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Abstract
Purpose: The purpose of this study is to assess treatment responses induced by the two
tyrosine kinase inhibitors, Imatinib and Sunitinib, in a gastrointestinal stromal tumor (GIST)
xenograft using a clinical positron emission tomography/computed tomography (PET/CT)
scanner.
Methods: Nude mice bearing human GIST xenografts with mutations in exons 11 and 17 were
randomly allocated to treatment with Imatinib, Sunitinib, or placebo daily for seven consecutive
days. 2-deoxy-2-[18F]fluoro-D-glucose PET (18F-FDG-PET/CT) was performed in a clinical PET/CT
scanner at baseline (day 0) and 1 and 7 days after onset of treatment. Treatment response was
assessed by measuring tumor volumes and by calculation of tumor-to-liver 18F-FDG uptake ratios.
Results: Minor reductions in tumor volume were observed in both treatment groups. For the two
treatment groups, significantly decreased tumor-to-liver uptake ratios were observed both at
day 1 (Imatinib, −41%, p=.002; Sunitinib, −55%, pG .001) and at day 8 (Imatinib, −35%, pG .001;
Sunitinib, −50%, pG .001), when compared to individual baseline values. For the control tumors,
neither tumor volumes nor tumor-to-liver uptake ratios were altered during the 8 days the
experiment lasted.
Conclusions: Significant anti-tumor effects were demonstrated following treatment with both
Imatinib and Sunitinib. Decreased tumor-to-liver uptake ratios were more pronounced than
tumor volume reductions. Effects of novel targeted therapies can be evaluated in the GIST
xenograft model using a clinical PET/CT scanner.
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Introduction

Gastrointestinal stromal tumor (GIST) is the most
common mesenchymal cancer of the digestive system

and may occur in the entire length of the gastrointestinal
tract [1]. GISTs develop from interstitial cells of Cajal [2]
and typically express mutations in the c-KIT oncogene [3].
With an understanding of the key role of the KIT tyrosine
kinase expression [4] and the subsequent introduction of the
tyrosine kinase inhibitor (TKI) Imatinib, a new era in the
management of this tumor entity began [5]. Imatinib has
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shown an eminent effect in patients with metastatic GIST
[6], albeit often temporarily [7, 8]. Further understanding of
the molecular basis of GIST oncogenesis has led to the
development of a variety of novel agents for the treatment of
Imatinib refractory GIST [9, 10], such as the multitargeted
TKI, Sunitinib [11–13].

Computed tomography (CT) has conventionally been the
method of choice to monitor patients with GIST. However,
new targeted therapies for GIST have revealed insufficiency in
the current solid tumor size-based response assessment criteria
(RECIST), since initial treatment effect seldom is observed as
tumor volume reduction [14, 15]. Recent studies have used
decreased both in tumor size and in density values on CT for
the evaluation of GIST response to Imatinib treatment [16],
often referred to as the Choi criteria [17]. Treatment response is
defined as more than 15% decrease in CT density value or
more than 10% reduction in tumor size. Using the Choi criteria,
a sensitivity of 97% and a specificity of 100% in identifying
positron emission tomography (PET) responders have been
reported [17]. In contrast, the corresponding values based on
RECIST were 52% and 100%.

Most GISTs show high uptake of 2-deoxy-2-[18F]fluoro-
D-glucose (18F-FDG) when imaged by PET, and treatment
response can be observed early [6], even 24 h after onset of
treatment [18]. Albeit still a controversial issue, a certain
percentage of GISTs may probably be without any uptake of
18F-FDG and still be overtly malignant [16, 19].

As with Imatinib, KIT mutation status seems to be a
predictor of response to Sunitinib [20, 21]. Knowledge on
the relative responsiveness of different molecular subgroups
of Imatinib-resistant GIST may optimize the treatment and
thereby contribute to a better understanding of the mecha-
nisms of resistance and how to circumvent them. The
interest in other signal transduction inhibitors to overcome
this resistance is thus growing.

