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Rapamycin (Rap), an inhibitor of mTORC1, reduces obesity and improves lifespan in mice. However, hyperglycemia and lipid
disorders are adverse side effects in patients receiving Rap treatment. We previously reported that diabetes induces
pansuppression of cardiac cytokines in Zucker obese rats (ZO-C). Rap treatment (750 μg/kg/day for 12 weeks) reduced their
obesity and cardiac fibrosis significantly; however, it increased their hyperglycemia and did not improve their cardiac
diastolic parameters. Moreover, Rap treatment of healthy Zucker lean rats (ZL-C) induced cardiac fibrosis. Rap-induced
changes in ZL-C’s cardiac cytokine profile shared similarities with that of diabetes-induced ZO-C. Therefore, we
hypothesized that the cardiac microRNA transcriptome induced by diabetes and Rap treatment could share similarities.
Here, we compared the cardiac miRNA transcriptome of ZL-C to ZO-C, Rap-treated ZL (ZL-Rap), and ZO (ZO-Rap). We
report that 80% of diabetes-induced miRNA transcriptome (40 differentially expressed miRNAs by minimum 1.5-fold in ZO-
C versus ZL-C; p ≤ 0 05) is similar to 47% of Rap-induced miRNA transcriptome in ZL (68 differentially expressed miRNAs
by minimum 1.5-fold in ZL-Rap versus ZL-C; p ≤ 0 05). This remarkable similarity between diabetes-induced and Rap-
induced cardiac microRNA transcriptome underscores the role of miRNAs in Rap-induced insulin resistance. We also show
that Rap treatment altered the expression of the same 17 miRNAs in ZL and ZO hearts indicating that these 17 miRNAs
comprise a unique Rap-induced cardiac miRNA signature. Interestingly, only four miRNAs were significantly differentially
expressed between ZO-C and ZO-Rap, indicating that, unlike the nondiabetic heart, Rap did not substantially change the
miRNA transcriptome in the diabetic heart. In silico analyses showed that (a) mRNA-miRNA interactions exist between
differentially expressed cardiac cytokines and miRNAs, (b) human orthologs of rat miRNAs that are strongly correlated with
cardiac fibrosis may modulate profibrotic TGF-β signaling, and (c) changes in miRNA transcriptome caused by diabetes or Rap
treatment include cardioprotective miRNAs indicating a concurrent activation of an adaptive mechanism to protect the heart in
conditions that exacerbate diabetes.

1. Introduction

Obesity and diabetes are metabolic diseases that increase
risks for cardiovascular, immune, and inflammatory disease.

Chronic inflammation in patients with obesity and diabetes
is characterized by an impaired immune response and
increased risk of infections [1, 2]. We recently reported that
diabetic Zucker obese (ZO) rats exhibit an intracardiac
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cytokine protein expression profile that reflects deficient host
defense compared to that of age-matched healthy Zucker
lean (ZL) rats [3]. Moreover, we observed that host defense
deficiency entailed suppression of both proinflammatory
and anti-inflammatory cytokines. We also reported that ZL
and diabetic ZO rats exhibited differential metabolic, cardiac
structural, functional, and immune responses to rapamycin,
an immunosuppressive agent that inhibits the mechanistic
target of rapamycin complex 1 (mTORC1) [3].

Rapamycin (Rap) is a macrolide antibiotic and is used as
an effective immunosuppressant during solid organ trans-
plantation [4–6]. It is used as an anticancer drug because
mTORC1 signaling is hyperactivated in up to 70% of human
cancers [7–12]. mTORC1 inhibition has been proposed as an
effective strategy for stabilization of atherosclerotic plaques
[13]. The mTOR signaling network is implicated in cellular
senescence, aging, and lifespan regulation, and rapamycin
treatment improves lifespan in different model organisms
[14–16]. In brief, Rap and rapalogues (new inhibitors of
mTORC1) exert several beneficial effects in the treatment of
chronic diseases. On the other hand, accumulating evidence
from clinical trials indicates that adverse metabolic side
effects of Rap treatment include new onset diabetes and
lipid disorders [17–19]. While Rap reduced mortality in
healthy mice, paradoxically, long-term rapamycin treatment
increasedmortality indiabeticmice [20].Werecently reported
the suppression of intracardiac expression of GM-CSF,
IL-2, IFN-γ, and IL-10, as well as increased decorin and
prolactin in diabetic rats and rapamycin-treated nondiabetic
rats, indicating a similarity in cardiac cytokine signaling asso-
ciated with both diabetes and Rap treatment [3]. These
observations underscore the need for a better understanding
of the molecular regulators that mediate the effects of rapa-
mycin in the diabetic heart.

We have shown previously that when diabetic ZO
rats were treated for 12 weeks with a low dose of Rap
(750μg/kg/day delivered via subcutaneous injection), they
exhibited significant increase in their fasting glucose levels
[3]. While Rap treatment suppressed cardiac fibrosis in ZO
rats, it induced cardiac fibrosis in heathy ZL rats, suggesting
that mTORC1 inhibition exerts differential effects in diabetic
versus healthy animals [3]. Recent studies have identified
several microRNAs that mediate the effects of Rap treatment
in different cancers [21–26]. MicroRNAs are short (~23 nt)
noncoding RNAmolecules that function as master regulators
of networks of gene expression by virtue of their ability to
bind hundreds or thousands of mRNAs [27]. The human
genome has over 2000 microRNAs that are predicted to reg-
ulate one-third of the genes in the genome [28]. To date,
there are no reports that describe how Rap treatment modu-
lates the microRNA expression profiles in healthy and
diabetic hearts.

Given the similarities between the intracardiac cytokine
expression patterns of Rap-treated and diabetic hearts and
that induction of diabetes is one of the main adverse effects
of Rap treatment, we hypothesized that there could be signif-
icant similarities in the cardiac microRNA transcriptome
induced by diabetes and Rap treatment. We further hypoth-
esized that Rap treatment may induce a shift towards

increased expression of miRNAs implicated in fibrosis in
healthy rat hearts. This hypothesis was tested in the present
study using the same four rat models (and corresponding
individual rats within those four groups) that we used to
characterize how diabetes and Rap treatment modulate intra-
cardiac cytokines. ZL rats (ZL-C) served as baseline controls
for miRNA expression in the healthy heart. ZO rats (ZO-C)
served as the controls for obesity- and diabetes-induced
changes in cardiac miRNA expression. Parallel groups of
ZL and ZO rats were treated with Rap for 12 weeks to evalu-
ate the effects of Rap treatment on cardiac miRNA expression
in healthy and diabetic hearts, respectively.

