensitivity analyses
led to consistent results and supported the findings revealed by the ra-
dial IVWmodels (Tables 2–3).
3.2. Direct effects

After mutual adjustment for WC or TFR within the MVMR setting,
genetically predicted BMI was still positively associated with both,
COVID-19 susceptibility and severity with odds ratios between
ORTFR adj = 1.29 (95% CI: 1.07–1.54; P-value = 0.007) and ORWC adj =
2.13 (95% CI: 1.17–3.89; P-value = 0.014) (Fig. 3). Beyond that, the ef-
fect estimates of both visceral obesity traits lost their statistical signifi-
cance after adjustment for BMI. The MVMR-Egger approach with
multiplicative random effects as well as the Median method supported
largely these findings (Fig. A.12). However, the Egger intercept test in
the model of BMI together with TFR on the hospitalization due to
COVID-19 revealed directional pleiotropy (βintercept = 0.01; 95% CI:
0.00–0.02; P-value = 0.044) (Table A.8) and a non-significant MR-
Egger estimator for BMI in a different direction (OR = 0.74; 95% CI:
0.36–1.51; P-value = 0.408) (Fig. A.12). Apart from this, there was no
evidence for directional pleiotropy (Table A.8) or heterogeneity
(Table A.9) in the multivariable models, what was supported by the
point estimates of the multivariable Q-minimization approach, which
is even consistent even with weak instruments (Fig. 3).
riable Mendelian randomization analyses of body mass index (BMI), waist circumference
s with dashed confidence intervals correspond to estimates biased regarding influential
fidence intervals. Abbreviations: IVW (Mod.2nd) inverse-variance weighted model with

Image of Fig. 2


Fig. 3. Causal direct effect estimates from pairwise multivariable Mendelian randomization analyses of body mass index (BMI), waist circumference (WC), and trunk fat ratio (TFR) with
COVID-19 susceptibility as well as hospitalization. Odds ratios and 95% confidence intervals were obtained from the robust inverse-variance weighted (IVW) method with multiplicative
random effects. Point estimates shown as asterisks were obtained from the Q-minimization approach that account for weak instruments and substantial heterogeneity.
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3.3. Mediation analysis

Neither type 2 diabetes nor CVD nor both together mediated the ef-
fects of body composition measures on the COVID-19 outcomes
(Figs. A.13–A.15). Compared to the unadjusted OR the direct effect esti-
mates of BMI on both susceptibility and severity due COVID-19
remained the same or increased slightly after adjustment (Fig. 4). In
the joint models with both confounding variables the effect of BMI on
the COVID-19 susceptibility was OR = 1.38 (95% CI: 1.15–1.66;
P-value = 4.7·10−4) and the effect on hospitalization was OR = 1.65
(95% CI: 1.21–2.26; P-value = 0.002).

Furthermore, except for the joint model, no noticeable impact of
type 2 diabetes or CVD could be observed for the association between
Fig. 4.Total and direct effect estimates fromMendelian randomizationmediation analyses of bo
ratio (TFR), adjusted for type 2 diabetes (T2D) and/or cardiovascular diseases (CVD) on COVID
obtained from the robust inverse-varianceweightedmethodwithmultiplicative randomeffects
account for weak instruments and substantial heterogeneity.

5

genetically predictedWC and susceptibility to COVID-19 with direct ef-
fects similar to the total effects.

The adjusted causal estimates for the impact of genetically predicted
TFR on hospitalization due to COVID-19 ranging between ORCVD adj =
1.71 (95% CI: 1.09–2.68; P-value = 0.019) and ORT2D adj = 2.58 (95%
CI: 1.66–4.01; P-value = 2.6·10−5) were stronger than the total effect
estimates. This implies that TFRwas neither attenuated by type 2 diabe-
tes nor CVD nor by both together. However, the association of geneti-
cally predicted TFR with susceptibility to an infection with COVID-19
was affected slightly by CVD (ORCVD adj = 1.43; 95% CI: 0.98–2.09; P-
value = 0.061), but neither by type 2 diabetes (ORT2D adj = 1.58; 95%
CI: 1.17–2.14; P-value = 0.003) nor in the joint model (ORjoint = 1.41;
95% CI: 1.01–1.95; P-value = 0.043).
dy compositionmeasures, bodymass index (BMI),waist circumference (WC), and trunk fat
-19 susceptibility as well as hospitalization. Odds ratios and 95% confidence intervals were
. Point estimates shown as asteriskswere obtained from theQ-minimization approach that

