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Abstract: The complexity of molecular communications system, involving a massive number of
interacting entities, makes scalability a fundamental property of simulators and modeling tools. A
typical scenario is that of targeted drug delivery systems, which makes use of biological nanoma-
chines close to a biological target, able to release molecules in the diseased area. In this paper, we
propose a simple but reliable receiver model for diffusion-based molecular communication systems
tackling the time needed for analyzing such a system. The proposed model consists of using an
equivalent markovian queuing model, which reproduces the aggregate behavior of thousands of
receptors spread over the receiver surface. It takes into account not only the fact that the absorption
of molecules can occur only through receptors, but also that absorption is not an instantaneous
process and may require a significant time during which the receptor is not available to bind to
other molecules. Our results, expressed in terms of number of absorbed molecules and average
number of busy receptors, demonstrate that the proposed approach is in good agreement with
results obtained through particle-based simulations of a large number of receptors, although the time
taken for obtaining the results with the proposed model is an order of magnitudes lower than the
simulation time. We believe that this model can be the precursor of novel class of models based on
similar principles that allow realizing reliable simulations of much larger systems.

Keywords: molecular communications; diffusion; markovian model; scalable simulation

1. Introduction and Background

Molecular communication is a novel paradigm allowing information exchange by
means of molecules between biological nanomachines over short ranges [1,2]. Biological,
chemical, and physical processes are involved in the establishment of molecular communi-
cations, which makes the resulting context quite challenging. Molecular communications is
gaining momentum due to the possible innovative applications that can be realized in many
fields, with a special focus on the medical one [3]. Among them, targeted drug delivery
is currently regarded as one of the most promising. The various relevant proposals are
illustrated in [4], which illustrates a simple model to address complexity in drug delivery
leveraging molecular communications.

In the simplest scenario for molecular communications, a transmitter nanomachine
(TX) emits molecules, which propagate and eventually are received by a receiver nanoma-
chine (RX), which in turn decodes the relevant information by processing them. The
interested reader can refer to the work in [5] for a review of end-to-end communication
schemes. The information can be encoded on the concentration of the emitted particles,
on the frequency of their emission, and/or on the type of released molecules. Depending
on the target of the communications, it can be realized by emitting a number of symbols
composed by a burst of molecules, each one carrying its own information content as in
classic digital communications, or in a sustained flow of molecules, as in the case of drug
delivery. The information molecules can interact with the receiver node in several ways,
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which may induce a variation of their concentration around the receiver. The simplest
reception model assumes an ideal passive (known also as transparent) receiver, which is
permeable to the hitting molecules and is capable only to count the number of the molecules
inside its volume, without any physical or chemical interaction with them. This means
also that the hitting molecules will eventually contribute to the received signal more than
once in different symbol intervals, until they are inside the volume of the transparent RX.
To go further, a more realistic molecular communication system is the so-called absorbing
receiver, which removes each molecule from the environment after the absorption so that
it contributes only once to the received signal. In the simplest form, the absorption takes
place through the receiver surface, which may happen for very small molecules, able to
pass through the the external membrane of the receiver node. In a more sophisticated
and realistic model, especially for large or polar signaling molecules that cannot passively
diffuse through the membrane of cells, they can be absorbed only through the receptors that
cover the external membrane of the receiver node. This mechanism can be described by a
form of chemical reaction, as the reception process consists of a chemical reaction between
the signal molecules (ligand) and compliant receptors present on the RX surface. These
receptors are able to react only with specific types of information molecules, thus each
cell/nanomachine will have a number of different receptors to receive different signals.
For such reactive receivers, the sensing area is not the whole cell surface, but it is just
that part of the receiver surface that is covered by receptors, and the number of activated
receptors form the received signal. In more detail, these receptors may absorb or bind
with the information molecules. In the first case, the ligand–receptor chemical complex
formed by the ligand and the receptor is internalized by the nanomachine and follows a
process known as trafficking [6]. In the latter case, it may happen that some molecules
desorb from their receptors (reversible reaction) and may contribute several times to the
received signal (see also in [7]). In both cases, the received signaling molecules may trigger
inside the receiving cell/nanomachine the production of secondary molecules via the
so-called signaling pathways. These secondary molecules can later be used for detection or
decoding of the information, or to trigger additional complex reactions. In nature, cells
present a number of signaling pathways, each one responsible for relaying a particular
type of measurement taken in the extracellular space to the organelles in the cytosol, which
ultimately causes a response by the cell. For instance, very complex interactions are those
triggered by the absorption of the complex formed by the spike protein of SARS-CoV-2
with the ACE2 receptor of human cells (see in [8] and the references therein).