We used the GeneChip miRNA 4.0 Array (Thermo
Fisher Scientific) to profile miRNA expression in placebo or
Rap-treated ZL and ZO rat hearts. Here, we report that
changes in intracardiac miRNA transcriptomes induced by
rapamycin treatment and diabetes shared significant similar-
ities and provide new insights into mechanisms underlying
adverse effects of rapamycin. Differentially expressed miR-
NAs showed significant correlation with cardiac fibrosis in
Rap-treated healthy ZL and diabetic ZO rats. This analysis
also uncovered a new, Rap-induced cardiac microRNA sig-
nature. Additionally, our in silico analysis indicated that
human orthologs of rat miRNAs that were highly correlated
with cardiac fibrosis in the rats used in this study are involved
in modulating the profibrotic TGF-β pathway.

2. Methods

2.1. Rapamycin Treatment of Rats. Rap treatment of 8-week-
old ZL and ZO rats was performed as described previously
[3]. All animal procedures used in this study were approved
by the Harry S. Truman Memorial Veterans Hospital
(HSTMVH) Subcommittee for Animal Safety and University
of Missouri IACUC before commencing. All animals were
cared for in accordance with the guidelines for the care and
use of laboratory animals (National Institutes of Health pub-
lication 85-23). Briefly, 8-week-old ZO (fa/fa) and lean (ZL)
rats (Charles River Laboratories) were maintained on ad
libitum food and water and housed singly at the HSTMVH
animal housing facility under standard laboratory conditions
at room temperature 21–22°C. Animals were entrained to
have dark cycle (12 hr: awake time) during the day and light
cycle (12 hr: sleep time) during the night so that all interac-
tions with animals matched their awake time. Placebo pellets
or rapamycin pellets designed to deliver Rap at a concentra-
tion of 750μg/kg/day for 21 days (from Innovative Research
of America Inc., Sarasota, FL) were surgically placed under
the skin behind the shoulder blades under brief isoflurane
anesthesia, and this procedure was repeated 3 times to achieve
a 12-week treatment. ZL and ZO rats that received placebo
pellets are referred as ZL-C and ZO-, and those received
Rap pellets are referred as ZL-Rap and ZO-Rap, respectively.

2.2. Cardiac miRNA Isolation, Microarray Analysis, and
Quantitative Real-Time PCR. Frozen heart tissue from
saline- and Rap-treated ZL and ZO rats stored at −80°C was
powdered under liquid nitrogen, and miRNA isolation was
performed using mirVana miRNA isolation kit (Ambion)
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following the manufacturer’s protocol and quantified using
NanoDrop (Thermo Scientific) as described previously [3].
FlashTag™ Biotin HS RNA Labeling Kit for GeneChip®
miRNA Array was used for generating miRNA probes as per
manufacturer’s instructions using 300 ng of miRNA as input
per reaction. Hybridization and scanning of the arrays were
performed at the Microarray Core Lab at the University of
Colorado, Denver, for a fee. GeneChip miRNA 4.0 Arrays
are designed to interrogate all mature miRNA sequences in
miRBase release 20. CEL files generated from the scanning
of arrays were analyzed using the miRNA microarray data
QC analysis as described in the Affymetrix Expression Con-
sole Software 1.4 user manual for data normalization. The
robust multichip analysis (RMA)+DBAG workflow (Rat),
that performs quantile normalization and has a general back-
ground correction, was used to generate CHP files. Threshold
test showed that all CHIP files were within bounds. Signifi-
cance of differentially expressed miRNAs between different
pairs (ZL-C versus ZO-C, ZL-C versus ZL-Rap, and ZL-C
versus ZO-Rap, as well as ZO-C versus ZO-Rap) was deter-
mined using unpaired two-tailed t-test. cDNA was generated
from the previously isolated miRNA using the miScript II

RT Kit (Qiagen, Valencia, CA). Real-time PCR reactions
were performed in triplicate using miScript II SYBR Green
PCR Kit and prevalidated Qiagen miScript Primer Assays
for miR-21-5p (cat. #MS00013216), miR-144-3p (cat.
#MS00021833), miR-155-5p (cat. #MS0001701), miR-101b-
3p (cat. #MS00012964), miR-26b-3p (cat. #MS00000140),
miR-30e-3p (cat. #MS00013426), and miR-34b-3p (cat.
#MS0027468). Reactions were performed using the Bio-Rad
IQ5 (Bio-Rad, Hercules, CA) under cycle conditions speci-
fied by the manufacturer. The expression levels of target
miRNAs relative to endogenous control (RNU6-2; cat.
#MS00033740, Qiagen) were quantified by a comparative
quantitation cycle method. Relative quantification (RQ)
values were obtained by determining ΔCt values followed
by determining ΔΔCt values and then RQ values via the
equation 2(−ΔΔCt).

2.3. Principal Component Analysis (PCA). RMA+DBAG
workflow identified 1218 rat miRNAs. Of the 1218 miRNAs,
one-way ANOVA (SAS 9.4, PROC ANOVA) revealed 70
miRNAs that were differentially expressed (p < 0 05) by at
least 1.5 log2-fold between one or more groups. To identify

Table 1: MicroRNAs differentially expressed in ZO-Rap versus ZL-C and their similarity to microRNAs that were differentially expressed in
ZL-Rap versus ZL-C.

