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Abstract: The brain utilizes distinct neural mechanisms that ease the transition through different
stages of learning. Furthermore, evidence from category learning has shown that dissociable memory
systems are engaged, depending on the structure of a task. This can even hold true for tasks that
are very similar to each other, which complicates the process of classifying brain activity as relating
to changes that are associated with learning or reflecting the engagement of a memory system
suited for the task. The primary goals of these studies were to characterize the mechanisms that are
associated with category learning and understand the extent to which different memory systems
are recruited within a single task. Two studies providing spatial and temporal distinctions between
learning-related changes in the brain and category-dependent memory systems are presented. The
results from these experiments support the notion that exemplar memorization, rule-based, and
perceptual similarity-based categorization are flexibly recruited in order to optimize performance
during a single task. We conclude that these three methods, along with the memory systems they rely
on, aid in the development of expertise, but their engagement might depend on the level of familiarity
with a category.

Keywords: category learning; eeg; machine learning; erp; memory; learning; multiple memory
systems; p300

1. Introduction

Category learning has been a productive paradigm for studying learning and memory and it refers
to the development of the ability to group objects belonging to the same category and differentiate
objects belonging to different categories [1]. There is not a single mechanism of category learning.
Research using category learning models have outlined that there are distinct neural mechanisms
associated with different learning stages [2]. Furthermore, we know that different tasks engage
dissociable memory systems that are optimized for the type of learning involved—even for seemingly
similar tasks, such as in categorization [3–7]. This makes it difficult to uniquely attribute the changes
in brain activity to either distinct learning systems or representations of the distinct mechanisms that
are associated with different task sets. In other words, the two bodies of literature can complicate
comparing brain activity across tasks as subjects between those tasks could either be at different
stages of learning or be relying on different categorization strategies that are served by dissociable
memory systems.

From the skill acquisition perspective, a succinct model of learning has been proposed that
describes reliance upon executive functions, depending on the stage of learning: early or late. Under
the dual-stage model, the early stage of learning is marked by being heavily reliant on controlled
processes, requiring a person to be actively attentive and dependent on limited working memory
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capacity. In contrast, the late stage is defined by its lack of reliance on controlled processes, reflected as
automated performance, and it is not limited by working memory capacity and can be subconsciously
carried out under the right context [2].

Modern imaging evidence has delineated distinct brain networks that are involved in the two
learning stages [8]. The frontal lobe is responsible for the executive monitoring of unfamiliar stimuli;
a process that is integral to the early stages of learning. In contrast, cortical regions of the posterior
corticolimbic system are engaged when subjects demonstrate proficient performance in the late stages of
learning [8,9]. These posterior corticolimbic structures, which include the hippocampus and posterior
cingulate cortex (PCC), consolidate information and, with sufficient practice, enable performance to be
more automated, thus removing the need for executive control.

Finer details regarding how the brain changes as a person learns to recognize category structures
can be understood from the perspective of the dual stage theory [10]. The dual model of sensory
information processing is based on evidence that suggests two separable and parallel systems operate
on incoming sensory data. The first is a ventral “what” system that is responsible for the identification
of an event or object and it includes the sensory specific cortices (such as visual cortex) and the
ventral limbic system, which includes the parahippocampal gyrus, piriform, entorhinal cortex, and
the amygdala [11,12]. The second processing stream, as exemplified by dorsal cortical regions of the
parietal lobe, is referred to as the dorsal or “where” pathway, and it specializes in spatial analysis of
stimuli [11,12]. Information from both streams converge at the hippocampus, which is a structure
situated in the medial temporal lobe (MTL) that plays a key role in organizing input to link memories
by their contextual representation [13]. This feedback structure allows for the hippocampus to organize
memory retrieval based off “what” occurred or “where” something occurred and makes it an essential
mechanism for memory retrieval. With further training, the hippocampus is able to perform declarative
recall with less need for controlled attention and input from these two sensory pathways; reflecting
the early/late transition outlined in the dual stage model. However, a relevant shortcoming to both
the dual processing and dual stage models is that as they exist, they do not account for the evidence
of other types of memory systems and their possible differential reliance on the brain mechanisms
that are described in the models. Another shortcoming is that they do not consider the possibility that
different memory systems could be simultaneously engaged during a task, either in competition or
working in conjunction, and at different learning stages to optimize learning.