When a reactive receiver is considered, it is necessary to bear in mind the concept
of receiver congestion, known as saturation in biology, which is of great importance in
drug delivery systems [9]. Saturation is due to the reaction time of ligands with receptors,
especially when the average time during which a receptor is busy becomes significant.
From a macroscopic viewpoint, saturation is modeled by means of the so-called reaction
rates [10]. A more detailed, microscopic model is proposed in [11]. However, as already
pointed out in [9], this model, which uses a receptor pool, does not take into account the fact
that each receptor operates in isolation, and thus cannot account for a correct estimation
of failed molecule assimilation attempts (rejections). This problem is addressed in [9],
which proposes to address each receptor in isolation, to correctly evaluate assimilation
and rejection rates upon a given transmission rate. However, that model depends on
the displacement of receptors on the receiver surface, which, in general, is not known in
advance. In this paper, we show that approximating all receptors as they were concentrated
in a single point provides a very good agreement with simulation results, even if each of
them is modeled singularly by a pure loss queuing system.

Thus, in this paper, we propose a RX model for diffusion-based molecular communica-
tions, which could allow designing scalable simulation tools for molecular communications.
In the literature, we can find other initiatives aiming at designing scalable simulators, ad-
dressing the problem in a different way. For example, in [12] the authors partition the
overall simulation volume of a molecular communications system through both flow and
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diffusion components in adjacent homogeneous mesoscopic subvolumes. The rates of
transition of particles from one subvolume to another can be integrated in stochastic simula-
tions of reaction–diffusion systems that follow a mesoscopic approach, i.e., application of a
spatial stochastic simulation algorithm. This means that simulation of particle movement is
more coarse when it happens far from TX or RX nodes and becomes accurate close to them.
Another approach consists of using space partitions and GPUs to detect collision among
different entities (ligands, RX, TX, receptors on RX surface) to decrease the simulation
time [13]. Both approaches do not eliminate the simulation of particle movements, but
make them more approximate and faster. Differently, the rationale of our work consists of
avoiding the individual simulation of the movement of thousands of particles, which is
replaced by the use of a model that describes the dynamic interaction between a subset
of particles and their compliant receptors. In more detail, we consider a molecular com-
munication system where a nearly continuous flow of molecules is released from the TX.
Such molecules, which are aimed to be received by the RX, may happen to be grouped
in consecutive bursts, in order to obtain a desired effective average rate of molecules at
a specific target. A number of receptors is present over the RX surface. Each of them
is specialized to match a ligand type and can make a bond at a time with a compliant
ligand. As in the considered scenario the space around the RX could become full of signal
molecules, congestion may arise. It may result in the inability of busy receptors to build
additional bonds with colliding ligand molecules. We model this interaction by means of
the queuing theory. In particular, we model each receptor as an M/M/1/1 queue in order
to take into account saturation phenomena.

This paper expands the preliminary results presented as a poster in [14]. In particular,
we present a more detailed and complete model, along with the relevant simulation results.
We compare the results obtained by using two sets of numerical results, using the proposed
queuing model and a particle based simulator, respectively. The results are expressed in
terms of busy receptors and average number of absorbed molecules.