MicroRNAs ZO-Rap/ZL-C ZL-Rap/ZL-C
Link to diabetes, fibrosis, and/or CVD

Diabetes Fibrosis CVD

miR-200c/b 4.71/4.099 2.98/4.99 Increased [73, 74] Suppressed [75]
Increased in familial

hypercholesterolaemia [76]

miR-7a-1-3p 4.599 6.844 — — —

miR-138-1-3p 4.580 4.238 —
Suppresses cardiac
hypertrophy [67, 77]

miR-21 4.533 5.305 Increased [59] Increased [60]
Reduced in hypertension;
cardioprotective [61–63]

miR-26b 4.428 5.147 — —
Increased in hypertensive

patients [78]

miR-434 4.345 9.322
Induces insulin
resistance [79]

Increases atrial fibrillation, cardiac
damage, heart disease [79–82]

miR-155 4.125 4.55
Increased in T1DM &

T2DM [31, 32]
Increased [35]

Increased in cardiac hypertrophy
and CHD [33, 34]

miR-30e-3p 4.06 4.80 Suppressed by insulin [45] —
Suppression associates with

cardiac injury [46]

miR-328b-3p 3.734 4.807 — — —

miR-505-3p 3.652 4.938 — —
Increased in familial

hypercholesterolaemia [83]

miR-382 3.407 4.56 Increased [84] Increased [85] —

miR-499 3.338 3.86
Induces insulin
resistance [79]

Increases atrial fibrillation, cardiac
damage, heart disease [79–82]

miR-872-5p 3.255 5.519 — —
Associated with cardiac oxidative
stress and atherosclerosis [86, 87]

miR-217 2.996 2.3409 Increased [88] Increased [89]
Increased in cardiovascular

aging [90]

miR-92b-3p 2.942 3.128 — —
Suppressed in response to

hypoxia [47]

miR-362-3p 2.907 6.316
Suppressed in DM

patients [91]
Increased in cardiac
fibroblasts [92]

Increased in acute myocardial
infarction [93]

Please see Supplemental Table 4 for the exact gene expression levels and p values.
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similarities in miRNA expression patterns between the
groups, PCA was performed on these 70 miRNAs using
SAS 9.4 software, PROC PRINCOMP.

2.4. In Silico Analysis for Identifying Differentially Expressed
Cytokines Targeted by Differentially Expressed miRNAs.
NCBI gene database was used to retrieve complete mRNA
sequence data for differentially expressed cytokines identified
from pairwise comparison of ZO-C or ZO-Rap versus ZL-C
that we reported previously [3]. RegRNA software [29] was
used to retrieve predicted miRNA binding sites for each of
the cytokines. miRNA binding sites for each cytokine mRNA
in the differentially expressed cytokine list for a given pair-
wise comparison (e.g., ZO-C versus ZL-C) were compared
with the list of differentially expressed miRNAs in the same
pairwise comparison. Then, the data were compiled, and
the list of different cytokines targeted by a given miRNA
was organized and presented in Table 1.

2.5. In Silico Analysis to Determine Correlation of Fibrosis
with Differentially Expressed miRNAs. Human orthologs for
miRNAs demonstrating a significant relationship (p < 0 05)
with cardiac fibrosis were entered into DIANA-miRPath
v3.0 software [30] to determine associated pathways in
humans, using both Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology-Biological Processes
(GO-bp) analyses, and target genes associated with those
pathways. Secondary KEGG pathway enrichment analyses
and subsequent identification of target genes along signifi-
cantly enriched pathways were performed using miRNet
(http://www.miRNet.ca/).

2.6. Statistical Analysis. Results are reported as means± SE.
Statistical analysis was performed using SigmaStat or SAS
9.4 software. Unpaired two-tailed t-test was performed for
pairwise comparisons. A p value< 0.05 was deemed signifi-
cant. Spearman correlation coefficients were obtained for
miRNA expression and measures of cardiac fibrosis, inde-
pendent of the treatment group, using PROC REG (SAS 9.4).

3. Results

One-way ANOVA of the 1218 rat miRNAs used as probes in
this study showed that 70 miRNAs exhibited statistically
significant (p < 0 05) differential expression by at least 1.5
log2-fold between one or more groups (Figure 1). Principal
component analysis (PCA) of these 70 miRNAs showed that
ZL-C and ZL-Rap were distinct groups whereas ZO-C and
ZO-Rap groups clustered together. This observation sug-
gested that while Rap treatment had strong effects on the
miRNA transcriptome of ZL rats, Rap did not alter the
miRNA transcriptome of ZO-rats to the same extent.

3.1. Comparison of Cardiac miRNA Transcriptome in ZL-C
and ZO-C. We previously reported metabolic and cardiac
parameters of ZL-C and ZO-C used in this study and differ-
ences in their intracardiac cytokine profiles [3]. In this study,
miRNA transcriptomes of the same heart tissues were ana-
lyzed. Diabetes induced significant differential expression of
a total of 177 cardiac microRNAs in ZO-C (Supplemental

Table 1). Specifically, 105 miRNAs showed an increase, and
72 miRNAs showed a reduction in their expression in
ZO-C compared to ZL-C. Among them, 40 microRNAs
showed differential expression≥ 1.5 log2-fold (Figure 2). A
literature search provided evidence that 20 of these miRNAs
are associated with diabetes and/or cardiac fibrosis and/or
different cardiovascular diseases (Table 2). The microRNA
miR-155-5p, a biomarker that is increased in the plasma of
patients with type 1 diabetes [31, 32] and in gingival
crevicular fluid of patients with periodontitis and type 2
diabetes [33] and contributes to cardiac hypertrophy and
coronary heart disease [34, 35], was increased by 5.21-fold in
the ZO rat heart, consistent with the cardiovascular
detrimental effects of diabetes. Other miRNAs that have
defined roles in cardiovascular damage included miR-872-5p,
miR-350, miR-362-3p, miR-223-3p, miR-204, miR-98, miR-
217, miR-379, and miR-181-3p (Table 2 and references
therein). MicroRNAs that contribute to fibrosis such as miR-
21, miR-382, miR-155, miR-223-3p, and miR-217 were also
increased in ZO-C hearts compared to ZL-C hearts (Table 2).
However, miRNAs that suppress fibrosis (miR-200b/c, miR-
411-5p, miR-140, miR-322, and miR-98) and render
cardiovascular protective effects (miR-21 and miR-140) were
also simultaneously increased in the ZO-C heart indicating
the activation of an adaptive mechanism to regulate fibrosis
induced by high glucose and insulin resistance.