Multiple mechanisms that rely on dissociable memory systems have been implicated in
categorization and category learning. One distinction is between strategies that require the
application of an explicit rule (rule-based categorization) and those that rely on perceptual similarity
(examples: [14,15]). For example, in a family resemblance structure, stimuli that belong to the same
category share several common features, with none of them being necessary or sufficient for category
membership [16,17]. Categorization relies on the overall similarity rather than an explicit rule. The
perceptual similarity system involves posterior visual areas and does not heavily rely on working
memory [18–20]. Perceptual similarity allows for making rapid judgements regarding category
membership without using much cognitive resources, but falls short in its ability to classify objects
when within-category similarity is low or between category similarity is high [21].

In contrast, in rule-based categorization, category membership is dictated by an explicit,
verbalizable rule [15]. Rule discovery is commonly achieved through explicit reasoning and hypothesis
testing that heavily relies on working memory and selective attention, which are supported by the
working memory system in prefrontal cortex and caudate nucleus [22]. The working memory system,
within the context of rule-based categorization, allows for participants to focus on individual diagnostic
dimensions while ignoring the irrelevant features within the task. This allows for accurate categorization
when the within-category variance is high and between-category variance is low. However, rule-based
categorization is cognitively expensive and sensitive to distractions when compared to the perceptual
similarity system [3,23].
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Prior research has focused on creating tasks that exaggerate the preferential recruitment of one
system over another to provide compelling evidence for the existence of multiple systems. Evidence
from these studies has shown that performance is hindered when the participants fail to engage the
memory system optimal for a given category structure. The composition of natural categories contains
elements of rule-, and perceptual-based systems, suggesting people may be switching between systems
within a single task. Identifying signatures of distinct memory systems within single tasks would
allow us to better understand how each system contributes to performance and how these systems fit
within the expertise development framework.

The main goals of the presented studies were to understand the degree to which distinct learning
and memory systems are recruited within the same, real-world task. We implemented a categorization
task that was designed to encourage participants to switch between categorization strategies on a
trial-by-trial basis and then measured the underlying neural activity in two separate experiments
while using functional Magnetic Resonance Imaging (fMRI) and dense-array Electroencephalography
(dEEG). The goal of our first experiment, which was a low-sample pilot, was to utilize the spatial
resolution of fMRI to establish the overall effectiveness of our task in engaging different memory
systems for different trials within the same task. A successful proof-of-concept and spatial distribution
in the fMRI pilot then motivated the second, dEEG experiment. In our fully powered dEEG experiment,
we studied the time course by which these strategies (and their underlying memory systems) were
engaged on a trial-by-trial basis. More specifically, we were interested in understanding when, on
a given trial, we can accurately dissociate between verbal and non-verbal rules and the associated
memory systems. As the brief involvement of limited attentional and working memory resources
may beneficial for the optimization of categorization strategy to the task [24], mapping the timing of
the initial convergence and subsequent divergence of distinct categorization processes can provide
new insights regarding how distinct systems compete and cooperate to optimize performance. Rough
estimates of the anatomical differences between these systems were made while using the EEG data
and a novel machine learning approach.

2. fMRI Pilot Experiment

2.1. Materials and Methods

2.1.1. Participants

Eleven right-handed subjects between the ages of 18 and 30 (M = 24.2) were recruited from the
University of Oregon Human Subjects Pool to participate in our pilot experiment (five males, six
females). The subjects had no self-reported neurological or psychiatric conditions, as well as no MRI
contraindications. Subjects were compensated $35 for their participation and the Electrical Geodesics,
Inc. and University of Oregon IRBs approved the protocol.