In Section 2, we provide the system model, whereas, in Section 3, we assess the
proposed model by means of simulation and reports some relevant consideration. Finally,
in Section 4, we report our concluding remarks.

2. System Model and Performance Analysis

The proposed system model is sketched in Figure 1. This figure illustrates all the
logical steps staying behind the definition of our model. First, Figure 1a illustrates the
physical model in which a transmitting nanomachine, the TX, releases a number of ligands
in the surrounding 3D environment. Through the propagation by diffusion, these ligands
can reach the receiving nanomachine, the RX node, which is equipped with a number of
different receptors. Only compliant receptors can bind with the released ligands. This
behavior is typically modeled in molecular communications literature as a point TX,
releasing particles that diffuse through the surrounding 3D environment, and a spherical
RX, whose surface is covered by circular receptors of radius rs, as illustrated in Figure 1b
(see, e.g., in [15]). We further model this system as a set of queues, one for each receptor.
We make the simplified assumption that all receptors are virtually located in the same point,
as we prefer avoiding to make specific assumptions on the position of receptors on the RX
surface [16] (Figure 1c). Finally, Figure 1d represents the single receptor service system
through the well-known M/M/1/1 queue. The use of queuing models for molecular
communication systems is not new, as shown in [9,11,17]. The original aspect in this paper
is that it is used to develop a simplified model to be used in large-scale simulations, that
represent a challenging task when such systems are analyzed. We model a receptor as a
server with an exponential service time (trafficking time) with mean to 1/µ.
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Figure 1. Overall system model: (a) emitting and receiving nanomachines with surface receptors,
(b) equivalent molecular communications model with receptors of radius rs, (c) queuing model of
the RX with all n receptors, and (d) queuing model for each receptor.

In order to model a continuous transmission of molecules from the TX, which may
represent a drug delivery process, we assume that the TX node transmits a pulse of Q
molecules every ∆t seconds, starting from t = 0. These molecules propagate in the commu-
nication environment departing from the TX according to the law of diffusion [18]. The
propagation environment is characterized by the diffusion coefficient, given by D = kBT

6πηrm
,

where kB is the Boltzmann constant, T is the temperature expressed in kelvins, η is the
viscosity of the medium, and rm is the radius of the considered molecules. If we use the
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simplified receiver model consisting of a receiver cell with absorbing receptors, the result-
ing system would be linear, and the resulting effect would consist of the superposition of
the solution for each pulse of molecules [15,19]. The overall rate of absorbed molecules
would be:

rabsorb(t) = Q
NK

∑
k=0

Fk
hit(t− ∆t, t)

min(t− tk, ∆t)
, (1)

where n is the number of RX receptors, Rr is the RX radius, rs is the receptor radius, d
is the minimum distance between the TX and the RX, NK = bt/∆tc is the number of
pulses transmitted up to t, and Fk

hit(t − ∆t, t) is the mean fraction of molecules arrived
at the RX receptors in the interval (t− ∆t, t] and transmitted by the TX during the k-th
pulse at time tk = k∆t. According to the definition provided by Equation (14) in [15], we
can rewrite this latter quantity as Fk

hit(t− ∆t, t) = Frs ,n
hit (max(0, t− tk − ∆t), t− tk), where

Frs ,n
hit (t1, t2) = Frs ,n

hit (t2)− Frs ,n
hit (t1), and Frs ,n

hit (t), given by Equation (13) in [15] and reported
below in (2), represents the fraction of molecules absorbed by the n receptors up to time t
assuming a release of pulse at time t = 0:

Frs ,n
hit (t) =

Rr

d
rsn

rsn + πRr

(
1 + erf

[
Rr − d√

4Dt

]
− exp

[
(d− Rr)

(
nrs + πRr

πR2
r

)
+

Dt
(

nrs + πRr

πR2
r

)2
]
× erfc

d− Rr + 2Dt
(

nrs+πRr
πR2

r

)
√

4Dt

) (2)

It is clear the existence of a complex and nonlinear dependency of the fraction of
absorbed molecules in a time interval and the number of receptors n deployed on the
RX surface.