The development of novel targeted therapies necessitates
animal models, providing the same inherent molecular tumor
heterogeneity as observed in the clinical setting in order to
allow evaluation of treatment efficacy. To evaluate response
to targeted therapies, it is important to assess the inhibition
of tumor metabolism and not only tumor shrinkage. This
stresses the importance of integrating molecular imaging
technologies in treatment response evaluation.

The availability of dedicated small animal PET scanners
is limited, and thus researchers have tried using adapted
clinical systems [22–24]. Recently, Aide et al. demonstrated
that a state-of-the art clinical PET/CT could provide high
quality images and accurate quantification of the 18F-FDG
uptake with comparable spatial resolution as dedicated small
animal scanners [25]. Based on these findings, we conducted
a preclinical therapy study assessing therapeutic efficacy in
human GIST xenografts receiving Imatinib or Sunitinib
treatment in a clinical PET/CT. This approach may, if
rigorously validated, be used for high throughput evaluation
of new TKIs and other pharmaceuticals being developed to
circumvent treatment resistance.

The aims of this study were twofold: first, to
evaluate treatment response to Imatinib or Sunitinib in
the human GIST AHAX xenograft and second, to
evaluate if a clinical PET/CT scanner can be used for
this assessment.

Materials and Methods
Xenografts and Animals

The human GIST xenograft AHAX with mutations in exon 11
(c.1673_1687del, p.Lys558_Glu562del) and exon 17 (c.2446G9C,
p.Asp816His) was used [26]. Xenografts were established by
subcutaneous implantation of tumor tissue fragments (~2×2×
2 mm3) bilaterally into 36 female NCR athymic mice (5–7 weeks;
25–30 g). The mice were bred at the animal department of our
institution and kept under specific pathogen-free conditions at
constant temperature (22–24°C) and humidity (55–60%). They
were given sterilized food and tap water ad libitum. The animal
study was approved by the Institutional Committee on Research
Animal Care. All mice were ear-tagged and followed individually
throughout the study. After 3 months, tumor volumes were 515±
45 mm3. At this time point, the 33 mice were randomly allocated
into three groups, and baseline measurements were obtained. Three
separate mice, not included in the treatment study, were used for
comparing tumor-to-liver uptake ratio in a clinical and a dedicated
animal PET scanner.

Treatment

Imatinib (Glivec®, Novartis Pharma GmbH, Basel, Switzerland)
and Sunitinib (Sutent®, Pfizer Inc., New York, NY, USA) were
pulverized and dissolved in distilled water or dissolved in
50 mM citrate buffer (pH=3.5), respectively. Mice in the two
treatment groups were given either 100 mg/kg Imatinib (group
1) or 40 mg/kg Sunitinib (group 2) by oral gavage once daily,
whereas the control group received citrate buffer only (group
3). At the end of the experiment, the mice were sacrificed by
neck dislocation.

Tumor Measurements

Tumor volumes were estimated by caliper measurements from
implantation until the end of the experiment using themodified ellipsoid
formulae [27, 28]: V mm3ð Þ ¼ p=6ð Þ � a mmð Þ � b2 mm2ð Þ,
with a and b being the longest and the perpendicular tumor
diameters, respectively. Measurements were normalized to
individual pre-treatment (day 0) tumor volumes.

Histopathological Examination

Material from the primary tumor and subsequent surgical speci-
mens were reviewed by an experienced sarcoma pathologist.
Paraffin-embedded tissue was processed for staining with hema-
toxylin and eosin (HE) and microscopic examination. The mitotic
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index was counted in ten high power fields (HPF; objective ×40,
area of a single HPF; 0.3066 mm2).

