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Abstract: Plant survival depends on adaptive mechanisms that constantly rely on signal recognition
and transduction. The predominant class of signal discriminators is receptor kinases, with a vast
member composition in plants. The transduction of signals occurs in part by a simple repertoire
of heterotrimeric G proteins, with a core composed of α-, β-, and γ-subunits, together with a
7-transmembrane Regulator G Signaling (RGS) protein. With a small repertoire of G proteins in plants,
phosphorylation by receptor kinases is critical in regulating the active state of the G-protein complex.
This review describes the in vivo detected phosphosites in plant G proteins and conservation scores,
and their in vitro corresponding kinases. Furthermore, recently described outcomes, including novel
arrestin-like internalization of RGS and a non-canonical phosphorylation switching mechanism that
drives G-protein plasticity, are discussed.
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1. Introduction

Plants lack the mobility mechanisms observed in other kingdoms; hence, their sur-
vival depends on adaptive mechanisms that constantly rely on signal perception and
transduction [1]. Among the main signaling molecules, the heterotrimeric G proteins play
an essential role. They are composed of α-, β-, and γ-subunits, modulated by nucleotide-
binding status. The activation/inactivation of the complex occurs through the GTP/GDP
binding process. The Gα-GDP binding maintains the complex in an inactive form, and
Gα remains associated with Gβ and Gγ proteins. During the activation process, GDP is
replaced by GTP, which promotes the dissociation of Gα from Gβγ proteins and, in turn,
triggers the downstream signaling [2,3]. The modulation of the Gα protein to GDP-bound
or GTP-bound is a precise and specific process. In mammals, the modulation of the GDP-
to-GTP exchange mechanism is performed by G-protein-coupled receptors (GPCRs) that
act as guanine nucleotide exchange factors (GEFs). Gα protein has intrinsic GTPase activity,
but with a slow rate of hydrolysis. Therefore, it requires some factor(s) to accelerate the
GTPase activity to modulate the signaling to a steady state (Figure 1) [4,5].

In metazoans, many molecules activate different pathways through G proteins [6].
The signal distinction is mainly explained by a vast combination of subunits and GPCRs
present in their genome [7]. On the other hand, plant genomes encode a few subunits; for
example, the Arabidopsis thaliana genome encodes only one canonical Gα subunit (AtGPA1),
three atypical Gα subunits (AtXLG1-3), one beta (AtAGB1), and three gamma (AtAGG1-
3) subunits, one RGS regulator (AtRGS1), and no characterized GPCR [8]. This limited
number of protein components does not correlate with the complexity of the signaling
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events mediated by G protein in plants [9]. The multiplicity of propagated signals from
plant G proteins relies on the different activator receptors and various post-translational
modifications on the G subunits, rather than the number of components [10]. Moreover, in
plants, algae, and protists, Gα presents GPCR-independent nucleotide exchange, and some
species are heavily regulated by the atypical seven-transmembrane (7TM) Regulator of
G-signaling 1 (RGS1) (Figure 1) [11–13]. As cytoplasmic kinases and receptor-like kinases
(RLKs) are consistently linked to G-protein mediation [14–16], here, we discuss the mapping
of phosphorylation events and outcomes regarding the G-signaling core in plants.
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independent module via clathrin-mediated endocytosis (CME), or RGS1 is internalized in a 
phosphorylation-independent mechanism via sterol-dependent endocytosis (SDE). Flg22 is 
recognized by the BAK1/FLS2 complex, and multiple phosphorylation occurs at GPA1 and at the 
C-terminus of RGS1. The phosphorylated core is uncoupled, and downstream signaling is activated. 
Flg22-induced RGS1 internalization occurs via CME in a β-arrestin-like mechanism mediated by the 
VPS26 proteins. Created with BioRender.com (Publication license OL240ET01G. Accessed on 7 June 
2022). 
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Figure 1. Conserved and non-conserved G-protein activation mechanisms in plants and animals.
(A) An animal cell recognizes an extracellular signal via GPCR that promotes nucleotide exchange at
the alpha subunit. GTP-bound Gα releases Gβγ for downstream signaling. Inactivation occurs under
GTP hydrolysis and phosphorylation-induced GPCR internalization. (B) Nucleotide exchange is
spontaneous in plant cells with no characterized GPCR. Negative regulation via GTPase acceleration
activity is promoted by 7TM-RGS proteins. D-glucose activates endocytosis via two different mech-
anisms: RGS1 is phosphorylated by the WNKs and internalized in a VPS26-independent module
via clathrin-mediated endocytosis (CME), or RGS1 is internalized in a phosphorylation-independent
mechanism via sterol-dependent endocytosis (SDE). Flg22 is recognized by the BAK1/FLS2 complex,
and multiple phosphorylation occurs at GPA1 and at the C-terminus of RGS1. The phosphorylated
core is uncoupled, and downstream signaling is activated. Flg22-induced RGS1 internalization
occurs via CME in a β-arrestin-like mechanism mediated by the VPS26 proteins. Created with
BioRender.com (Publication license OL240ET01G. Accessed on 7 June 2022).