We define as the arrival process to all receptors located on the RX surface the product
of the rate of emitted molecules at the TX (Q/∆t) and the fraction of each burst that
would be absorbed by an RX with absorbing receptors [15], and denote it as Λo(t). In
case of absorbing receptors, the rate of arrival is exactly the rate of absorption, that is,
Λo(t) = rabsorb(t), whereas the arrival rate per single receptor λo(t) is simply this number
scaled by n, as in (3):

λo(t) =
Λo(t)

n
=

rabsorb(t)
n

=
Q
n

NK

∑
k=0

Fk
hit(t− ∆t, t)

min(t− tk, ∆t)
. (3)

Taking into account the analysis carried out in [20], as already mentioned in the
Introduction, we remove the simplifying assumption of having absorbing receptors and
consider larger molecules. This means that we focus on reactive receivers [5], where
the time for completing the reaction/internalization between the ligand and the receptor
is usually non-negligible [6]. The consequence is that the resulting rate of absorption
evaluated for the absorbing receiver in our model becomes the rate of fresh, new molecule
arrivals from the TX. This means that we have two different contributions for computing
the overall arrival rate:

• the arrivals of new molecules coming from the TX upon a new burst. This contribution
is equal to λo(t) in (3) for each receptor;

• the attempts of molecules that have found a receptor busy to make a again a bond
with it, since after a bounce with a busy receptor, these ligands are still very close to it,
given the movement dynamics into play. Clearly, this second contribution depends
on the rate of rejected, i.e., not absorbed, molecules.

As we avoid making specific assumptions on the location of receptors on the RX
surface, we just make the simplified assumption that all receptors are virtually located on
the same point, as illustrated in Figure 1c.
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In [9], we have already shown that, under a continuous flow of molecules, a Poisson
process is a good model to approximate the arrival process of molecules at receptors. If we
focus on a single receptor, the new arrivals can be modeled by a non-homogeneous Poisson
process [9,11], with variable mean rate λo(t), as in (3). Instead, the rate of rejected molecules,
i.e., those that attempted to bind with a busy receptor, is denoted as λr(t). A portion of
these molecules escape (λro) with probability 1− Pc, whereas the others attempt again to
bind with the receptor (λri), where Pc is defined as the capture probability. For modeling
the overall arrival rate λ′o(t) including both contributions, we use two approximations. First,
given the values of quantities involved in the capture probability Pc, it results that

Pc = Frs ,n,d∗
hit (∆t), (4)

where the parameter d∗ in (4), which substitutes d in (2), does not represent anymore the
distance between TX and RX center, but the distance of a particle to the RX center after
bouncing over a busy receptor. The overall distance from the RX surface after the bounce
will be obviously lower than the overall displacement of the particle during a simulation
time step dt when it does not hit any obstacle. This implies that this value d∗ is dominated
nearly always by

d∗max ≈
√

3
(

3
√

2Ddt
)
+ Rr, (5)

where the term inside the brackets represents three times the standard deviation of a Brown-
ian shift in a time step in a single direction, whereas

√
3 is due to the fact that the movement

happens in 3D. Finally, the considered time interval is limited to ∆t as it represents the
time during which the effect of a pulse is more important. In our model, we set d∗ = d∗max.
Differently from our previous work [14], we do not use the approximation of an absorbing
receiver to model the probability of capture. In fact, although this approximation may
be acceptable when the number of receptors n is quite large, in the order of thousands,
it provides an overestimation when n decreases, especially for values well below 1000.
Instead, as (2) and thus (4) also takes into account n; this approximation is much more
reasonable. In Section 3, we analyze the impact of this approximation, showing that our
model indeed matches simulation values quite well.