3.2. Comparison of Cardiac miRNA Transcriptome in ZL-C
and ZL-Rap. A total of 221 cardiac miRNAs were differen-
tially expressed between ZL-C and ZL-Rap that showed sta-
tistical significance. Out of these, 131 cardiac miRNAs had
increased expression and 90 miRNAs had decreased expres-
sion in ZL-Rap compared to ZL-C (Supplemental Table 2).
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Figure 1: PCA analysis of the 70 miRNAs determined to be
differentially expressed (p < 0 05) by at least 1.5 log2-fold between
one or more groups. Comparisons revealed three moderately distinct
clusters (1) ZL-control (ZL-C), (2) ZL-Rap, and (3) ZO-control
(ZO-C) and ZO-Rap.
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Further selection of miRs that exhibited at least a 1.5 log2-
fold difference showed that 68 miRNAs were differentially
expressed between ZL-C and ZL-Rap (Figure 3). We found
that 32 of these miRNAs (47%) were the same and showed
the same directionality of expression as those that were
found to be differentially expressed between ZL-C and ZO-
C (Figure 4). This accounted for 80% of the differentially
expressed cardiac miRNAs in ZO-C. Therefore, there is a
remarkable similarity between the cardiac transcriptome
activated by Rap treatment in healthy hearts and that
activated in response to diabetes. Table 2 lists 20 of these
miRNAs that showed the same expression pattern in ZL-
Rap and ZO-C and that are also implicated in diabetes and/
or fibrosis and/or cardiovascular damage.

Table 3 lists those miRNAs that were significantly differ-
entially expressed by at least 1.5 log2-fold in either direction
in ZL-Rap compared to ZL-C and show some relationship
with diabetes and/or fibrosis and/or cardiovascular damage
according to literature. These miRNAs were not differentially
expressed by 1.5 log2-fold in ZO-C compared to ZL-C and
therefore were unique to the ZL-Rap hearts. Several miRNAs
that are diabetes markers and contribute to insulin resistance,

pancreatic beta cell death, and progression of diabetes are
included in this list. For example, miR-29 family miRNAs
are significantly increased in patients with T1DM and
T2DM and involved in pancreatic beta cell death and
progression of diabetes [36–38]. MicroRNAs miR-19a,
miR-499, miR-539, miR-363, miR-495, miR-7a, and miR-
429, which are reported to be increased in diabetic patients
or animal models and/or contribute to insulin resistance,
were increased in ZL-Rap hearts suggesting that Rap treat-
ment induces a diabetes-associated miRNA transcriptome
in ZL-Rap hearts. However, miR-455 and miR-451, which
are reported to be suppressed in diabetes, were found to be
increased in ZL-Rap hearts, whereas miR-144 that is shown
to be increased in diabetes was suppressed in ZL-Rap hearts
[39–41]. Additionally, a miRNA implicated in promoting
diabetic wound healing, miR-335, was also among the miR-
NAs that had increased transcription in ZL-Rap hearts [42].

Several of thesemiRNAs are also linked to CVD (Table 3).
miRNAs that are associated with exacerbating different CVDs
according to literature and increased in ZL-Rap hearts include
miR-451, miR29 family, miR-19a, miR-499, miR-539,
miR-363, miR-495, and miR-429 (Table 3 and references

−2 −1 0
Row Z-score

ZL-C1 ZL-C2 ZL-C3 ZL-C4 ZL-C5 ZO-C5 ZO-C3 ZO-C4 ZO-C1 ZO-C2
miR-181c-3p
miR-155-5p
miR-200c-3p
miR-140c-5p
miR-350
miR-21-5p
miR-26b-5p
miR-30e-3p
miR-322-5p
miR-541-5p
miR-664-5p
miR-98-5p
miR-379-5p
miR-379-5p
miR-6326
miR-217-5p
miR-872-5p
miR-411-5p
miR-196c-5p
miR-3102
miR-409
miR-191-3p
miR-362-3p
miR-204-5p
miR-31a-3p
miR-138-1-3p
miR-7a-1-3p
miR-361-3p
miR-511-3p
miR-1843-3p
miR-223-3p
miR-505-3p
miR-374-5p
miR-200b-3p
miR-329-3p
miR-382-5p
miR-434-3p
miR-301a-3p
miR-34b-3p
miR-702-5p

1 2

Figure 2: Hierarchal cluster heat map of differentially expressed cardiac miRNAs in ZL-C (n = 5) vs. ZL-Rap (n = 4) that exhibited a 2.25-fold
change in expression in either direction. Red signals indicate lower expression levels, and green signals indicate higher expression levels.
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therein). Additionally, loss of miR-144 and miR-542 also
exacerbated CVD. Conversely, miR-101b and miR-7a,
which are cardioprotective (Table 3 and references therein),
are also among the cardiac miRNAs that are increased by
Rap treatment.

3.3. Comparison of Cardiac miRNA Transcriptome in ZO-C
and ZO-Rap. Rap treatment of ZO-C resulted in differential
myocardial expression of 128 miRNAs that included 84
miRNAs with increased expression and 44miRNAs with sup-
pressed expression (Supplemental Table 3). However, only
four miRNAs from this group met the ±1.5 log2-fold change
threshold (Figure 5). Associations between these miRNAs to

specific diseases are shown in Table 4. miR-743a-5p that
mediates mitochondrial oxidative stress was increased in the
ZO-Rap heart, but not in the ZL-Rap heart, indicating that
this is a unique effect caused by the combination of diabetes
and Rap treatment (Table 4) [43]. miR-511-3p was the only
miRNA that showed similar expression changes in Rap-
treated ZL and ZO rats (suppressed in both cases), and loss
of miR-511-3p is associated with minimally oxidized low-
density lipid-associated increase in atherosclerosis (Table 4)
[44]. There is very little information regarding miR-1843-3p
and miR-409b in the literature; however, Rap treatment had
opposing effects on the expression of these miRNAs in
healthy ZL-C and diabetic ZO-C (Table 4).

Table 2: Similarities between differentially expressed microRNAs that modulate diabetes, cardiac fibrosis, and other cardiovascular diseases
in ZO-C versus ZL-C and ZL-Rap versus ZL-C.