2. Phosphorylation and Internalization of RGS1 in an Arrestin-like Mechanism

G-protein-coupled receptors are composed of an extracellular N-terminus, a 7TM
domain with intra- and extracellular loops, and a disordered cytoplasmic C-terminal do-
main [17]. GPCRs bind agonists, leading to activation through a conformational change
that relays the signal to the Gα subunit regulation by accelerating the release of bound
GDP [18]. GPCRs are phosphorylated by GPCR kinases (GRKs), initiating the recruitment
and activation of adaptor proteins, β-arrestins, that precede clathrin binding and endocy-
tosis [19]. B-arrestins affect signaling by internalizing the GPCR away from its G-protein
complex, and they also propagate signaling by interacting with effector proteins [20].
Different phosphorylation patterns at the V2 vasopressin receptor (V2R) C-tail promote
different levels of β-arrestin1 binding and activation via conformational changes. Those
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findings suggest a “phosphorylation barcode” reading in which the spatial arrangement of
phosphate groups determines the recruitment and activation of β-arrestins, rather than the
number of phosphorylated residues at the receptor (Figure 1) [21].

The structure of the Arabidopsis regulator, AtRGS1, has a hybrid architecture of
GPCR topology and an animal RGS protein [22]. The prototype contains a GPCR-like
seven-transmembrane barrel domain at the N-terminus, followed by a disordered linker
region that may contain a short helix, a conserved RGS domain, and an unstructured
C-terminal tail, which harbors several di-serines typical of GPCRs (Figure 2) [23]. AtRGS1
undergoes endocytosis under high concentrations of D-glucose within a few minutes in
a Gβ-dependent manner. The C-terminus of the 7TM regulator possesses a cluster of
serine residues (Ser428, Ser430, Ser431, Ser435, and Ser436) that resemble the ones found in
mammalian organisms. Although GRKs have not been identified in plant genomes, several
WNKs (WITH NO LYSINE KINASE) [24] interact with AtRGS1 and phosphorylate the C-tail
residues Ser428 and Ser435 or Ser436 in vitro. The inactivation of those phosphosites (Ser→
Ala mutation) and the deletion of some WNK genes reduce glucose-induced internalization
of AtRGS1 [14].
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Figure 2. Experimental phosphorylation map of AtRGS1 and AtGPA1 dimer. Structural models
of AtRGS1 (hot pink) and AtGPA1 (forest green) are shown. Xylanase-induced phosphorylation
is detected at serine 278, which constitutes the linker region of AtRGS1 [25,26]. Phosphorylation
occurs at the C-terminal tail of AtRGS1 in the serine residues 417, 428, 430, 431, 435, and 436 [26].
D-glucose-induced phosphorylation of AtRGS1 occurs at Ser428/435/436 [14], and phosphorylation
under flg22 treatment is Ser428/431-dependent [27]. AtGPA1 is phosphorylated at the N-terminal
threonine residues 12, 15, and 19 [26,28–32]. pThr19 has a reduced phosphorylation signal with flg22
treatment but is induced by ABA. Tyrosine residue 166 is at the all-alpha helical domain interface and
responds to several phytohormones [29,33]. Phosphorylation occurs at the catalytic domain of the
serine residues 49 and 314, and pSer49 is induced by sugar exposure [26,29,34]. Top-ranked models
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were obtained using AlphaFold2 [35], and the dimer complex was predicted by overlapping the
models with the crystal structure of the heterodimeric complex of human RGS1 and activated Gi alpha
1 (PDB 2GTP). Phosphosites are represented as balls and sticks. Experimental data were obtained
from both the PhosphAt database (https://phosphat.uni-hohenheim.de, accessed on 20 May 2022)
and ATHENA (http://athena.proteomics.wzw.tum.de, accessed on 20 May 2022). ATHENA was
used to identify tissue-specific phosphorylation, which is pointed out below residue identification.
Color filling indicates experimental treatment. Asterisks indicate residues that were not mapped in
all tissues.

The peptide flg22, a bacterial elicitor of host responses, binds to its receptor FLS2
(FLAGELLIN-SENSITIVE 2) and co-receptor BAK1 (BRI1-ASSOCIATED RECEPTOR KI-
NASE 1), leading to the induction of specific response genes, ROS production, and calcium
signaling [36,37]. However, the deletion of the AtRGS1 gene impairs the flg22-mediated
responses, indicating a genetic interaction between AtRGS1 and FLS2 signaling [27,38,39].
Furthermore, other biotic pathways (e.g., anti-fungal responses elicited by chitin) are af-
fected by AtRGS1, and bacterial infection in rgs1-2 plants is attenuated compared to that in
the wild type [27]. Since flg22 and chitin act as external signals, it is reasonable to assume
that elicitor-modulated RLKs interact with and phosphorylate AtRGS1. Accordingly, BAK1
and its interacting partners FLS2, BIK1, PEPR1, and BIR1 have been shown to phospho-
rylate RGS1 in vitro [40]. Furthermore, genetic and biochemical assays indicate that RLK
BRI1-LIKE 3 (BRL3) also interacts with AtRGS1 to control ROS production and plant devel-
opment during flg22 and sugar responses [38]. Phosphorylation of 7TM-RGS also occurs
in soybean, where the Nod factor receptor 1 (NFR1) phosphorylates GmRGS2 in vitro to
control nodule formation. Interestingly, three of the five NFR1-induced phosphorylated
residues are localized at the predicted linker region of GmRGS2, and one of them (Ser277)
is conserved in AtRGS1 (Ser278) (Table 1) [41]. Likewise, this linker residue has been shown
to be phosphorylated in xylanase-treated root cell cultures [25].

Table 1. MS-detected phosphorylation sites from the Arabidopsis G-protein core.

