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Abstract: In tribologically loaded materials, folding instabilities and vortices lead to the formation of
complex internal structures. This is true for geological as well as nanoscopic contacts. Classically,
these structures have been described by Kelvin–Helmholtz instabilities or shear localization. We here
introduce an alternative explanation based on an intuitive approach referred to as the force cone
method. It is considered how whirls are situated near forces acting on a free surface of an elastic or
elastoplastic solid. The force cone results are supplemented by finite element simulations. Depending
on the direction of the acting force, one or two whirls are predicted by the simplified force cone
method. In 3D, there is always a ring shaped whirl present. These modelling findings were tested
in simple model experiments. The results qualitatively match the predictions and whirl formation
was found. The force cone method and the experiments may seem trivial, but they are an ideal
tool to intuitively understand the presence of whirls within a solid under a tribological load. The
position of these whirls was found at the predicted places and the force cone method allows a direct
approach to understand the complex processes in the otherwise buried interfaces of tribologically
loaded materials.

Keywords: tribology; vortices; force cone method; whirls; FEM

1. Introduction

When metals are subjected to a tribological load, the same basic materials science prin-
ciple applies as for other forms of mechanical loading: The microstructure of the material
determines its properties. For a frictional contact however, this concept is slightly more
complicated, as the microstructure directly at and under the contacting surfaces undergoes
highly dynamic changes due to the shear loading [1–5]. The intricate interplay and feed-
back between surface stresses, subsurface grain size and friction coefficient was recently
elucidated by Argibay and co-workers [6]. These phenomena are of immense interest,
as in metals the frictional energy is mainly dissipated through plastic deformation and
microstructural changes [7]. In metals under a tribological load, vortices, waviness and fold-
ing instabilities are often observed as microstructural characteristics [8–10]. In the literature,
the formation of such microstructural features has been attributed to several mechanisms.
For example, the plastic response of the material has been treated like a fluid [9,11]. Doing
so leads to structures reminding of Kelvin–Helmholtz instabilities [8–11]. For very similar
features that originated during severe plastic deformation experiments conducted with
copper, silver and aluminum foils, vortices were explained by treating these materials as
non-linear viscous fluids [12]. This again leads to instabilities due to shearing which are
accommodated by the formation of vortices [12]. More recently and for metallic materials,
crystal defects as well as their ability to accommodate slip on certain glide systems was
identified as the main reason behind whirl formation in multilayer systems [13]. As was
pointed out by Rigney et al. [11] and Pouryazdan et al. [12], vortex formation is observed
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over a wide range of length scales [14]: In nanoscopic molecular dynamics simulations [10],
over the micrometer length scales of tribological model systems [8], the millimeter scale
in high pressure torsion experiments [12], as well as in geology [14]. This demonstrates
the generality of this phenomenon as well as its tremendous importance when it comes
to understanding a material’s response to a shear load. The same is true when looking at
recent molecular dynamics results for the subsurface microstructure evolution of CuNi
alloys in a tribological contact. In addition, there signs for whirl or vortex formation can be
found [15]. Here, we offer an alternative and intuitive view for explaining whirl formation
on a continuum level. This approach is based on the established force cone method, which
was initially inspired by tree architecture [16–18]. This approach was in the past success-
fully applied in industry to design lightweight and durable components, i.e., by casting
and forging [19]. The force cone approach has the distinct advantage of being descriptive
and thereby easy to apply. At the same time one needs to keep in mind that microstructural
elementary processes like dislocation motion or grain boundary sliding by which a material
will accommodate these forces [6] are of no concern to the force cone method. This in turn
is the advantage of the approach; it can be applied to a wide range of materials, as the exact
mode of shear accommodation does not matter to a mesoscopic, continuum explanation.