MicroRNA ZO-C/ZL-C ZL Rap/ZL-C
Nature of association with human or animal model pathology

Diabetes Fibrosis CVD

miR-155 5.21 4.55
Increased in T1DM &

T2DM [31, 32]
Increased [35]

Increased in cardiac hypertrophy and
CHD [33, 34]

miR-200b/c 5.17/4.00 4.99/2.98 Increased [73, 74] Suppressed [75]
Increased in familial hypercholesterolaemia

[76]

miR-21 4.59 5.28 Increased [59] Increased [60]
Reduced in hypertension; cardioprotective

[61–63]

miR-26b-5p 4.41 5.13 — — Increased in hypertensive patients [78]

miR-872-5p 4.32 5.52 — —
Associated with cardiac oxidative stress and

atherosclerosis [86, 87]

miR-411-5p 3.89 7.16 —
Suppresses fibrosis

[94]
Increased in abdominal aortic aneurism [95]

miR-382 3.84 4.56 Increased [84] Increased [85] —

miR-301a 3.81 4.86 Increased [96] Increased in the diabetic heart [96]

miR-329 3.81 5.50 — — Increased in ischemia [97]

miR-350 3.68 3.61 — —
Induces pathological cardiac

hypertrophy [98]

miR-505-3p 3.66 4.92 — —
Increased in familial hypercholesterolaemia

[83]

miR-140 3.58 4.00 Reduced in platelets [99]
Suppresses fibrosis

[100]
Suppresses pulmonary arterial

hypertension [101]

miR-322 3.56 3.84
Suppressed by high

glucose [102]
Suppresses fibrosis

[103]
Improved cardiac function [103]

miR-362-3p 3.48 6.28 Increased [104] — Associated with atherosclerosis [105]

miR-374 3.34 5.94 — —
Increased in cardiac hypertrophy and

aneurism [106, 107]

miR-223-3p 3.27 3.56
Suppressed in DM

patients [91]
Increased in cardiac
fibroblasts [92]

Increased in acute myocardial infarction [93]

miR-204 3.20 7.01 Suppresses insulin [108] — Increases endoplasmic reticulum stress [109]

miR-98 3.20 3.41 Increased [110]
Reduces collagen

[111]
Reduced in myocarditis [112]; increased in

postheart transplant [113]

miR-34b 3.10 3.29 — —
Reduced in diabetic ischemic heart

failure [114]

miR-217 2.99 2.98 Increased [88] Increased [89] Increased in cardiovascular aging [90]

miR-541 2.97 3.18
Involved in pancreas
development [115]

— Suppresses cardiac hypertrophy [116]

miR-379 2.85 2.91 — — Apoptosis of VSMC [117]

Please see Supplemental Tables 1 and 2 for the exact gene expression levels and p values.
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3.4. Comparison of Cardiac miRNA Transcriptome in ZL-C
and ZO-Rap. Next, we compared the cardiac miRNA tran-
scriptome of ZO-Rap with that of ZL-C. Of the 116 miR-
NAs that were differentially expressed between these two
groups (Supplemental Table 4), 83 had increased expres-
sion and 33 exhibited suppressed expression in ZO-Rap
hearts. However, only 27 of these miRNAs met the ±1.5
log2-fold change threshold (Figure 6). Importantly, 17 of
these miRNAs were the same as those that were increased
in ZL-Rap (Table 1). Among these miRNAs, miR-30e-3p

is shown to be suppressed by insulin [45]; however, another
study showed that its suppression is associated with myocar-
dial injury induced by coronary microembolization via
autophagy activation [46]. Moreover, miR-92b-3p is shown
to be suppressed by hypoxia [47], but its expression is
elevated in the heart tissues of both Rap-treated groups.
One miRNA in this group, miR-7a-1-3p, is not known to
associate with diabetes, fibrosis, or CVD. The remaining
miRNAs in this group are associated with either diabetes,
fibrosis, or cardiovascular diseases as shown in Table 1.

ZL-C1 ZL-C2 ZL-C3 ZL-C4 ZL-C5 ZL-Rap1 ZL-Rap2 ZL-Rap3 ZL-Rap4

miR-3068-3p
miR-872-3p
miR-200-3p
miR-98.5-5p
miR-301a-3p
miR-451-5p
miR-464-3p
miR-487-3p
miR-379-5p
miR-338-5p
miR-541-5p
miR-322-5p
miR-29c-3p
miR-30e-3p
miR-499-5p
miR-350
miR-155-5p
miR-26b-5p
miR-21-5p
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Figure 3: Hierarchal cluster heat map of differentially expressed cardiac miRNAs in ZL-C (n = 5) vs. ZO-C (n = 5) that exhibited a 2.25-fold
change in expression in either direction. Red signals indicate lower expression levels, and green signals indicate higher expression levels.
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Figure 4: Venn diagram demonstrating miRNA that exhibited a 2.25-fold change in expression in either direction between ZL-C vs. ZL-Rap
(left) and ZL-C vs. ZO-C (right), as well as those that were differentially expressed in both comparisons (center).

Table 3: MicroRNAs that modulate diabetes, cardiac fibrosis and other cardiovascular diseases and differentially expressed in ZL-Rap
versus ZL-C.

MicroRNAs ZL-Rap/ZL-C
Link to diabetes and/or CVD

Diabetes CVD

miR-455 6.76 Suppressed [39] —

miR-451 5.1076 Suppressed [40] Induces cardiac hypertrophy [40]

miR-101b 5.0625 — Suppresses cardiac hypertrophy [67, 77]

miR-29b/c 4.75/3.83 Increased in diabetes [36–38] Correlates with CVD progression in diabetes [36–38, 118]

miR-19a 4.7089 Increased in diabetes [119] Induces heart failure and vascular inflammation [120–122]

miR-499 3.8636 Induces insulin resistance [79] Increases atrial fibrillation, cardiac damage, heart disease [79–82]

miR-539 3.7249 Increased in diabetes [123]
Induces mitochondrial fission, cardiomyocyte apoptosis

[123, 124]

miR-363 3.7249 Urinary marker for diabetes [125] Inhibition protects cardiomyocytes from apoptosis [126]

miR-335 3.2761 Improves diabetic wound healing [42] —

miR-92b 3.0976 — Increased in heart failure patients [127]

miR-495 3.0976 Urinary marker for diabetes [125] Involved in causing hypertrophy [128, 129]

miR-7a 2.8224
Inhibits glucose-stimulated insulin

secretion [130]
Protects against cardiomyocyte injury [131, 132]

miR-429 2.56
Impairs intestinal barrier in diabetic

mice [133]
Causes cardiomyocyte apoptosis [134]

miR-487b 2.3409 — Mitigates chronic heart failure [135]

miR-144 −2.28 Increased in diabetes [41] Loss of miR-144 impairs cardioprotection [136]

miR-542 −2.28 — Involved in aortic calcification [137]

Please see Supplemental Table 2 for the exact gene expression levels and p values.