18F-FDG PET/CT in a Clinical Scanner

PET examinations were performed before treatment (day 0), 24 h
(day 1), and 7 days after onset of treatment with Imatinib,
Sunitinib, or placebo. The mice were examined after 4 h of fasting
using a clinical PET/CT scanner (Biograph 16, Siemens, Erlangen,
Germany). The mice were anesthetized with 0.025 ml/10 g s.c.
injections of tiletamine 2.4 mg/ml and zolazepam 2.4 mg/ml
(Zoletil vet®, Virbac Laboratories, Carros, France), xylazine
3.8 mg/ml (Narcoxyl vet, Roche, Basel, Switzerland), and
butorphanol 0.1 mg/ml (Torbugesic, Fort Dodge Laboratories, Fort
Dodge, IA, USA) before examination. One hour after intra-
peritoneal injections of 7–10 MBq 18F-FDG (GE Healthcare AS,
Oslo, Norway), the mice were positioned in groups side by side on
a heating cushion. A CT scan was obtained with a slice thickness of
1 mm and a pixel size of 0.49×0.49 mm2. Subsequently, a 10-min
one-bed position PET acquisition was obtained. Images were
reconstructed by an OSEM iterative technique, using a 2-mm
Gaussian post-reconstruction smoothing filter. The image format
was 256×256, the pixel size was 2.67×2.67 mm2, and the slice
thickness was 2 mm. Attenuation and scatter correction were
applied before the images were transferred to a remote workstation
for further image analysis.

18F-FDG PET in a Dedicated Animal Scanner

To validate the use of a clinical scanner for assessment of
quantitative 18F-FDG uptake, three separate, untreated mice were
subjected to 18F-FDG-PET examination in a dedicated small animal
PET scanner (microPET Focus 120, Siemens Medical Solutions,
Erlangen, Germany). Following 4 h of fasting, the mice were
anesthetized, and 7–10 MBq 18F-FDG was injected intraperito-
neally [29]. After 1 h, the mice were scanned for 10 min.
Attenuation correction was obtained by a 10-min transmission scan
with a 68Ge point source after 18F-FDG-PET. Data collected in list
mode were reconstructed using 3-D OSEM-MAP [30–32] (2
OSEM iterations, 18 MAP iterations, β=0.5, 128×128×95 matrix
size, 0.87×0.87×0.80 mm3 voxel size). Images were transferred to
a remote workstation for further analysis.

Image Analysis

The PET/CT images were analyzed using IDL (Interactive Data
Language v6.2, Research Systems Inc., Boulder, CO, USA).
Initially, an image volume covering all animals was reconstructed.
All coronal planes were added to form a two-dimensional
representation of the three-dimensional volume elements. These
images were used to draw individual regions of interests (ROIs)
around tumor and liver. The co-registered CT images were used for
guiding the delineations. Tumor-to-liver uptake ratios for individual
tumors were obtained by dividing mean tumor 18F-FDG uptake by
the mean liver 18F-FDG uptake. All ratios were normalized to
individual pre-treatment values.

Ex Vivo Counting

Immediately following clinical PET/CT, the three mice that
underwent small animal PET examination 24 h earlier were
sacrificed, and tumor and liver were harvested. Tissue samples
were separately weighed and counted for 1 min in a gamma counter
(Cobra II auto-gamma detector, Packard Instrument Company,
Meriden, CT, USA). The samples were normalized to sample
weight. Tumor-to-liver uptake ratios obtained from the clinical
PET/CT scanner, the dedicated small animal PET scanner, and
from ex vivo counting were compared.

Statistical Analysis

Statistical analyses were performed using SPSS version 16.0 (SPSS
Science, Chicago, IL, USA). The Kolmogorov–Smirnov test was
applied to test for normality. Statistical differences between groups
were analyzed using one-way ANOVA, two-sided t test, and
Pearson correlation coefficient. Significance was assigned at p≤ .05.

Results
Tumor Growth

The 33 mice developed 49 tumors giving a tumor take of
74.2%. Prior to therapy, tumor volumes did not differ
significantly between the three groups (p=.54). Initial tumor
volumes were normally distributed (p=.19), and results are
presented as means and standard deviations. Normalized
tumor volumes for the two treatment groups and the control
group as function of time after treatment are shown in Fig. 1.
Tumor volume in the control group increased, although not
significantly, with 11.5% from days 0 to 8 (p=.27).
Compared to individual baseline values, the mean volume
of the tumors in the Imatinib group was reduced by 15.7% at

Fig. 1. Normalized tumor volumes for the human GIST
AHAX xenografts prior to therapy and after 1 and 7 days of
daily Sunitinib, Imatinib, or placebo treatment. Error bars
represent standard deviations.
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day 8 (pG .01). In the Sunitinib group, no statistically
significant tumor decrease was observed (−8.8%, p=.41).