2.1.2. Task

The task used was designed to interchangeably recruit a rule-based or similarity-based
categorization strategy to categorize three categories of football defensive formations. When
between-category similarity is low and within-category similarity is high, visual similarity can guide
categorization without the need of limited cognitive resources. However, when between-category
similarity is relatively high compared to within-category similarity, successful categorization requires
the discovery and an application of an explicit categorization rule, which taxes limited resources,
such as working memory and attention. Thus, we chose two formation categories that were visually
similar to each other and one category that was visually distinct from the other two. For the two
similar categories, the subjects needed to discover an explicit counting rule in order to categorize the
members of these two groups reliably: One category of formations displayed three people on the line
of scrimmage (and four behind them, 3-4 category), while the other had four people on the line of
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scrimmage (and three behind them, 4-3 category) (Figure 1). Because of the variable starting positions
among players, the formations that fell into one category (e.g., 3-4) could look different from each other
(within-category variability). In addition, some of the formations in the 3-4 category were visually very
similar to some of the formations in the 4-3 category (high between-category similarity). Thus, the
participants could not easily rely on visual similarity and instead needed to discover the rule (number
of people on the line of scrimmage) that differentiated the categories. This forced subjects to focus
their attention to the line of scrimmage while ignoring irrelevant players positioned elsewhere on the
field. We expected that, although these were two categories that participants needed to differentiate
between, stimuli from both categories would evoke the same cognitive processes (explicit, rule-based
categorization). We collapsed over them in neuroimaging analyses when looking for neural processes
associated with these rule-based trials, as subsequent analyses confirmed that participants’ performance
was comparable for the 3-4 and 4-3 categories on all metrics.
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Figure 1. Standard formations used in the experiment. Left (blue underline): A 6-1 formation, which
represents the visually distinct category, had six white players on the line of scrimmage (red line)
and one player lined up behind them. Middle and Right (red underline): A 3-4 or 4-3 formation,
which represent the visually similar categories, had three players (3-4) or 4 players (4-3) on the line of
scrimmage (red line) and either four players (3-4) or 3 players (4-3) lined up behind them. The position
of the green players did not vary significantly between formations.

For the visually distinct category, there was also an explicit rule, with six people on the line of
scrimmage and one person behind (6-1) (Figure 1). However, this category was visually sufficiently
distinct from the 3-4 and 4-3 categories, so subjects could rely on visual similarity alone during
categorization, rather than having to discover and invoke an explicit rule.

Every category had three separate formations, each sharing the defining number of players on the
line of scrimmage for that category, for a total of nine formations used throughout the experiment. On
each training trial, the subjects were shown a random formation for 2.5 s and were tasked with pressing
a button on a keypad to place the formation into one of the three categories during the 2 s window
(Figure 2). Corrective feedback was given to the subject immediately after making their response and it
was on the screen for 1.5 s. The inter-trial-interval was optimized for event-related-design while using
Optseq2 software and varied between 2 and 8 s [24]. Each formation was shown six times during each
training block and there were six total training blocks.

A generalization block was implemented at the end of the experiment in order to test the subject’s
ability to generalize the strategies that they acquired during training. During this block, the nine old
formations were intermixed with nine new formations that belonged to the learned category structures.
Each stimulus was randomly shown one at a time and was on the screen for 2 s while the subject used
a response pad to categorize the stimulus. No feedback was given during this block, and instead
a black fixation screen was shown for 10 s before the next stimulus was presented—resulting in a
total fixed trial length of 12 s (Figure 3). Each new and old stimulus was shown only once during
the generalization block. The inclusion of a generalization block allowed for us to test whether the
participants indeed discovered the category structure rather than memorized labels for individual
examples, as rote memorization during training would hinder their categorization performance on the
new formations.
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Figure 3. Formations were shown for 2.5 s, regardless of when a subject made a response. No feedback
was given. Instead, a fixation cross appeared for a fixed 9.5 s until the next formation was shown.

2.1.3. Procedure

Before coming to the scanning center, the subjects were pre-screened over the telephone to ensure
eligibility. Upon arrival at the center, a structural T1 scan was acquired, followed by an exposure block
with simultaneous scanning. During this block, the subjects were asked to passively look at the screen
and refrain from pressing any buttons. No other context or instructions were given. Each of the nine
training formations were shown one at a time for 2 s each before a fixed 10 s ITI. Each formation was
shown four times for 36 total trials. Following the exposure block, subjects were read instructions for
the experiment. They were told how many formations there would be in the experiment, along with
the set number of categories the formations belonged to. Their job was to figure out which formations
belong to each category by pressing the buttons on their response pad and utilizing the corrective
feedback. A brief practice test (un-scanned) was given, where they learned to categorize unrelated
formations. After practice, six training blocks were run with brief breaks in-between and, after training,
the subjects sat through another exposure block where they passively viewed each stimulus. To end
the experiment, the subjects went through the generalization block, given only the instructions that
they were going to go through a final block with no feedback. They were not told whether there would
be novel formations in this block. The subjects were asked to write-down their strategies in a debrief
questionnaire for categorizing the formations before receiving compensation and leaving the center.
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2.1.4. fMRI Acquisition and Pre-Processing