Image of &INS id=
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All estimates replicated by MVMR-Egger as well as Median ap-
proaches in our sensitivity analyses supported unfailingly the presented
findings obtained by the robust IVW method with multiplicative ran-
dom effects (Figs. A.13–A.15). Furthermore, there was no evidence for
directional pleiotropy (Table A.10). However, although the calculated
Q-statistics revealed substantial heterogeneity in the joint models and
type 2 diabetes-adjusted models of BMI on susceptibility and hospitali-
zation due to COVID-19 (Table A.11), the calculated point estimates
from the multivariable Q-minimization approach confirmed the appro-
priate findings of our mediation analyses (Fig. 4).

3.4. Additional analysis

Overweight and obese subjects showed an increased risk for suscep-
tibility and severity of COVID-19 compared to controls with a BMI < 25
kg/m2 (Fig. A.16). Despite the relatively small sample size and therefore
higher uncertainty, causal estimates were throughout consistently pos-
itive and rosewith increasing obesity up to an OR= 1.04 (95% CI: 1.03–
1.05; P-value= 2.5·10−14) for susceptibility and an OR= 1.17 (95% CI:
1.14–1.19; P-value = 8.2·10−41) for hospitalization due to COVID-19
disease. As before, all estimates derived by the IVW approach withmul-
tiplicative second order weights as main method were confirmed
within the scope of sensitivity analyses and supported therefore the re-
sults from the univariable MR main analyses.

4. Discussion

The present study using genetic instruments for BMI, WC, and TFR
from publicly available large-scale GWAS provides evidence for a causal
role of general obesity expressed by an increasing BMI regarding
COVID-19 susceptibility and disease severity. The association was
strongly positive even after adjustment for genetically predicted vis-
ceral fat. Adjusting for the genetic effects of type 2 diabetes and CVD,
the direct causal effects of BMI were not attenuated and thus, a mediat-
ing effect of these comorbidities seems unlikely. In view of the visceral
obesity traits, especially the TFR had strong total effects on both out-
comes in the univariable analyses. However, after adjustment for CVD
the association with COVID-19 susceptibility was slightly attenuated.

4.1. Literature context

The present MR-analysis supports recently published observational
studies, systematic reviews and meta-analyses assuming that obesity
defined by BMI might be an independent risk factor for COVID-19
[9–12,29]. In addition, the results of this MR-analysis clearly indicated
a causal association of BMI and COVID-19 susceptibility and severity in-
dependent of the comorbidities type 2 diabetes and CVD. This finding is
in linewith two otherMR-studies investigating amongother risk factors
the association between genetically predicted BMI and COVID-19 sever-
ity [13,14]. One further prior MR-study on cardiometabolic risk factors
associated with COVID-19 identified BMI as a causal risk factor for
COVID-19 susceptibility and severity [15]. Contrary to our findings, in
that investigation, the authors concluded that the association between
BMI and COVID-19 illness might be mediated by type 2 diabetes. How-
ever, in contrast to the study of Leong et al. in our investigation we used
the latest mediation GWASs with no sample overlap with the selected
datasets of body compositionmeasures. This approach circumvented is-
sues with estimations of phenotypic covariances and therefore mini-
mized bias within the mediation analyses [25].

So far, studies investigating the role of body fat distribution on the
severity and susceptibility of COVID-19 are scarce. Few observational
studies investigated the association between visceral fat and COVID-
19 disease severity and complications and suggested that abdominal
fat is related to disease severity [30–34]. For example, in their proof-
of-concept study including 30 patients with COVID-19 Petersen et al.
suggested that visceral fat and upper abdominal circumference
6

specifically increased the likelihood of severe COVID-19 [32]. Another
study showed that visceral adiposity and high intramuscular fat deposi-
tion assessed by computed tomography scans were independently as-
sociated with critical COVID-19 illness, that is patients with acute
respiratory distress syndrome or sepsis with acute organ dysfunction
[33]. Our results show that, apart fromBMI, body fat distribution, in par-
ticular visceral adiposity, plays no direct causal role regarding COVID-19
severity and susceptibility. Observational studies on correlations of vis-
ceral fat accumulationwith COVID-19 can be subject to biases including
residual confounding and reverse causality.