The mitotic index in tissue samples obtained from all
three groups was Imatinib, 2/10 HPF; Sunitinib, 8/10 HPF;
and control, 21/10 HPF.

Treatment Response Assessed with PET/CT

Mean number of pixels within the ROI used for the
measurement of 18F-FDG uptake was 6.6 (range, 2–15)
and 12.4 (range, 6–22)pixels for tumor and liver, respec-
tively. Normalized tumor-to-liver ratio as function of time
after onset of treatment is shown in Fig. 2. Pre-treatment
metabolic activity was not significantly different between
control and the two treatment groups (p=.358). One-way
ANOVA revealed no changes in tumor-to-liver uptake ratios
for the control group during the 8 days the experiment lasted
(p=.536). One day after onset of therapy, normalized tumor-
to-liver uptake ratios in the Imatinib- and Sunitinib-treated
groups decreased by 40.8±8.8% (pG .01) and 54.9±8.1%
(pG .01), respectively. At day 8, normalized tumor-to-liver
uptake ratios were reduced by 35.2% (pG .001) and 50.1%
(pG .001) for the Imatinib and the Sunitinib groups,
respectively, relative to individual baseline values. It should,
however, be noted that tumor-to-liver uptake ratios at days 1
and 8 were not significantly different (Imatinib, p=.56;
Sunitinib, p=.64). An example of 18F-FDG uptake in a nude
mouse prior to therapy and 24 h after start of Sunitinib
treatment is shown in Fig. 3.

In Vivo Imaging Versus Ex Vivo Counting

Pearson correlation coefficient between tumor-to-liver
obtained from ex vivo counting and from in vivo imaging
was 0.99 for both the clinical PET/CT scanner and for the

dedicated small animal PET scanner. It should however be
noted that the absolute tumor-to-liver ratios were different;
the clinical scanner yielded about 18% higher values, and
the dedicated animal scanner yielded about 23% lower
values, when compared to the ex vivo counting.

Discussion
This preclinical study demonstrates that tumor-to-liver 18F-
FDG uptake ratio decreases following Imatinib and Sunitinib
treatment in the human GIST AHAX xenograft, originating
from a clinical Imatinib-resistant patients [26]. This study
also shows that a clinical PET/CT can be used to assess
treatment response in small animals.

For both treatment groups, significantly reduced 18F-FDG
uptake was observed in the treated GIST xenografts 24 h
after onset of treatment, and the level remained low during
the entire experiment. The immediate metabolic shut-down
has previously been reported for human GISTs [18]. This is
in accordance with current knowledge that TKIs like
Imatinib, directly targeting glucose uptake metabolism
[33], will cause a rapid reduction in 18F-FDG uptake (within
hours to days). The prevailing hypothesis is that the decrease
reflects changes in glucose uptake mechanisms. Such early
decrease in 18F-FDG uptake correlates to therapeutic out-
come [34, 35], supporting its use as an early prognostic
marker.

The AHAX xenograft originates from a patient with a
clinically Imatinib-resistant GIST. The pronounced treat-
ment effect of both Imatinib and Sunitinib is intriguing since
the patient harbored mutations in exon 11 and exon 17,
leading to treatment resistance. Loss of the genetic mutation
leading to resistance could explain the observed treatment
effect. Mutation analysis of the implanted xenograft tissue
was however performed and revealed that both mutations
(exon 11 and 17), as seen in the patient, were maintained in
the xenografts [26].

Fig. 2. Normalized tumor-to-liver uptake ratios for the GIST
AHAX xenografts prior to therapy and after 1 and 7 days of
daily Imatinib, Sunitinib, or placebo treatment. Error bars
represent standard deviations.