8 Oxidative Medicine and Cellular Longevity



Because myocardial expression of these 17 miRNAs is
increased by Rap treatment in both ZL and ZO rats, we pro-
pose that these miRNAs constitute a Rap-induced cardiac
microRNA signature.

3.5. Cytokines Targeted by the Differentially Expressed
miRNAs. We previously reported which intracardiac cyto-
kines were differentially expressed in response to diabetes
(ZL-C versus ZO-C) and Rap treatment (ZL-C versus
ZL-Rap) [3]. Because there was significant overlap between
the miRNAs that were differentially expressed between these
two groups, we hypothesized that these miRNAs would play
a role in regulating differentially expressed cytokines in these
groups. To determine if the differentially expressed miRNA
transcriptome exerts the regulation of the corresponding
cytokine profile, we performed an in silico analysis using
miRbase miRNA target analysis. The miRNAs that had bind-
ing sites on the 3′ untranslated sites of the mRNAs expressing
differentially expressed cytokines from each pairwise com-
parison were selected. Table 5 shows miRNAs that exhib-
ited increased expression and their target cytokines that
carried binding sites for the corresponding miRNAs on the
3′ untranslated regions of their mRNAs. As shown in
Table 5, differentially expressed miRNAs had binding sites
on the 3′ untranslated regions of most of the differentially
expressed cytokines. Therefore, changes in expression pat-
terns of intracardiac cytokines in response to diabetes and

rapamycin treatments in rat hearts were associated with
changes in their miRNA transcriptomes.

3.6. Differentially Expressed miRNAs That Correlated with
Fibrosis andValidated by Real-Time PCR.Wehave previously
published that ZL rats treated with rapamycin have increased
cardiac fibrosis compared with untreated ZL rats [3]. How-
ever, in ZO rats, treatment with rapamycin attenuated cardiac
fibrosis [3]. In order to determine which specific miRNAmay
be contributing to cardiac fibrosis, we performed a correlation
analysis using all differentially expressed miRNAs that exhib-
ited at least 1.5 log2-fold change in pairwise comparisons.
Analysis of the combined data from all treatment groups
showed that seven miRNAs were positively correlated
(miR-140-5p, miR-155-5p, miR-21-5p, miR-26b-5p, miR-
30e-3p, miR-34b-3p, and miR-379-5p; p < 0 05) and one
miRNA, miR-144-3p, was inversely correlated (miR-144;
p < 0 05) with the degree of cardiac fibrosis (Figure 7).
Of the seven positively correlated miRNAs, there is evidence
supporting strong profibrotic activity for miR-21 and miR-
34b [48–52]. In contrast to the positive correlation with
fibrosis observed here, miR-140 is considered antifibrotic
[53, 54]. miR-155 and miR-34b demonstrate both pro- and
antifibrotic activities [55, 56]. miR-140, the only one dem-
onstrating an inverse association, has well-documented
antifibrotic activity [57, 58]. To further validate differen-
tial expression of some of these miRNAs, we performed
quantitative RT-PCR. As shown in Figure 7, miRNAs

ZO-C2 ZO-C1 ZO-C3 ZO-C4 ZO-C5 ZO-Rap5 ZO-Rap3 ZO-Rap2 ZO-Rap1 ZO-Rap4

miR-743a-3p

miR-409b

miR-1843-3p

miR-511-5p

−2 −1 0
Row Z-score

1 2

Figure 5: Hierarchal cluster heat map of differentially expressed cardiacmiRNAs in ZO-C (n = 5) vs. ZO-Rap (n = 5) that exhibited a 2.25-fold
change in expression in either direction. Red signals indicate lower expression levels, and green signals indicate higher expression levels.

Table 4: MicroRNAs differentially expressed in ZO-Rap versus ZO-C and their similarity to microRNAs that were differentially expressed in
ZL-Rap versus ZL-C.

MicroRNA ZO-Rap/ZO-C ZL-Rap/ZL-C
Nature of Association with human or animal model pathology

Diabetes Cardiac fibrosis CVD

miR-743a-5p 2.25 1.09; p =N.S. — — Mediates mitochondrial oxidative stress [43]

miR-1843-3p −2.25 2 — — —

miR-511-3p −2.25 −1.7 — —
Suppressed in moX-LDL-induced VSMC
transformation in atherosclerosis [44]

miR-409b −2.25 1.45; p =N.S. — — —

N.S.: not significant. Please see Supplemental Table 3 for the exact gene expression levels and p values.
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(miR-34b-3p, miR-26b-3p, miR-140-5p, miR-155-5p, miR-
21-5p, and miR-379-5p) exhibited differential expression
consistent with the data obtained from microarray analysis.

4. Discussion

In this investigation, we have identified an identical subset of
the cardiac miRNA transcriptome, comprised of 32 miRNAs,
which are differentially expressed in the same direction in the
hearts of diabetic ZO rats (ZO-C) and nondiabetic ZL rats
treated with Rap (ZL-Rap). Since ZL rats did not develop dia-
betes after 3 months of Rap treatment [3] and Rap treatment
is reported to mitigate aging [14–16], this high similarity
between diabetes- and Rap-induced alterations to the cardiac
miRNA transcriptome was surprising. Our recent findings
that diabetes suppresses both inflammatory and anti-
inflammatory intracardiac cytokines may shed some light
in this regard [3]. As such, we posit that the similarity in
the altered expression of identical miRNAs in the cardiac
microRNA transcriptome between diabetic ZO-C and Rap-
treated ZL rats might reflect that fact that both diabetes and
Rap treatment cause significant immune suppression.
Importantly, these studies also identified an identical subset
of 17 miRNAs that exhibited increased expression in
response to Rap treatment in both ZL and ZO hearts
(Table 1). To our knowledge, this is the first evidence of a
Rap-induced cardiac microRNA signature common to both
healthy and diabetic hearts. It is noteworthy that most of
these miRNAs seem to be associated with increasing CVD.

This information is clinically relevant and provides new tar-
gets for developing drugs that can be coadministered with
Rap to reduce potential detrimental effects of long-term
Rap treatment in patients with comorbidities.