2. Materials and Methods
2.1. The Force Cone Method

The basic idea behind the force cone method is that a single force acting at a point
in an infinite elastic plane pushes a compression cone ahead and pulls a tension cone
behind. Figure 1 shows the distribution of radial stresses at a distance, r = 1, from the
point of force application in an infinite plate loaded by a single force [20]. The arrows
indicate the magnitudes and directions of the compressive (blue) and tensile (yellow)
stresses. Superposition with the appropriate force cones indicates that most of the stresses
act within the two 90◦ sides of the force cones. The 90◦ force cone assumption thus served
to eliminate less loaded regions right before the final shape is determined and used for
designing lightweight structures.
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The principle of the force cone method and whirls in solid materials is highlighted in
Figure 2.
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Figure 2. About the force cone method. (a) Every force in a solid creates a rotating displacement field in the form of a
ring whirl. There is a field of very small elastic displacements, which altogether describe the shape of the whirl. The 2D
model in (b) is a cross-section along the diameter of the overall whirl running through the force axis. The red arrow is
the force attacking at the center (red dot). The compression cone is colored in blue; the tension cone is in yellow. The
red dots show some of the intersection points of compressive and tensile force flow (principle stresses) which cross each
other perpendicularly. The blue arch in the tension cone is one of the many compression bows. The yellow arch in the
compression cone is one of the many tension “cords” related to the principle tensile stresses.

Any force acting inside a solid pushes a compression cone in front and pulls a tension
cone behind itself [16]. If one imagines that the compression cone is filled with compacted
material, it “exhales” excessive material. Simultaneously, this material can be “inhaled” by
a tension cone of another force nearby. These processes are comparable to the material flow
from a source to a sink.

In Figure 2, the tension cone is the consequence of the same force as the compression
cone, but the material can also be inhaled by the tension cone of any other force nearby.
With this approach, the force cone method has established itself as an easy to grasp concept
to perform topology optimization for creating light weight structures without computer
effort as well as to extend the lifetime of engineering structures [16,17].

In order to exemplify further how the force cone method can be an intuitive predictor
for the localization of whirls in solids, and for a combination of different acting loads, three
further examples are presented in Figure 3.

In the three examples of line loads highlighted in Figure 3, the magnitude of the acting
forces can be increased. When allowing for plastic flow, the force cone method is able to
qualitatively predict the shape of the red-colored plastic yield zones qualitatively, whilst
their extent and size depends on the material properties, like yield stress, strain hardening
coefficient, and most importantly the magnitude of the external load.

For the same loading conditions considered in Figure 3, elastoplastic finite element
method (FEM) calculations were conducted, with the results presented in Figure 4. For
these FEM calculations, a generic elastoplastic material model was employed.

2.2. Application of the Force Cone Method to a Single Point Surface Load

As a first simplification, a tribological load is reduced to a force acting on a single point
on a solid’s surface. Applying the force cone method allows for a first qualitative intuition
where vortices are expected to form at or under the surface. The results are presented in
Figure 5.
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The force cone cross-sections in Figure 5 demonstrate that the force cone method does
allow to develop a first, qualitative sense for where whirls might be expected under a
tribological load. For a pure indentation (Figure 5a), where the force is acting perpen-
dicular to the surface, a whirl ring is found. In gases similar phenomena are known, for
example the rings created by cigar smokers. Interestingly, a similar whirl was predicted by
Prandtl [21,22] when he was studying slip lines under a vertical localized pressure acting
on an elastoplastic half space. In soil mechanics such whirls are often discussed when
houses fail on wet soil [23]. Assuming that two solids are sliding against each other, one
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might simplify the acting forces to a single force parallel to the surface. This scenario is
presented in Figure 5b. A half-ring whirl develops and the force cone drawing on the
right illustrates the situation at the plane of symmetry. For a force at an angle of 45◦ to the
surface normal (Figure 5c), only the compression cone is fully inside the solid. The tension
cone is loading the surface merely tangentially. Therefore, along the plane of symmetry
A-A’ only one whirl is to be expected inside the solid and the three-dimensional sketch on
the left suggests two whirls at the surface.
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Figure 5. The force cone method applied to point surface forces. In order to simplify a tribological
loading scenario, the surface forces acting on a single point at the surface are considered (a) per-
pendicular to the surface; (b) parallel to the surface and (c) at an angle of 45◦. In all cases, the red
arrow in the left sketches represents the acting force. Force cone drawings on the right represent
the cross-sections when cutting the solid at the A-A’ axes. This approach is intended to allow for a
qualitative assessment of the whirl situation near the forces.