Fig. 3. Clinical PET/CT images acquired before and 24 h
after treatment with Sunitinib.
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Clinical experience has shown that tumors with mutations in
exon 11 are less sensitive to Sunitinib treatment, and that exon
17mutations (which encode the activation loop) are resistant to
Imatinib [20] and have weak or no sensitivity to Sunitinib [36].
The observed response to both treatments suggests that AHAX
xenograft contains both Imatinib- and Sunitinib-sensitive
clones. This fits well with knowledge of the heterogeneity of
GISTs, with numerous different mutations being harbored
within a single tumor [37]. The maintenance of such hetero-
geneity after eight generations, which was the source of our
implanted tumor material, may be due to a selection of the most
virulent clones (or the clones harboring the highest mitotic
rate). Imatinib resistancemay also be incomplete. Low doses of
either Imatinib or Sunitinib have been shown to have a partial
inhibitory effect on KIT phosphorylation in a GIST cell line
with mutations in exon 11 and exon 17, presumably due to
inhibition of a minor population of cells with exon 11
mutations [36]. The antiangiogenic effects of Sunitinib [38]
may also contribute to the observed treatment response.

In our study, the 18F-FDG uptake in the two treatment
groups remained reduced for the 8 days the experiment
lasted. For both groups, tumor-to-liver ratios increased
slightly, but not significantly. This could possibly be
attributed to the development of a selection pressure,
promoting the growth of resistant clones or a change in
glucose uptake mechanisms [39, 40].

The clinical PET/CT scanner has the advantage of being
able to handle a large number of small animals simulta-
neously, thereby allowing high throughput imaging. Fig. 4
shows the experimental set-up in our study with ten mice
within one bed position. Identical hardware, software, and
acquisition protocols for examination of animals and humans
ensure consistency of data and provide easy translation of
developments from mouse to human in a clinical setting.

Tumor-to-liver uptake ratios obtained from ex vivo counting
differed in a systematic way from the ratios obtained from the
clinical and the animal scanner. Because of intensity, diffusion
signal intensities in small and irregular-shaped organs can

Fig. 4. Representative CT (a), PET (b), and PET/CT (c) images of ten mice bearing AHAX xenografts obtained using a clinical
PET/CT scanner. The anesthetized mice were positioned side by side on a heating cushion during acquisition of data.
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never be accurately reproduced [41], and this effect is much
more pronounced on a clinical PET scanner. The spatial
resolution of the clinical PET/CT scanner is clearly inferior to
that of the dedicated small animal PET scanner.With the actual
Gaussian filter, the full-width at half maximum of the point
spread function on the clinical scanner is 4.8 mm in the center
of the field. The resulting point spread function smearing is
most pronounced for small high-intensity objects. Systematic
over- and underestimation of tumor-to-liver uptake ratios for
the PET systems seem to have resulted from the way the ROIs
were drawn at the different modalities. In order to obtain the
most accurate assessment of tumor signal intensity in the
clinical scanner images, a smaller ROI than the actual size of
the tumor was used. On the other hand, CT information was
used to draw the liver region, and the imaging process had also
led to loss of intensity across the region border. Since the ratios
were calculated on a per-average-pixel-value basis, this
methodology is the probable reason for overestimation of the
tumor-to-liver ratio from the measurements on the clinical
scanner. The lack of co-registered CT images from the animal
PET scanner may have led to the inclusion of signal intensities
from tissues adjacent to or overlapping with the liver, resulting
in a systematic increased average liver signal intensity and thus
an underestimation of the tumor-to-liver ratio.

Despite the fact that the absolute ratios were different, the
correlations between ratios obtained with different methods
were very strong. Thus, the ratios obtained in this study are
well suited for comparisons between groups, but less
suitable for absolute quantification purposes. However, the
present study demonstrated that the clinical PET/CT system
yielded sufficient spatial resolution to obtain clinically
relevant information from this animal model.

More accurate assessment of treatment response can be
achieved by measuring tumor uptake as function of injected
dose for individual mice. This approach, which we will use
in our future studies, allows each animal to be its own
control and will reduce the influence of intensity diffusion
by allowing larger tumor ROIs to be drawn.

Conclusion
Significant anti-tumor effects of Imatinib and Sunitinib were
demonstrated in a human GIST xenograft originating from a
patient with a clinically Imatinib-resistant tumor. The meas-
ured treatment response, combined with the results from
comparison between PET-assessed tumor-to-liver uptake ratio
and ex vivo counting, demonstrates that a clinical PET/CT
offers non-invasive and longitudinal assessment of treatment
response to novel targeted therapies in preclinical models.
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