The second approximation is as follows. From elementary queuing theory, it is known
that the overflow traffic does not follow a Poisson distribution, but a Pascal distribution,
which exhibits a larger variance. Nevertheless, we approximate the overall molecule arrival
rate per receptor as a non homogeneous Poisson process with rate

λ′o(t) = λo(t) + λri(t) ≈ λo(t)
(

1 + Pc
λo(t)

µ + λo(t)

)
. (6)

where the term λo(t)
µ+λo(t)

represents the probability of finding a receptor busy due to incoming
arrivals λo(t). According to queuing theory, we define the per-receptor load as

Ao(t) =
λ′o(t)

µ
. (7)

This implies that the per-receptor rejection rate λr(t), according to queuing theory, is
given by the product of the offered load and the rejection probability, that is,

λr(t) = λ′o(t)
Ao(t)

1 + Ao(t)
=

A2
o(t)

1 + Ao(t)
µ, (8)

whereas the rate of absorbed molecules is given by

λa(t) = λ′o(t)− λr(t) =
λ′o(t)

1 + Ao(t)
=

Ao(t)
1 + Ao(t)

µ, (9)
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When considering the whole RX, the aggregated average arrival rate is Λ′o(t) = nλ′o(t),

consequently the average aggregated rejection rate is equal to Λr(t) = n Ao(t)2

1+Ao(t)
µ, and the

average aggregate absorption rate is equal to Λa(t) = n Ao(t)
1+Ao(t)

µ. The cumulative number

of rejections at RX can be evaluated as Nr(t) =
∫ t

0 Λr(t)dt, whereas the cumulative number
of absorption as Na(t) =

∫ t
0 Λa(t)dt. We will use these last two metrics—Nr(t) and Na(t)—

to evaluate the goodness of the proposed model with respect to particle based simulations.
Finally, let us consider the expected performance in steady state conditions, that is, for

t −→ ∞. In this case, it is easy to show that the rate of absorption of a RX with absorbing
receptors would be equal to

rabsorb =
Q
∆t

Rr

d
rsn

rsn + πRr
. (10)

As for our system, the steady-state expression for the absorption rate for the whole
RX would be

Λa =
nλ′o

1 + Ao
. (11)

In case the absorption time vanishes, that is, our system could be modeled as a RX
with nearly absorbing receptors (i.e., µ −→ ∞), it is easy to verify that the two models

overlap, that is, Λa
µ−→∞−−−→ rabsorb, as Ao

µ−→∞−−−→ 0.
To go further, it could be of interest to evaluate not only the average values, but also

some other statistics. For instance, this may include the evaluation of the probability that
at least a given fraction of receptors is busy in a specific time interval, in order to evaluate
the effectiveness of drug delivery system. For this purpose, we follow the same approach
proposed in [8]. In fact, at the nanomachine level, the number of receptors nbusy(t) that
established a bond with a ligand molecule can be modeled through a Binomial distribution
B(n, πr(t)), as each cell has n receptors and each of them is occupied by a ligand molecules
with the probability of having the receptor busy, that is, πr =

Ao(t)
1+Ao(t)

, which coincides with
the rejection probability for an M/M/1/1 queue. Obviously, the average number of busy
receptors in the RX, E

[
nbusy(t)

]
, is simply equal to

E
[
nbusy(t)

]
= n× πr(t) =

nAo(t)
1 + Ao(t)

. (12)

However, as the evaluation of binomial distribution may become computationally de-
manding for large values of n, in that case it can be well matched by the normal distribution
N
(

nπr(t),
√

nπr(t)(1− πr(t))
)