4.2. Possible mechanisms

Several mechanismsmay explainwhy obese people are at increased
risk for COVID-19 infection. Inflammation and the immune system in
obese individuals could play a role in relation to viral diseases. In adi-
pose tissue there is a high production of pro-inflammatory cytokines
causing chronic low-grade inflammation and immune dysregulation
[35,36]. Results from animal models revealed that the role of obesity
in increasing the risk of influenza morbidity and mortality is due to
the impairment of the immune response to this pathogen [37]. Green
et al. proposed that hyperinsulinemia or hyperleptinemia which occurs
predominantly in obese subjects may lead to a metabolic dysregulation
of T cells, resulting in an impairment of the activation and function of
these adaptive immune cells in response to influenza viruses [37]. In
this context, Honce et al. emphasized especially the role of visceral adi-
posity [38]. Whichmetabolic and immune derangements in obese peo-
ple are responsible for the increased susceptibility to COVID-19
infections should be subject of further research.

In connection with COVID-19 it is discussed that the SARS-CoV re-
ceptor ACE2 is also used by the SARS-CoV-2 spike protein (a special sur-
face glycoprotein) as a cellular entry receptor [39]. In human tissue
ACE2 is expressed in the lung, the main target site for COVID-19 infec-
tion, but also in extrapulmonary tissues including heart, kidney, and in-
testine. Furthermore, obesity upregulates ACE2 receptor and therefore
obese subjects have larger amounts of ACE2 [40]. It can be assumed
that analogous to SARS-CoV [41], excessive ACE2 may competitively
bindwith SARS-CoV-2 not only to neutralize the virus but also to rescue
cellular ACE2 activity which negatively regulates the renin-angiotensin
system to protect the lung from injury [42]. Through the downregula-
tion of ACE2 activity angiotensin II, the substrate for ACE, will accumu-
late and lead to increased neutrophil accumulation, increased vascular
permeability, and pulmonary oedema, which will eventually cause se-
vere lung injury. Because obesity is associated with a dysregulation of
the renin-angiotensin-aldosterone system and thus among other things
linked to an overexpression of angiotensin II [43], this is likely an impor-
tant link between obesity and severity of COVID-19.

4.3. Strengths and limitations

Strengths of the study include that we performed a range of robust
MR methods to conduct sensitivity analyses for different patterns of
pleiotropy, investigated total and direct effects and assessed mediation
mechanisms at once. The use of three body composition measures,
that have different views on body fat distribution, allowed us to com-
pare aswell as differentiate between overall and abdominal fat content.
Moreover, the used TFR summary level data, which based on exactmea-
surement procedure instead of approximation, allowed us to verify the
results of usually usedWC-GWAS and on this way to strengthen the ev-
idence. However, our study also has limitations. The relationship be-
tween obesity and the risk of acquiring COVID-19 disease is influenced
by selection bias, because people with no, uncomplicated or milder
symptoms often were not tested regarding SARS-CoV-2 infection. This
causes bias towards the null hypothesis due to false negatives (type II
error) and reduces therefore the power by underestimating the true
causal effect. Unfortunately, neither age nor sex was available for the
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COVID-19 cohort, so it was not possible to perform stratified analyses.
Furthermore, the present study was conducted in subjects of
European ancestry and therefore the findings could not be applied to
other ethnicities.

5. Conclusions

Our study is the first strengthening the evidence that overall and not
abdominal obesity is causally associated with the susceptibility to and
the severity of COVID-19 disease. Future research is necessary to inves-
tigate the underlyingmechanisms linking obesity with COVID-19. Since
the prevalence of obesity is still increasing in many countries and the
probability of emerging and re-emerging infectious diseases might be
high in the future [44], intensive public health interventions targeting
obesity are necessary to reduce morbidity and mortality due to infec-
tious diseases such as COVID-19.
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