Previous studies to identify Rap-induced changes in the
miRNA transcriptome in cell models of tuberous sclerosis
(TSC) and lymphangioleiomyomatosis (LAM) have identi-
fied microRNAs 29b, 21, 24, 221, 106a, and 199a as candidate
“RapamiRs” [21]. Among these miRNAs, miR-21 and miR-
29b were found to be differentially expressed in ZL-Rap.
miR-21 is a key miRNA biomarker of diabetes that causes
fibrosis and has been characterized as a “mechano-miR”
due to its response to arterial stress and hypertension
[59–64]. A direct connection between miR-21 and mTOR
has also been reported since miR-21 promotes mTORC1-
driven tumorigenesis [65]. Additionally, miR-155 has been
identified as a potent autophagy inducer that targets the
mTOR signaling pathway [66]. miR-29 family miRNAs are
involved in pancreatic beta cell death and exacerbate cardio-
myocyte loss [36–38, 67]. It was also reported that long-term
Rap treatment induced the upregulation of miR-17–92 and
related clusters and downregulation of tumor suppressor
miRNAs (miR-7a, miR-706, and miR-320) in rapamycin-
resistant tumors [68]. Consistent with this, 3-month Rap
treatment increased miR-19a, a member of this cluster. How-
ever, Rap treatment actually increased miR-7a expression in
ZL-C hearts.

Consistent with the pansuppression of cardiac cytokines
in the ZO-C heart [3], we observed an increase in miRNAs

ZO-Rap5 ZO-Rap3 ZO-Rap2 ZO-Rap1 ZO-Rap4
rno-miR-764-3p
rno-miR-702-5p
rno-miR-383
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rno-miR-217-5p
rno-miR-187-3p
rno-miR-3068-5p
rno-miR-872-5p
rno-miR-499-5p
rno-miR-382-5p
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rno-miR-200b-3p
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Figure 6: Hierarchal cluster heat map of differentially expressed cardiac miRNAs in ZL-C (n = 5) vs. ZO-Rap (n = 5) that exhibited a 2.25-fold
change in expression in either direction. Red signals indicate lower expression levels, and green signals indicate higher expression levels.
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that target these cytokines in our in silico analysis (Table 5).
miRNAs that have predicted binding sites on the 3′ untrans-
lated regions of mRNAs coding for the cytokines, CTACK,
PDGFAA, CINC2, IL-2, IL-1α, TNF-α, IL-10, IFNγ, prolac-
tin, and decorin were among the miRNAs that were upregu-
lated in ZO-C hearts over 1.5 log2-fold. It is noteworthy that
Notch2, decorin, and prolactin were also suppressed in
ZO-Rap hearts [3]. However, in ZL-Rap hearts, while IL-2,
GM-CSF, IL-10, and IFNγwere suppressed, decorin, Notch2,
Gas1, prolactin, Tim1, IL-22, and TWEAK-R were upregu-
lated by Rap treatment. Interestingly, analysis of predicted
miRNA binding sites on the 3′ untranslated regions of these
mRNAs uncovered binding sites for many of the cardiac
miRNAs that exhibited increased expression in ZL-Rap
hearts. mRNAs encoding decorin, Notch2, Gas1, prolactin,
Tim1, and IL-22 (but not TWEAK-R) carried binding sites
for multiple miRNAs that were upregulated by Rap treat-
ment. Although additional experiments are warranted to ver-
ify the validity of these miRNA binding sites, collectively,
these observations suggest that the presence of a tightly

regulated posttranscriptional gene expression pattern is pres-
ent in the ZL-Rap heart for these cardiac cytokines.

We reported that in the ZO-Rap group, eight intracardiac
cytokines were differentially expressed compared to ZO-C.
However, only four miRNAs met the criteria of 1.5 log2-
fold change in ZO-Rap compared to ZO-C. These miRNAs
did not seem to have any predicted binding sites on the eight
differentially expressed cytokines in the ZO-C heart. Impor-
tantly, cardiac miRNA transcriptome of ZO-C was already
80% similar to that of ZL-Rap and that may be why Rap treat-
ment did not result in any additional major changes in their
cardiac miRNA transcriptome that met the criteria of 1.5
log2-fold change.

4.1. Correlation of miRNA Transcriptome with Fibrosis. In
humans and animals alike, myocardial fibrosis is associated
with nearly all forms of cardiovascular disease. Myocardial
fibrosis is a condition of multiple etiologies, characterized
by the transformation of cardiac fibroblasts to a myofibro-
blast phenotype. The cardiac remodeling that takes place

Table 5: Differentially expressed miRNAs in ZL-C versus ZO-C and ZL-C versus ZL-Rap pairwise comparisons that target differentially
expressed cytokines in the corresponding pairwise comparisons and as determined by binding sites on the 3′ untranslated region of their
mRNAs by in silico analysis in the corresponding sets.