.
The proposed model can be applied to use cases in which it is necessary to model a

flow of particles towards one or more targets, such as those relevant to drug delivery. For
instance, by considering some specific drugs, such as competitive antagonist ones [21], i.e.,
those drugs that that compete with other ligands for a common binding site in a receptor
to lock it, a complete drug response can be produced even with low receptor occupancy.
Furthermore, additional receptors, not bound to drug molecules, are no longer needed to
obtain this maximum response. Thus, in this case study it is possible to apply the model to
evaluate the probability Psuccess of having at least the minimum number of receptors nmin
making bonds with drug molecules. Consequently, it is possible to evaluate the release
rate able to achieve this target and thus the desired drug response. In this regard, when
the number of receptors n is low, the most suitable model to describe the system response
is the one using the Binomial distribution. In more detail, if the minimum number of
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receptors that should be occupied by drug molecules is nmin, the success probability can be
evaluated as

Psuccess(nmin) =
n

∑
i=nmin

(
n
i

)
πi

r(1− πr)
n−i. (13)

From (13), it is possible to derive the optimal value of πr and, in turn, determine Ao
and thus, by using (7), λo. Once λo is known, the release rate Q/∆t can be obtained from
mathematical inversion of (3) (see also (10) and (11)).

Instead, if the number of receptors n is large, it is more computationally efficient to use
the Gaussian approximation by resorting to the complementary error function to evaluate
the success probability.

3. Numerical Results

The performance of the system has been evaluated by particle-based simulations
carried out using the BiNS2 simulator [22], which is a Java package designed to simulate
nano-scale biological communications in 3D. In particular, we have used the version which
benefits from parallelized GPU acceleration, described in [13]. The simulation includes a
TX and an RX in an unbounded diffusive environment. The main simulation parameters,
together with their descriptions and values, are reported in Table 1. Instead, our proposed
tool has been implemented in Matlab, without any special optimization. It uses the
M/M/1/1 model to evaluate the performance (absorbed or rejected molecules) for a single
receptor, leaving in postprocessing the procedure to aggregate results at the RX level. In
more detail, we have built a simple simulator, which receives in input a Poisson process
with mean rate realized by combining Equations (3) and (6). For each molecule arrival at
the server (i.e., the receptor), we use the M/M/M/1/1 model to determine the outcome,
as schematically illustrated in Figure 1. Finally, we count absorptions and rejections at
receptor and RX level.

Table 1. Simulation parameters.

Symbol Description Value

Rr Radius of TX/RX node 2.5 µm
n Amount of surface receptors (RX) 10,000
rm Radius emitted molecules 1.75 nm
D Diffusion coefficient 1.18× 10−10 m2/s
rs Receptor radius (RX) 4 nm
1/µ Trafficking time 2 or 4 s
∆t Emission period (TX) 10 ms
TS Simulation time step 100 ns
d RX-TX distance 26.5 µm

In order to compare the two approaches, we present the statistics relevant to absorp-
tions and rejections at RX level evaluated by means of BiNS2 (labeled as Sim) and the
proposed tool (labeled as Model).

Figure 2 shows the number of absorbed molecules as a function of time for both
approaches, for different values of the trafficking times (2 and 4 s) and of the burst size
Q, equal to 50 and 100 molecules emitted each 10 ms, which realizes a net emission rate
equal to 5000 and 10,000 molecules/s, respectively. Instead, Figure 3 shows the number
of rejected molecules as a function of time for both approaches, for different values of the
parameters, as in Figure 2.
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We can comment the two figures together, as they present very similar results. In
particular, they show a very good agreement between the proposed model and simula-
tion results in terms of both absorption and rejection rates for different values of system
parameters Q and µ.