2.3. Finite Element Method

As intuitive as the force cone method might be, it is based on severe simplifications.
It might therefore be instructive to compare the force cone to FEM results. We chose
FEM for all three loading scenarios and in some cases already established analytical
solutions following the equations developed by Boussinesq [24]. Classic elastomechanics
solutions [20,25] for the well-known Kelvin’s problem, a point-loaded infinite body, also
contain whirls which can be found by visualizing the displacement fields. In addition
to the classic solutions, FEM allows us to study an elastic-plastic contact. For doing
so, the following 2D finite element method calculations were performed with the finite
element program ANSYS Mechanical (Canonsburg, PA, USA), Version 17 through the
Ansys Parametrical Design Language (APDL) [26]. Simulation parameters are listed in
Table 1. The material parameters are somewhat arbitrary and not meant to model the
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behavior of a specific material in particular. Especially the low-yield stress and low plastic
tangent modulus were chosen in order to allow for an early plastic response, large yield
zones and pronounced plastic whirl displacements, even for small loads. It should also be
pointed out that we chose point loads—distributed over three nodes—and not contacts of
finite sizes in order to keep our FEM analysis simple and to allow for an easy comparison
with the force cone results, where also a point load is considered.

Table 1. FEM simulation parameters and geometry.

Parameter Symbol/Description Value

Material
Young’s modulus (MPa) E 210,000

Poisson’s ratio ν 0.35
Yield strength (MPa) Re 20

Plastic tangent modulus (MPa) ET 100

Model geometry (2D)
Width W 400
Height H 200

Boundary conditions
Number of force loaded nodes - 3

Left, right, bottom - Clamped

Element

Type Quad PLANE 182
1

Size - 2
Number - 20,000

Stress state - Plain strain

1 Finite element program ANSYS MECHANICAL (Canonsburg, PA, USA), Version 17.

As boundary conditions, the FE model was fully clamped at three sides with only
the upper side as a free surface (see Figure 6). There is a local stress concentration where
the load is acting and plastification starts there. The focus of this investigation was on
the contour of the plasticized zone, which is far enough away from the loading and is
not affected by the stress concentration there (Saint-Venant’s principle). The shape of the
plastic zone is little sensitive to the element size. Even with doubled (or halved) element
size there are little differences in the shape. The differences mainly concern the sharpness
of the transition between purely elastic and plasticized areas, larger element size leads to
smoother transitions.
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3. Results and Discussion
3.1. Finite Element Analysis

The results of these FEM calculations for a purely elastic and for an elastoplastic
material are presented in Figure 7 for the three loading scenarios introduced in Figure 5.

1 
 

 
Figure 7. FEM results for three different forces as cross-sections at the symmetry axis. On the left-hand side, results for a
purely elastic response are shown, while on the right elastic-plastic material behavior is modeled. The plastic yield zones
are colored in red. In (a) the point force is acting perpendicular to the surface, in (b) the force is parallel to the surface and
in (c) the acting force is at an angle of 45 to the surface normal. The force cone method predictions are superimposed in
each panel.

In Figure 7, the force cone method predictions are superimposed on the FEM results,
which are visualized along the symmetry axes cross-sections. Comparing Figures 5 and 7
demonstrates that the FEM results are in agreement with the force cone ones. There are
whirl-like displacement fields in both elastic and elastoplastic calculations. The whirls are
even situated as qualitatively predicted by the force cone models in Figure 5. The 2D-whirls
are at both sides of the vertical force (Figure 7a), below the tangential force (Figure 7b)
and on the right side under the slanted force attack (Figure 7c). Thus, there are whirls
under the surface of a solid, if that surface is loaded by forces. This implies that under a
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tribological load, not only sliding needs to be considered, but also rolling events carried by
“hidden wheels” of small amounts of rotation in the purely elastic case and larger amounts
of rotation for a plastic response of the material. These “wheels” accommodate the strain
induced by the shear loading. This approach to understanding the material response to a
tribological load is in complete agreement with experimental results found in literature.
For multilayered materials for example, vortices have been described in the literature
several times [8,12] and one might even explain mechanical mixing of for instance Au-Ni
multilayers [26] through the force cone approach. Such vortices have also been described
for model materials such as copper [11] and simple iron carbon steels [27].