Protein Residue Detected In Vivo? In Vitro Kinase
Conservation
Score (Plants

Only) *

Conservation
Score (Eukaryotes,
Excluding Plants) *

AtRGS1

Ser278 Yes [25] BRL3, BIK1, PBL1 [15,27] −0.861
Ser339 No [15] BRL3 [15] 0.714 −1.131
Ser365 No [15] BRL3 [15] −1.373 0.444
Thr375 No [15] BRL3 [15] −1.016 −0.162
Thr379 No [15] BRL3 [15] −0.582 0.483
Ser405 No [15] BRL3 [15] −0.981 0.959
Ser406 No [15] BRL3 [15] −1.139 −0.559
Ser417 Yes [26] BRL3, BIK1 [15,27] 1.798

Ser428 Yes [26] BRL3, PEPR1, WNK8, BIK1, PBL1
[11,14,27] −0.211

Ser430 Yes [26,27] BRL3, BIK1, PBL1 [15,27] −1.116
Ser431 Yes [26,27] BRL3, BIK1, PBL1 [15,27] −0.853
Ser435 Yes [26] BRL3, WNK8 [11,14,27] −1.048
Ser436 Yes [26] BRL3, WNK8 [11,14] −0.097
Ser450 Yes [27] BIK1, PBL1 [27] 1.297
Ser452 Yes [27] BIK1, PBL1 [27] 1.897
Ser453 Yes [27] BRL3, BIK1, PBL1 [15,27] 0.429

https://phosphat.uni-hohenheim.de
http://athena.proteomics.wzw.tum.de
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Table 1. Cont.

Protein Residue Detected In Vivo? In Vitro Kinase
Conservation
Score (Plants

Only) *

Conservation
Score (Eukaryotes,
Excluding Plants) *

AtGPA1

Ser8 No [16]
BAK1, PSY1R, PEPR1, BRL3, BRI1,

XIP1, AT2G19230, AT2G37050,
AT5G62710 [16]

1.567 −0.741

Thr12 Yes [28,31]
BAK1, SERK1, PSY1R, PEPR1, BRL3,

XIP1, AT2G19230, AT2G37050,
AT5G62710 [16]

2.432 2.226

Thr15 Yes [30,32]
BAK1, SERK1, PSY1R, BRI1, XIP1,

AT2G19230, AT2G37050, AT5G62710
[16]

3.816 0.489

Thr19 Yes [29]
BAK1, SERK1, PSY1R, BRL3, BRI1,

XIP1, AT2G19230, AT2G37050,
AT5G62710 [16]

1.349 0.949

Ser49 Yes [42] −0.658 −0.908
Ser52 No [16] BRL3, AT2G19230, AT5G62710 [16] −0.167 −0.945
Thr53 No [16] BRI1 [16] −0.974 −0.942
Ser73 No [16] BAK1 [16] 0.293 0.322

Thr85 No [16] BAK1, PSY1R, BRL3, BRI1,
AT2G19230, AT5G62710 [16] −0.588 −0.792

Thr93 No [16] BAK1, SERK1, PSY1R, BRL3, BRI1,
XIP1, AT2G19230 [16] 0.609 −0.700

Thr101 No [16] BAK1, XIP1 [16] 5.029 0.514
Ser103 No [16] AT2G19230 [16] −0.179 1.321
Ser109 No [16] BAK1, SERK1, BRL3, AT5G62710 [16] −0.428 1.116
Ser110 No [16] BRI1 [16] 5.031 0.509

Ser112 No [16] SERK1, AT2G19230, AT2G37050,
AT5G62710 [16] 0.333 −0.266

Thr141 No [16] BAK1, BRL3 [16] 0.345 1.160

Thr164 No [16] SERK1, XIP1, AT5G10290,
AT2G37050, AT5G62710 [16] −0.007 −0.847

Tyr166 Yes [29] −0.673 −0.929
Ser175 No [16] AT5G62710 [16] −0.464 0.857
Thr193 No [16] BRI1 [16] −0.985 −0.942
Thr194 No [16] BRI1 [16] −0.680 −0.807
Ser314 Yes [26] BAK1, AT5G62710 [16] 0.146 0.303
Ser315 No [16] BAK1, AT5G62710 [16] 0.349 −0.304
Thr339 No [16] BAK1 [16] 0.079 1.063
Thr353 No [16] BRI1 [16] −0.311 −0.898

AtAGB1

Ser2 Yes [26] −0.301 1.319
Ser4 Yes [26] 2.106 1.568

Thr14 No [43] BRI1 [43] 1.347 −0.356
Thr16 No [43] BRI1 [43] 0.838 −0.137
Thr34 No [43] BRI1 [43] −0.110 −0.003
Ser40 No [43] BRI1 [43] 0.520 0.002
Thr46 No [43] BRI1 [43] 2.140 0.422
Ser49 No [43] BRI1 [43] 1.972 0.304
Thr53 No [43] BRI1 [43] 0.048 1.096
Thr65 No [43] BRI1 [43] 0.034 −0.538
Ser70 No [43] BRI1 [43] −0.421 −0.529
Ser82 No [43] BRI1 [43] −1.179 −0.624

Thr100 No [43] BRI1 [43] 0.228 −0.127
Thr243 No [43] BRI1 [43] −0.687 −0.561
Thr253 No [43] BRI1 [43] 0.776 −0.327
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Table 1. Cont.