As for the simulated system, we can see that the impact of the trafficking time on
the number of absorptions is almost negligible for Q equal to 50. This is true for both
the proposed model and for the simulations. This means that the system is still not in
saturation and any variation of the absorption time does not impact in a significant way.
However, this is not completely true for rejections. In fact, an increase of the absorption
time (1/µ) decreases the time during which the serving system, that is, the receptor, is
available to form a new bond. Thus, increasing 1/µ implies increasing the number of
rejections, as can be appreciated in Figure 3. When the emission rate increases, that is, Q
becomes equal to 100, the effect on the number of absorptions becomes evident. In fact,
increasing the release rate means increasing the concentration of ligands in the surrounding
space and thus also close to the RX surface, and with a doubling of the arrival rate. The
net effect is a doubling of the number of absorptions, meaning that the system is still not
completely saturated. However, the number of rejections increases in a more significant
way. For instance, considering the scenario with 1/µ = 4 s, at the simulation time t = 10 s
the rejected molecules number ~200 for Q = 50, whereas they jump to slightly less than
1000 for Q = 100.

As additional comment applies. As both λa(t) and λr(t) are accurately approximated,
it follows that the proposed model matches well also the overall arrival rate to the serving
system, and thus the proposed approach is reliable in all its aspects.

As such an agreement holds not only in the steady state, but also in the transient phase
(i.e., the first simulation seconds), the model can be used to reduce the simulation time in a
number of complex use cases [23], where theoretical models are difficult to develop and
particle-based simulations are possible but highly time-consuming and very demanding in
terms of computing resources.

Thus, our simplified model can reproduce the aggregate behavior of thousands of
receptors spread over the receiver surface, with a reduction in the simulation time in the
order of 104 times: from more than one day for particle-based simulations with BiNS2 to
few seconds to simulate 1 second. In addition, we have to consider that particle-based
simulation of such a system is increasingly demanding from the computation viewpoint,
as the number of objects to manage (i.e., the released molecules in the simulation space)
increases over time. For instance, after 10 s of simulated time, the number of releases
molecules is 106 when Q is equal to 100, whereas the amount of them being absorbed and
thus removed from the simulation is lower than 5000. Instead, as the proposed system
works with number values scaled by 1/n, simulation times are much more affordable. This
is in short the reason why the simulation time significantly decreases: the simulator cannot
handle all the released objects and their continuous movement, but just the molecules that
arrive at receptors. This number depends not only on Q and ∆t, but also on n. This means
that the fewer the receptors able to bind to released ligands, the lower the simulation time
when the proposed model is used.

We think it is useful to further investigate these concepts. We analyze the impact of
the number of receptors n on the overall system model, from the arrival rate to the number
of absorptions and its agreement with results obtained through particle-based simulations.
For this purpose, we consider a number of receptors ranging in the interval from few
tens (i.e., 50) to thousands (i.e., 10,000, the value used up to now and reported in Table 1).
In order to make the performance figure comparable, we keep the generation rate at TX
constant, that is, Q/∆t = 50/0.01 = 5000 molecules per second.

We first investigate the effect of variable number of receptors on the capture probability
Pc, as it has a direct impact on arrival rates Λ′o(t) and λ′o(t) through (6). Figure 4 shows
the capture probability as a function of the number of receptors n. As expected, when
their number is quite large, the capture probability is significant, reaching values in the



Sensors 2021, 21, 7664 11 of 14

order of 0.7 for n = 10,000. However, when n ≤ 5000, then Pc < 0.5, and for n ≤ 1000, Pc
becomes well below 0.2. Finally, when the number of receptors is just few tens, the capture
probability becomes negligible, taking values in the order to 1–2%. This is expected, as
when the number of receptors becomes really low, a particle bouncing back on a busy
receptor has a very small probability of finding another free receptor close to it. Its essential
possibility of being absorbed consists of hitting the same receptor again and finding it
available to form a bond.
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Figure 4. Capture probability Pc as a function of the number of receptors, n.