3.2. Simplified Model Experiments

As both the force cone and the FEM results are in good agreement, they were put to
the test experimentally. The experiments chosen are simple and had the only purpose to
show that displacement whirls exist and that they are at least roughly at the predicted
places. Moss rubber was used as it is softer than regular rubbers and is prone to significant
deformations at relative small loads. For the experiments, depicted in Figure 8 as digital
micrograph cross-sections, a little steel sheet was pushed vertically (Figure 8b) or slanted
(Figure 8c) into the surface or a little plate was glued on top of the rubber and pushed
tangential to the surface (Figure 8d), in order to mimic a tribological shear load.
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ship between the angle of force attack and the location of the whirls. The surface of a standing moss
rubber plate was coated red and marked with a rectangular grid of black lines. In (a) the unloaded
moss rubber plate is shown. In (b) the surface of the rubber plate is indented vertically, in (c) the
force is acting under an angle of 45◦ and (d) the material is loaded parallel to the surface. In (b–d),
the deformed material can be followed by the grid in black, while the original—unloaded—location
of select intersection point are marked by green crosses.

In these experiments, the same angles for the force to act on the material were chosen
as for the force cone (Figure 5) and FEM (Figure 7) considerations. At the same time one
should keep in mind that here the force does not act on a single point, especially in the
case of Figure 8d, where the material is loaded parallel to the surface. The rubber plate
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was clamped all along its lower edge. Upon following the changes on the black grid
and comparing to the original locations of the intersection points between horizontal and
vertical lines, it can be concluded that the maximum rotations are observed at the locations
where they were predicted by the force cone method, see Figure 5. At the same time one
needs to keep in mind that the large geometrically non-linear deformations of the surface
do not fully agree with the theoretical calculations (both force cone method and FEM), as
these assume a fully linear elastic solid. Interestingly, the rotation of the crosses formed at
the intersection points between vertical and horizontal lines also are as predicted. This is
further evidence that whirls exist and that they roughly behave as suggested by the force
cone method. As trivial as these experiments may seem, they help to visualize that whirls
are existing near where the surfaces experience a load; more should not be expected from
these first experiments. In the future, it would be interesting to aim at correlating these
whirls with alterations in the local mechanical properties and to investigate how these
changes manifest themselves in the tribological behavior of the overall material.

In conclusion, tribologically loaded materials are known to exhibit subsurface vortices.
While such structures have traditionally been associated with phenomena as they are found
in fluids, we here offer an alternative explanation. The so-called force cone method, which
was mainly established to create lightweight mechanical structures, allows an intuitive
manner to identify the subsurface areas where compressive and tension stresses are act-
ing. Through considering the interaction between tension and compression cones, whirl
formation for forces acting perpendicular, parallel and at an angle of 45◦ to the surface
are predicted. These results are compared to finite element calculation which themselves
support the whirls predicted by the force cone method. Simple model experiments per-
formed with moss rubber further substantiate the force cone predictions. These results
suggest that “rolling instead of sliding” is a preferred mechanism to react to a shear load
and that solids create “wheels” through the formation of subsurface vortices. The force
cone method is an intuitive and easy to use approach to understand how solids react to
shear forces, independent of the length scales that are considered. This being said, one
needs to be aware that the force cone method aims at a qualitative description and so far, is
not meant to arrive at quantitative predictions. Similarly, no statement is intended about
the nature of the elementary mechanisms by which these whirls form or how the material
accommodates plasticity.
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