Protein Residue Detected In Vivo? In Vitro Kinase
Conservation
Score (Plants

Only) *

Conservation
Score (Eukaryotes,
Excluding Plants) *

AtAGG2
Ser6 Yes [26] 1.889 −0.927
Ser8 Yes [25] 0.223 −0.428
Ser9 Yes [42] 1.827 0.045

AtAGG3

Ser21 No [43] BRI1 [43] −0.967 1.287
Ser22 No [43] BRI1 [43] −0.933 0.097
Ser37 Yes [26] BRI1 [43] −1.522 1.643
Ser78 No [43] BRI1 [43] 1.621 −2.114
Thr92 No [43] BRI1 [43] 0.913 −1.267

AtXLG1

Ser462 Yes [26] 1.114 3.103
Ser471 Yes [26] 0.233 1.061
Tyr876 Yes [42] 1.458 2.004
Tyr879 Yes [42] 0.231 1.367
Tyr887 Yes [42] −0.188 −0.128

AtXLG2

Ser13 Yes [30,41,44] 0.644
Ser23 Yes [30,45,46] 1.892
Ser38 Yes [26] −0.937
Ser69 Yes [47] 0.404
Ser71 Yes [48] 0.556
Ser72 Yes [47] 0.542
Ser75 Yes [30,44] 0.689
Ser141 Yes [26] 1.825

Ser148 Yes [47] BIK1 [47] −0.079
Ser150 Yes [47] BIK1 [47] 1.152
Ser151 Yes [30,44] 1.467
Ser154 Yes [30,44] 1.143
Ser156 Yes [47] 1.919

Ser169 Yes
[30,44,46,48–50] 0.681

Ser191 Yes [47] 0.865
Ser194 Yes [26] 1.539
Ser489 Yes [47] −0.520 −1.243
Ser530 Yes [51] 0.991 0.644
Thr773 Yes [47] 0.655 0.550
Ser774 Yes [47] 0.190 −0.397

AtXLG3

Ser78 Yes [26] 1.823
Ser82 Yes [26] −0.216
Ser85 Yes [26] 0.112
Ser99 Yes [26] 1.173
Ser101 Yes [26] 1.432
Ser103 Yes [26] −0.082
Ser107 Yes [26] −0.421
Ser243 Yes [26] −0.533
Ser416 Yes [26] 0.247 −1.125
Ser506 Yes [52,53] 0.846 −1.221

* Normalized conservation score obtained from the ConSurf server. A lower score indicates higher residue
conservation. Sequences were obtained using the BLAST tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=
Proteins, accessed on 20 May 2022), and representative sequences were selected using CD-HIT (http://weizhong-
lab.ucsd.edu/cdhit_suite/, accessed on 20 May 2022) with a sequence identity cut-off of 0.9. MSA was obtained
with ClustalOmega (https://www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 20 May 2022). For non-plant
eukaryotic conservation, RGS (PF00615) and Gγ (PF00631) family sequences were obtained from Pfam. AtRGS1
and XLGs’ non-conserved regions were excluded from the final analysis.

While the C-terminal serine cluster phosphorylation in response to sugar and pathogens
has been confirmed, the specific phosphorylation sites are still unclear because distin-
guishing the mass spectrometry (MS) signals of neighbor phosphoserines is not an easy

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
http://weizhong-lab.ucsd.edu/cdhit_suite/
http://weizhong-lab.ucsd.edu/cdhit_suite/
https://www.ebi.ac.uk/Tools/msa/clustalo/
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task [14,27]. The inactivation of Ser431 alone (AtRGS1S431A) inhibits the C-terminal phos-
phorylation induced by flg22, Elf18, chitin, and Pep9. Flg22-induced dissociation of
RGS1/XLG2 and RGS1/FLS2 complexes is also inhibited by a single Ser431 mutation, while
a quadruple phosphomimetic mutation at the cluster (AtRGS1S428/431/435/436D) causes de-
fective binding of both complexes [27].

Consistent with the GPCR internalization mechanism and the biased signaling theory,
in which different signal/receptor interactions trigger different pathways [54], AtRGS1
is internalized by two phosphorylation-dependent endocytosis pathways. Flg22 induces
AtRGS1 internalization via clathrin-mediated endocytosis (CME), while D-glucose trig-
gers both CME and sterol-dependent endocytosis (SDE). The recruitment of the CME
endocytic machinery towards GPCRs requires prior β-arrestin binding and activation,
but plant genomes do not encode these proteins [55,56]. Nevertheless, Arabidopsis has
three proteins with arrestin folds that bind as heterodimers to AtRGS1 and are required
for endocytosis [55]. These include the vacuolar sorting proteins 26 (VPS26)—AtVPS26a,
AtVPS26b, and AtVPS26-like components of the retromer [57], well-known in animals for
their role in endosomal to plasma membrane anterograde trafficking [58]. VPS26 appears
to moonlight as β-arrestins in plants, and because some GPCR endocytosis does not require
β-arrestins [59], VPS26 proteins may serve the same role in animals.

The candidate adaptor VPS26b forms a homodimer or a heterodimer with VPS26a,
both required for flg22-mediated internalization of AtRGS1. However, those genes are not
involved in AtRGS1 internalization that is induced by high concentrations of glucose [55].
Additionally, the inactivation of three cluster sites (AtRGS1S428/435/436A) completely abol-
ishes flg22-induced internalization but only partially affects the glucose-mediated internal-
ization of AtRGS1 [55]. Furthermore, a phosphatase is also required for AtRGS1 stability,
and its presence reduces the in vitro identified phosphorylation by the WNKs [60]. These
findings suggest an animal-like mechanism in which the phosphorylation patterns are the
key for recruitment and posterior signal distinction and transduction.