The net effect of this phenomenon is a reduction of the importance of the capture
probability for low values of n, with Λ′o(t) −→ Λo(t). This is confirmed by Figure 5. In more
detail, Figure 5a presents aggregate values of arrival rates, whereas Figure 5b presents
arrivals rates per receptor. From the analysis of the former, what was anticipated emerges:
The impact of Pc is significant for large values of n (5000 and 10,000 in the figure), and it
becomes negligible for very low values of the number of receptors. In addition, a further
comments is that the arrival rates, both Λ′o(t) and Λo(t), does not scale linearly with n, but
follows a nonlinear pattern. In particular, when n is reduced by a factor 10 (i.e., from 10,000
to 1000, or from 1000 to 100), the corresponding aggregate arrival rate exhibits a much lower
decrease. This is due to the strong nonlinearity of the function Frs ,n(t), shown in (2). The
consequence is that the arrival rate per receptor, that is, λ′o(t) and λo(t), exhibits an opposite
behaviour, as they increase with decreasing n, as shown in Figure 5b. This can be explained
by the fact that these models have their foundations in a receiver with absorbing receptors.
In such a case, when the number of receptors decreases, the overall number of absorbed
molecules clearly decreases. However, this means that an increasing concentration of
molecules is present close to the RX surface, and thus the number of molecules absorbed by
each receptor likely increases. As we use Frs ,n(t) as the basis to model the particle arrivals,
it is clear that we observe the same phenomenon, which is reasonable.
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Figure 5. Arrival rates as a function of time for different values of the number of receptors, n: (a) Λ′o(t) and Λo(t), and (b)
λ′o(t) and λo(t).

In addition, a further comment is about the impact of the capture probability on λ′o(t).
In fact, for very low values of n, we have already mentioned that Pc is negligible, thus
we do not expect a significant difference between λ′o(t) and λo(t). This is confirmed by
Figure 5b. Clearly, when n = 1000, this values begins to be relevant for λ′o(t), but for
further increments, it follows an opposite behaviour. This is due to the fact that, even if
Pc takes large values (about 0.65 for n = 10,000) with a much larger number of receptors,
the probability for a ligand to find a receptor not busy and thus available to form a bond
is larger. Thus, the impact per receptor of Pc starts becoming less important. This is also
confirmed by a further metric, the average number of busy receptors (Λa(t)/µ) as a function
of time, which is plotted in Figure 6. In fact, it is evident that, by keeping the generation rate
Q/∆t constant, if the system capacity increases (i.e., n), the load of the system, normalized
to its capacity, decreases.
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Figure 6. Average number of busy receptors as a function of time for different values of n.
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Finally, Figure 7 shows the results needed for assessing the suitability of the model in
matching particle-based simulations for very low values of the number of receptors n. It is
quite evident that the proposed model is able to match the simulation results quite well. In
order to make the comparison more evident, we used the logarithmic scale in the ordinate
axis. Again, we can appreciate the fact that simulations are closely matched not only in
the steady state, but also in the transient state. The small difference between the values
obtained by using the model and those resulting from particle-based simulation is the cost
of having a lightweight yet accurate model. It is based on some approximations to make it
not only treatable, but also easy to simulate, instead of using time-consuming, full-fledged
particle-based simulations.
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Figure 7. Average absorptions as function of time, with n as parameter, for both the proposed model
and particle-based simulations.

4. Conclusions

In this paper, we have proposed a simplified model to evaluate the performance of
local drug delivery systems in terms of number of absorbed molecules and saturation
status of receptors on the receiver surface. The proposed model, based on the elementary
M/M/1/1 queuing model for the single receptor, matches well with particle-based simula-
tions obtained with a known simulation tool, the well-assessed BiNS2 simulation platform,
providing a gaining in the execution time in the order of 104 times.

Thus, the results of the proposed approach are promising and can be used to overcome
difficulties in both modeling and simulation phase, guaranteeing a good level of reliability
together with fast execution times. Alternatively, it can be effectively used also in more
complex scenarios, where the system scale, in terms of number of receptors and/or amount
of released particles, may require prohibitive computing times for both solving accurate
theoretical model (e.g., due to explosion of the number of state space) or simulating the
overall system.
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