miRNA
Targeted cytokines increased in miRNA Targeted cytokines

ZO-C ZL-Rap Both ZO-C ZL-Rap

miR-21
CTACK, PDGFAA,

CINC2
Notch2 miR-350 Notch2

miR-411
IL-2, IL-1α,

TNF-α (2 sites)
IL-2, IL-10 miR-505 CINC2 Gas1

miR-7a∗ PDGFAA IL-2, decorin, IL-22 IL-10 miR-217 Notch 2, IL-1α

miR-384-5p IL-2, IL-10, Notch2 miR-541 Notch 2, CINC2

miR-30e∗ IL-22, Notch2 IL-10, IFNγ miR-328b-3p Notch 2, Gas1

miR-322 IFNγ miR-29b Notch 2

miR-382 Notch2 IFNγ, Prolactin miR-455 Notch2

miR-742 IFNγ miR-34b Gas1

miR-539 IFNγ miR-19a Gas1

miR-329∗ PDGFAA Notch2 IL-10 miR-26b-3p Gas1

miR-140 Notch2 IL-10, decorin miR-429 Gas1, Tim1

miR-204 TNF-α Gas1 IL-10 miR-128-1-5p Gas1

miR-98 IL-1α IL-10 miR-144 Gas1

miR-665 IL-10, Notch 2 (3 sites), Tim1 miR-2985 Gas1

miR-335 IL-10, Notch2, Tim 1 miR-301a Prolactin

miR-495
IL-10 (2 sites), Notch 2,

Gas1 (2 sites)
miR-362∗ Tim1

miR-338∗ IL-10, Notch2 miR-451∗ Tim1

miR-200b, c Decorin miR-409-5p Tim1

miR-223 Decorin miR-218a Tim1

miR-499 Decorin (2 sites), Gas1 miR-369-5p Tim1

miR-542-3p Decorin, Tim1 miR-434 IL-22

miR-138-1∗ B7–1/CD80 Notch2 miR-379
TREM1,
FGF-BP

miR-196c Decorin, TNF-α miR-217 Notch 2, IL-1α

∗ indicates a functional but nonpredominant miRNA as indicated by miRbase.
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during this phenotypic change is attributable to several
pathologies including but not limited to LV dilation, ventric-
ular stiffening, and cardiomyocyte death; all of which play
pivotal roles in the progression to heart failure. We reported
that ZL rats treated with rapamycin had greater degrees of
cardiac fibrosis than untreated ZL rats. However, in ZO rats,
treatment with rapamycin attenuated cardiac fibrosis [3].
Data presented here indicates that changes in the miRNA
transcriptome induced by diabetes and Rap treatment shared
significant similarities. Interestingly, while some of the miR-
NAs that were differentially expressed in ZO-C and ZL-Rap
compared to ZL-C were profibrotic or increased in condi-
tions of fibrosis, others were involved in suppressing fibrosis
(Tables 2 and 3). This observation suggests that while cardiac
fibrosis develops in response to diabetes (ZO-C) or Rap

treatment of healthy animals (ZL-Rap), a concurrent adap-
tive mechanism to regulate fibrosis via modulating miRNA
transcriptome is also activated. Several signaling pathways
have been implicated in the transformation of fibroblasts to
myofibroblasts (fibrotic remodeling). Among the best under-
stood of these signaling pathways are transforming growth
factor-β, which is thought to be the primary regulatory path-
way of pathological fibrosis [69, 70].

While some interspecies variation exists in the expression
and target specificity of miRNA, previous studies have dem-
onstrated high degrees of similarity [71, 72]. With the goal of
exploring how our differentially expressed miRNA panel
may be associated with cardiac fibrosis in humans, we uti-
lized the DIANA software [30] and human orthologs for
the miRNA that were significantly correlated with cardiac
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Figure 7: (a) Correlation coefficients and p values of fibrotic scores and differentially expressed miRNA from all groups. (b) Comparative
miRNA expression levels of several miRNAs that were associated with cardiac fibrosis scores. Data represents means± SEM. n = 4 for all
groups. ∗p < 0 05 vs. the ZL-C group.

Table 6: miRNAs associated with cardiac fibrosis, their overall effect on fibrosis/TGF-β signaling, and the predicted target genes along the
TGF-β signaling pathway.

MicroRNA Assoc. with fibrosis (r2, p value) Fibrotic effect Predicted gene targets in the TGF-beta signaling pathway†

hsa-miR-140 0.6443, 0.034 Anti [1] PITX2, BMP2

hsa-miR-144 −0.83, 0.002 Anti [2, 3] ACVR2B, SMAD9, ROCK1, BMPR1B, CDKN2B, ID4

hsa-miR-155 0.639, 0.036 Pro/anti∗ [4, 5] ACVR1C, BMPR2, SMAD5, SMAD2, PPP2CA, GDF6, SP1, RPS6KB1

hsa-miR-21 0.633, 0.039 Pro [6–8] ACVR2A, BMPR2, SMAD7, TGFB2

hsa-miR-26b 0.687, 0.02 Pro/anti∗ [9, 10]
ACVR1C, BMPR1B, BMPR2, CREBBP, EP300, IFNγ, INHBA,

INHBB, SMAD1, SMAD2

hsa-miR-34b 0.742, 0.008 Pro [11] ACVR2A, ACVR1C, FST, SMAD5, SMAD7, SMURF1, RPS6KB1
∗Physiological conditionally based effects. †Emphasis indicates the predicted effect that miRNA inactivation of that gene would have on fibrosis. Italic emphasis
refers to decreased fibrosis. Underlined emphasis refers to increased fibrosis. Bold emphasis refers to effect dependent on ligand milieu. ACVR1C: activin
receptor type-1C; ACVR2A: activin receptor type-2A; ACVR2B: activin receptor type-2B; BMP2: bone morphological protein-2; BMPR2: bone
morphological protein receptor type-2; CDKN2B: cyclin-dependent kinase inhibitor 2B; CREBBP: cAMP response element-binding protein; EP300:
E1A-associated protein p300; FST: follistatin; GDF6: growth differentiation factor 6; ID4: inhibitor of DNA-binding protein 4; IFNγ: interferon-gamma;
INHBA: inhibin beta A subunit; INHBB: inhibin beta B subunit; PITX2: paired-like homeodomain transcription factor 2; PPP2CA: protein phosphatase 2
catalytic subunit alpha; ROCK1: Rho-associated coiled-coil-containing protein; RPS6KB1: ribosomal protein S6 kinase B1; SMURF1: SMAD-specific E3
ubiquitin protein ligase 1; TGFB2: transforming growth factor beta 2.
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fibrosis in our rats were used as input. KEGG analysis
returned multiple interactions between our miRNA set and
genes involved in the TGF-β signaling pathway (Table 6;
Figure 8). Profibrotic TGF-β signaling involves numerous
cell surface receptors in addition to TGF-β receptors, includ-
ing those of the bone morphological protein and activin sub-
families (BMPRs and ACVRs, respectively). SMAD proteins
are the primary signal transducers of these receptors and
therefore are profibrotic with the exception of SMAD7 which
inhibits the action of other SMADs. As with most biological
pathways, the TGF-β pathway contains several internal feed-
back loops. Collectively, these data suggest that human
orthologs of rat miRNAs that showed the highest correlation
with cardiac fibrosis are involved in modulating the profibro-
tic TGF-β pathway.

In summary, the data presented here show that 47% of
miRNA transcriptome activated in the hearts of healthy rats

in response to Rap treatment are identical to 80% of the
miRNA transcriptome activated in diabetic rat hearts. In dia-
betic rat hearts, the miRNA transcriptome could have played
a significant role in inducing the pansuppression of anti-
inflammatory and proinflammatory intracardiac cytokines.
However, while several miRNAs had predicted profibrotic
effects, others had antifibrotic effects, suggesting that the
miRNA transcriptome may serve as an adaptive mechanism
to regulate the progression of cardiac fibrosis. Moreover,
human orthologs of rat cardiac miRNAs that exhibited the
highest correlation with cardiac fibrosis have the potential
to modulate the profibrotic TGF-β pathway.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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