3. Phosphorylation as a Switch Mechanism of AtGPA1

Eukaryotic organisms encode over 100 guanine nucleotide-binding proteins (GNBPs),
represented by heterotrimeric G proteins, small Ras-related proteins, and translation elon-
gation factors [61]. Besides the high sequence identity, those GNBPs share a common
structural core composed of six beta-sheet strands, five alpha-helices, and five highly
conserved loop regions that bind to GDP/GTP. Each of the five loops is responsible for
phosphate binding, guanine ring binding, or Mg2+ binding and coordination [62]. Upon
binding, GTP hydrolysis occurs with a subunit-specific intrinsic rate. A conformational
change brings the two switch regions (Switch I and Switch II) to a non-flexible conformation
that orientates the magnesium ion in order to facilitate the reaction [33,61]. The canonical
alpha subunit of heterotrimeric G proteins contains the small Ras-like domain and an
all-alpha helical domain that, in animals, is involved in guanine exchange factor (GEF)
binding, nucleotide release inhibition, and ubiquitination processes (Figure 3) [62–66].

The Arabidopsis thaliana Gα subunit (AtGPA1) has a spontaneous nucleotide exchange
activity about 50 times higher than that of GαoA (G protein alpha subunit o), the fastest
exchanging Gα identified in mammalians [13,22]. Even though AtRGS1 maintains AtGPA1
in a resting state by increasing the GTP hydrolysis rate, the endocytosis of the regulator
requires prior G-protein activation. Thus, the balance of cycling and hydrolysis within
AtGPA1 is crucial for downstream signaling activation [40,68]. There are examples in
animals and yeast regarding activation by phosphorylation of Gα. Phosphorylation of the
bovine Gsα (Gs alpha subunit) by epidermal growth factor receptor (EGFR) is exclusive
to tyrosine residues and promotes adenylate cyclase [69]. In Saccharomyces cerevisiae, the
alpha subunit Gpa2 is phosphorylated by glycogen synthase kinase (GSK), increasing its
localization on the plasma membrane and activating protein kinase A (PKA) at a higher
level [70]. Nevertheless, the characterized phosphorylation sites from these events are not
conserved among plant components [68].
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1TND) from Bos taurus were selected in order to show nucleotide-induced conformational change 
in animals. Structures were overlapped, and switch regions of both states were colored in pink and 
blue, as indicated. Adapted from [67]. (B) The plant Gα “phosphoswitch” region. AtGPA1 is phos-
phorylated at tyrosine 166 in order to affect AtRGS1 interaction and its accelerated GTPase cycle. 
The crystal structure of AtGPA1 (PDB 2XTZ) is represented in grey with forest green highlights. 
Tyr166 is at the interface of the two conserved domains and forms hydrogen bonds (cyan) with 
neighbor residues (balls and sticks). A GTP molecule with Mg2+ is near this residue, and they are 
represented as sticks and as a light green sphere, respectively. Adapted from [68]. 
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Figure 3. Switching mechanism of Gα. (A) The animal Gα activation mechanism. Transducin
alpha.GDP (grey and magenta, PDB 1TAG) and transducin alpha.GTP (grey and light blue, PDB
1TND) from Bos taurus were selected in order to show nucleotide-induced conformational change
in animals. Structures were overlapped, and switch regions of both states were colored in pink
and blue, as indicated. Adapted from [67]. (B) The plant Gα “phosphoswitch” region. AtGPA1
is phosphorylated at tyrosine 166 in order to affect AtRGS1 interaction and its accelerated GTPase
cycle. The crystal structure of AtGPA1 (PDB 2XTZ) is represented in grey with forest green highlights.
Tyr166 is at the interface of the two conserved domains and forms hydrogen bonds (cyan) with
neighbor residues (balls and sticks). A GTP molecule with Mg2+ is near this residue, and they are
represented as sticks and as a light green sphere, respectively. Adapted from [68].

Although only a small amount (4.3%) of phosphopeptides are phosphotyrosines, and
there is no evidence of bona fide tyrosine kinases in Arabidopsis [28,71], phosphopro-
teomics studies have demonstrated a phosphorylation signal at tyrosine 166 of AtGPA1
(Figures 2 and 3B). Furthermore, this residue is one of the BAK1 substrates and has been
found to be differentially phosphorylated under abscisic acid (ABA), indole-3-acetic acid
(IAA), gibberellic acid (GA), jasmonate (JA), and kinetin treatments [29,68]. The Tyr166
phosphosite is localized in the interface of the two domains, and it is predicted to regulate
AtRGS1 binding by forming a salt bridge in this region. AtRGS1 has a higher affinity for
the transitional state of alpha, but a phosphomimetic mutation that changes Tyr166 enables
AtRGS1 to bind to its GDP-bound state [68]. This new mechanism is dubbed tyrosine
phosphoswitching, in which the function of the AtRGS1 protein switches from a GAP
(GTPase activating protein) function to a GDI (GDP dissociation inhibitor) function based
on the phosphorylation state of its substrate AtGPA1 (Figure 3B). Moreover, flg22 treatment
promotes the phosphorylation of AtGPA1 at Thr19, which is essential for RGS1 binding
regulation during biotic signaling, and it is also differentially phosphorylated under ABA
treatment (Figure 2) [29,33].

The phosphorylation of AtGPA1 under biotic stress and hormone treatment is consis-
tent with the fact that both AtGPA1 and AGB1 interact with the JA signaling regulators
TCP14 and JAZ3, transcription factors that are stabilized in the nucleus by both G-subunits
([29,52], internal data). The stabilization of those transcription factors is favored by the
phosphorylation of both Tyr166 and the N-terminal residues Ser8, Thr12, Thr15, and
Thr19, which promotes the dissociation of AtGPA1 from both AGB and RGS proteins.
This mechanism evidences the role of phosphorylated GPA1 during biotic responses and
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hormone crosstalk, unveiling a novel mechanism of G-protein subunit sequestering for
transcriptional regulation [internal data]. Except for Ser8, all involved phosphoresidues
were detected in vivo by MS analysis, and Y166 is the most conserved among plants and
other eukaryotes (Table 1).

Finally, about 24 residues inside the Ras-like and helical domains have been demon-
strated to be phosphorylated in vitro by 11 different RLKs (Table 1). Interestingly, some
residues are phosphorylated by different kinases depending on the state of AtGPA1, raising
the hypothesis that nucleotide-dependent AtGPA1 conformation is crucial for substrate
accessibility and, consequently, for RLK specificity [16].

4. Stress Responses through XLG Phosphorylation

The non-canonical Gα subunits called extra-large G proteins (XLGs) are unique to
plants [72]. The C-terminal halves of XLG proteins are homologous to those of the canonical
alpha subunits. The non-conserved N-terminal halves of XLG proteins contain a nuclear
localization signal (NLS) and a cysteine-rich region [73]. This semi-conserved domain lacks
many key residues for nucleotide binding, resulting in poor nucleotide affinity and slow
GTP hydrolysis [74,75]. In addition, the Arabidopsis XLGs (XLG1, XLG2, and XLG3) can
interact with the Gβγ dimer and AtRGS1 under some conditions but with no evidence of
an associated GAP activity [72,74].

Multiple data indicate that genetic ablation of XLGs results in the opposite effect
of ablation of AtGPA1 regarding pathogen susceptibility, lateral root proliferation, salt
stress, and stomatal density [72,73,75,76]. The extra-large subunits are also genetically
linked to tunicamycin and D-glucose sensitivity, while gpa1 mutants display a wild-type
phenotype under such treatments [72]. Even though these proteins are thought to be
negative regulators of AtGPA1 by sequestering Gβγ or RGS1 from the canonical complex,
they may act parallelly during ABA responses and root development [76].

Regarding biotic responses, xlg2 null mutants have impaired flg22 responses, and
both AtXLG2 and AtXLG3 genes are induced by this elicitor. In addition, XLG2 and XLG3
interact with BIK1, FLS2, and RbohD (NADPH/respiratory burst oxidase protein D), and
the complementation of knockout plants with AtXLG2S141/148/150/151A expression abolishes
flg22-induced phosphorylation and lowers ROS response compared to that in wild-type
plants [47]. In contrast, XLG2 signaling with CERK1 (CHITIN ELICITOR RECEPTOR
KINASE 1) under chitin elicitation is not affected by the same N-terminal mutations [77].

In proteomics studies, XLG2 has several in vivo detected phosphosites: five N-terminal
residues respond to ionizing radiation and six respond to “end-of-day” conditions [30,44].
Among these residues, Ser13 responds to osmotic stress, and Ser71/169 respond to nitrate
starvation [45,46,48–50]. Ser13 and Ser38 display increased phosphorylation signals 15 min
after flg22 exposure, while serine residues 75, 185, 190, 191, 194, and 198 show decreased
signals after 3 or 15 min of exposure [60]. In addition to the four mutated N-terminal serine
residues, XLG2 is differentially phosphorylated at the helical domain (Ser530) by flg22 [51].
Several other phosphorylated sites in the non-conserved region are constitutively detected
in different tissues (Table 1). XLG3 has nine N-terminal tissue-specific phosphoresidues
under normal conditions [26]. Like XLG2-Ser530 phosphorylation, Ser506 of the XLG3
helical domain is differentially phosphorylated under ABA, sucrose, mannitol, and short
cold treatments [42,51–53], and it is detected with a reduced signal in the first minutes of
flg22 exposure [60].

Although XLG1 has a nuclear localization signal, its localization is partner-
dependent [78,79], and it is not phosphorylated at the N-terminus. Instead, it is phosphory-
lated right after the NLS in the serines 462 and 471 [26,72]. Atypical tyrosine phosphoryla-
tion (Y876/879/887) may occur at the end of helix G5 in isoxaben-treated seedlings [42].
Taken together, these data indicate a similar phosphorylation-mediated regulation mecha-
nism between XLG2 and XLG3 under stress responses, but not XLG1, which may be related
to its different subcellular localization.
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5. Gβγ Specificity and Function

In contrast to being only a negative regulator of Gα signaling, AGB1 is a crucial
signaling component in plants [80] like in yeast [81]. Among other phenotypes, agb1 null
mutants exhibit dwarf morphology, impaired abiotic responses, reduced ROS burst under
flg22 elicitation, and higher susceptibility to pathogen attack [80,82–85]. This susceptibility
is directly related to the upregulation of JA responsive genes on agb1 plants, indicating that
JA signaling may be negatively regulated by AGB1 [internal data].

Genetic data indicate that AGB1 requires the gamma subunit for signaling. Only
AGG1 is linked to pathogen defense, while both AGG1 and AGG2 are involved in auxin-
mediated signaling via different mechanisms. The inhibition of germination by D-glucose
or osmotic stress is independently mediated by AGG2 or AGG1, respectively [86]. On top
of that, AtAGG3 and its rice homologs mediate ion channel regulation, seed, and organ
development [87,88]. Consistently with the signaling module, alpha-binding to AGB1 is
also gamma-dependent, displaying distinct functions according to its binding partners.
While GPA1 has a binding preference for AGB1/AGG3, the interaction of XLG1 and XLG2
with AGB1 depends similarly on AGG1 and AGG2 [72,89]. Additionally, XLG3 binds
equally to all three heterodimers and competes with GPA1 for Gβ interaction [72].

The phosphorylation events likely regulate dimer preference and signal specificity
since AGB1, AGG2, and AGG3 have MS-confirmed phosphorylation sites [26,42]. The
receptor-like kinase complex BAK1/BRI1 interacts with both AGG3 and AGB1, and the
latter interaction is increased under 2% D-glucose treatment. Both subunits are phospho-
rylated by BRI1 in vitro, and inactivation of the corresponding MS-detected sites leads
to impaired sugar response in planta [43]. The receptor-like kinase AtZAR1 (ZYGOTIC
ARREST 1) has a calmodulin-binding domain, interacts with Gβ, and may integrate Ca2+

signaling with the heterotrimeric G-protein pathway [90].
The N-terminal domain of AGB1 has predicted target motifs for glycogen synthase

kinase 3/SHAGGY-like protein kinases (GSKs) and interacts with the GSK BIN2. The
3/SHAGGY motifs are present within 46–358 residues, and in vivo phosphorylation of
AGB1 has only been detected at Ser2 and Ser4 [26,91]. On top of beta phosphorylation,
AGG2 is differentially phosphorylated at non-distinguished serine residues 6, 8, and 9
in response to sucrose and xylanase treatments [25,26,42]. Like in XLG2, an AGG3 phos-
phosite is identified at Ser37 in response to end-of-day conditions and ionizing radiation
(Table 1) [30,44]. Finally, the same site displays an enhanced phosphorylation signal after
15 min of anti-bacterial immunity elicitation [60].

Molecular protein modeling mapped the beta phosphorylation at or near the Gβγ

interaction interface with close (+)-charged residues [35]. Moreover, AGG2 and AGG3 are
phosphorylated near these sites and close to the Gα interface. AGG3 shows a long non-
structured C-terminal tail (res. 116–251) far from the interface that was excluded from the
model for visualization purposes. This structural estimation indicates that phosphorylation
may affect the interaction dynamics of the trimer and, therefore, signal specificity (Figure 4).
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development [72,87–89]. β-dimerized AGG2 (purple) binds to the XLGs in order to regulate gravi-
tropism, sugar responses, and root development [72,86]. Phosphorylation occurs in vivo at the N-
terminal portions of AGB1, AGG2, and AGG3 [26,42,60]. Beta-gamma complex models were created 
using AlphaFold2, and top-ranked models were selected for analysis [35]. The heterotrimeric com-
plex was created by overlapping the models with the crystal structure of the heterotrimeric G-pro-
tein complex of Bos taurus (PDB 1GOT). Experimental data were obtained from the PhosphAt da-
tabase (https://phosphat.uni-hohenheim.de, accessed on 23 May 2022) and ATHENA 
(http://athena.proteomics.wzw.tum.de, accessed on 23 May 2022). AGG3 unmodeled C-terminal re-
gions were removed for better visualization. ATHENA was used to identify tissue-specific phos-
phorylation, which is pointed out below residue identification. Phosphosites are represented as balls 
and sticks. Candidate AGB1pS37-interacting residues are represented as sticks only. Color filling 
indicates experimental treatments. 
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during the two nucleotide states of AtGPA1 [92]. Furthermore, genetic complementation 
of the rice dwarf mutant d1 (OsRGA1-defective) with a constitutive GTP-bound alpha 
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off cycling is not required [93]. Adding XLGs and their functions to the plant G-protein 
repertoire has moved the plant signaling module even further from the established animal 
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Figure 4. Gβγ specificity and function distinction. AtGPA1 (forest green) binds preferentially
to AGB1 (orange) when dimerized with AGG3 (grey), which regulates ion transport, seed, and
organ development [72,87–89]. β-dimerized AGG2 (purple) binds to the XLGs in order to regu-
late gravitropism, sugar responses, and root development [72,86]. Phosphorylation occurs in vivo
at the N-terminal portions of AGB1, AGG2, and AGG3 [26,42,60]. Beta-gamma complex mod-
els were created using AlphaFold2, and top-ranked models were selected for analysis [35]. The
heterotrimeric complex was created by overlapping the models with the crystal structure of the het-
erotrimeric G-protein complex of Bos taurus (PDB 1GOT). Experimental data were obtained from the
PhosphAt database (https://phosphat.uni-hohenheim.de, accessed on 23 May 2022) and ATHENA
(http://athena.proteomics.wzw.tum.de, accessed on 23 May 2022). AGG3 unmodeled C-terminal
regions were removed for better visualization. ATHENA was used to identify tissue-specific phos-
phorylation, which is pointed out below residue identification. Phosphosites are represented as balls
and sticks. Candidate AGB1pS37-interacting residues are represented as sticks only. Color filling
indicates experimental treatments.

6. G-Paradox and Four-State Model

The nucleotide state of animal Gα modulates the heterotrimer formation from a
“switch off” (GDP-bound) to a “switch on” (GTP-bound) structure (Figure 3A) [67]. Thus,
it is controversial that, in plants, no structural difference was detected within the trimer
during the two nucleotide states of AtGPA1 [92]. Furthermore, genetic complementation of
the rice dwarf mutant d1 (OsRGA1-defective) with a constitutive GTP-bound alpha mutant
(OsRGA1Q223L) rescued the normal development phenotype, suggesting that on–off cycling
is not required [93]. Adding XLGs and their functions to the plant G-protein repertoire has
moved the plant signaling module even further from the established animal module [72].
Both AtGPA1 and XLGs present nucleotide independency for most functions and structural
plasticity [74,89,94].

https://phosphat.uni-hohenheim.de
http://athena.proteomics.wzw.tum.de
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Another observation is that AtRGS1 strongly controls the complex state in vitro, but
rgs1 plants present subtle phenotypes compared to other G-protein mutants [95]. Fur-
thermore, one of the few rgs1 strong phenotypes is its poor capability of photosynthetic
adjustment under dynamic or excessive irradiation, even though the behavior is wild-type-
like during constant light conditions [96]. The RLK phosphorylation over several subunits
also differs from the animal paradigm [16,38].

Therefore, to provide a solution to this paradox, the current plant model consists of
four described states of Gα—Gα-GTP, Gα-GDP, pGα-GDP, and pGα-GTP—in which only
the phosphorylated forms are signaling competent. In addition, RLKs are activated by
an external stimulus and phosphorylate RGS1, resulting in an altered GTP/GDP state of
the switch. The switch is also phosphorylated by the RLKs, independent of its nucleotide
state [95]. Finally, phosphorylation is highlighted as a crucial regulation component,
and the post-translational state of the subunits may explain inconsistencies in reverse
genetic studies.

7. Conclusions

The phosphorylation at threonine/serine/tyrosine residues modulates many aspects
of protein function and, consequently, is a highly regulated process. Advances in protein
modeling, genetic data, and phosphoproteomic analysis have provided a direct link be-
tween phosphorylation status and G-signaling activation and triggering specificity. Flg22
elicitation induces phosphorylation at Ser428/431 residues on AtRGS1 proteins [27], while
glucose induces phosphorylation at Ser428/435/436 [14]. These distinct phosphorylation
patterns are implicated in specific cell responses modulated by G-protein activation through
different RLKs. AtWNK8 phosphorylates at least two serine residues at the RGS protein
upon glucose induction, and this phosphorylation event promotes G-signaling activation
and RGS endocytosis [14]. However, FLS2 and its coreceptor BAK1 trigger the phosphory-
lation of RGS on Ser428/431, promoting its dissociation from FLS2 and Gα [27]. AtGPA1
shows dynamic phosphorylation upon flg22 elicitation, which reduces the phosphorylation
level of Thr19, implicating a specific role of this AtGPA1 residue in plant signaling responses
to flg22 [33], although the same phosphoresidue is induced by hormone treatment [29].
Therefore, the signaling discrimination relies on a specific combination of phosphorylation
between RGS and GPA1 proteins, a regulatory mechanism that may be expanded to form
atypical core conformations that include the XLGs and different gamma subunits.

Herein, we reviewed the phosphorylation status of the G-protein signaling com-
ponents and its ability to regulate their binding affinity, localization, and stability, thus
controlling their function on signal transduction and propagation. However, the characteri-
zation of the underlying G-protein phosphorylation status is still in its infancy; hence, the
identification of different protein kinase phosphosites might shed light on signal discrimi-
nation and G-signaling activation. Furthermore, understanding the underlying mechanism
of specific residue phosphorylation can be exploited as a marker for G-protein distinct
signaling. Finally, the intricated mechanism of G-protein dynamism in plants does not
rely only on a defined composition of the complex or its nucleotide-binding status, but
rather is regulated by the phosphorylation status of the main components, RLKs, and other
interacting partners, creating a complex post-translational G code for signal transduction.
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Glossary

GPA1 Heterotrimeric G-protein Alpha Subunit
AGB1 Heterotrimeric G-protein Beta Subunit
AGG Heterotrimeric G-protein Gamma Subunit
RGS Regulator of G Signaling
XLG Extra-Large G Protein
CME Clathrin-Mediated Endocytosis
SDE Sterol-Dependent Endocytosis
GPCR G-Protein-Coupled Receptor
GEF Guanine Nucleotide Exchange Factor
RLK Receptor-Like Kinase
V2R V2 Vasopressin Receptor
GRK GPCR Kinase
FLS2 FLAGELLIN-SENSITIVE 2
BAK1 BRI1-ASSOCIATED RECEPTOR KINASE 1
NFR1 Nod Factor Receptor 1
ABA Abscisic Acid
VPS26 Vacuolar Sorting Proteins 26
WNK WITH NO LYSINE KINASE
GNBP Guanine Nucleotide-Binding Protein
EGFR Epidermal Growth Factor Receptor
GSK Glycogen Synthase Kinase
PKA Protein Kinase A
IAA Indole-3-Acetic Acid
CERK1 Chitin Elicitor Receptor Kinase 1
JA Jasmonic Acid
GA Gibberellic Acid
GAP GTPase Activating Protein
MS Mass Spectrometry
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