MRI data were acquired with a 3T Siemens Skyra. A high-resolution T1-weighted MPRAGE
was acquired for co-registration and normalization before the task was administered (TR = 2.5 s,
TE = 3.41 ms, flip angle = 7◦, matrix size = 256 × 256, FOV = 256 mm, 1 mm isotropic). Whole-brain
fMRI was acquired using a gradient-echo EPI pulse sequence: TR = 2 s, TE = 26 ms, 100 × 100 matrix,
FOV = 200 mm, 72 oblique axial slices, no skip, 2 mm isotropic voxels, GRAPA factor 2, multiband
factor 3. Preprocessing was carried out in FSL version 5.0.9 (www.fmrib.ox.ac.uk/fsl). The functional
images were skull stripped using BET (brain extraction tool), motion corrected, co-registered to the T1
anatomical image, and smoothed with a 4mm FWHM kernel. Two sets of analyses were performed:
traditional whole-brain univariate analyses and trial-by-trial multivoxel pattern classification analyses
within a set of a priori ROIs. For univariate whole-brain group analyses, functional data were registered
to standard MNI space. For multivoxel pattern classification, the data were kept in native space of
each participant and trial-specific activation patterns (betaseries) for classification analysis within each
participant were extracted using a general linear model with a separate regressor for each trial [25].
A detailed description of each of these analysis approached is provided together with results for
better readability.

2.2. Results

2.2.1. Behavioral Results

Data from one participant were excluded due to noise caused by motion during scanning, leaving
10 out of the 11 subjects for analysis. Figure 4 shows the average classification accuracy for each
category across the six training runs. Visual inspection indicates that participants learned the visually
distinct category faster when compared to the two visually similar categories, but by the end of run 4
they were able to accurately identify members of all categories.
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Figure 4. Subjects accurately categorized the visually distinct category quicker than the two visually
similar categories. Accuracy for the visually similar categories peaked between runs 4 and 5, which we
infer is the time at which subjects discovered the counting rule.

A confusion matrix shows that subjects commonly mixed up the two visually similar categories
when making errors, and rarely mixed up the visually distinct category with any other. By block 4, the
subjects limited their confusion, which is indexed by the mostly uniformly colored bars in Figure 5.
We can infer that this was the point at which most subjects discovered the explicit counting rule that
allowed for them to differentiate between members of the two visually similar categories (Figure 5).

www.fmrib.ox.ac.uk/fsl
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Figure 5. Visualization of the confusion matrix during classification. During the first 3 training blocks,
subjects commonly confused the two visually similar categories for one another. By run 4, subjects
were able to accurately dissociate between these two categories. Subjects rarely confused any other
category when classifying formations in the visually distinct category.

The generalization run was included to test for the hallmark of category knowledge—the ability
to generalize category labels to novel category examples. On average, the subjects completed the
generalization run with 92% accuracy for the visually distinct category and 88% accuracy for the
visually similar categories (Figure 6). Had subjects been relying on the declarative recall of individual
stimuli throughout training, their performance in the generalization run would have been closer to
chance (33%).
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Figure 6. Categorization accuracy in the generalization block.

In the post-test questionnaire, nine out of 10 participants indicated that they used a counting
strategy to distinguish between the visually distinct categories, meaning that they accurately identified
the defining number of players on the line of scrimmage separating the two categories. The same
participants reported relying on perceptual similarity to identify formations in the visually distinct
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category. This indicates that participants treated the stimuli as expected, using an explicit rule
specifically when between-category similarity was high as compared to the within-category similarity.
The remaining one participant reported using declarative recall for all stimuli, whereby they memorized
each formation individually instead of relying on the intended counting rule. This participant
categorized new stimuli in the visually similar categories with an accuracy near chance during the
generalization block, which indicated that relying on declarative recall instead of discovering the
counting rule was ineffective for generalization in this task.

2.2.2. Univariate fMRI Analysis

Training Analysis

Data from each training run and each participant were separately analyzed at a first level analysis
using FSL [26]. Visually distinct and visually similar correct trials were separately modeled as two
predictors. Each stimulus onset time was convolved with a hemodynamic response function and
entered into a general linear model with their temporal derivatives to estimate beta weights. Contrasts
of interests were set that tested for differential activation to the two types of categorization trials. Even
after performance becomes equated, we focused on data from runs 4, 5, and 6 to explore whether
participants engage distinct processes for visually similar vs. visually distinct categories (the runs after
subjects could perform the task with proficiency for all three categories: see Figure 4). Data from the
three runs within each subject were combined at a second level while using fixed-effects analysis. Data
across participants were then combined at the third level using a random-effects analysis (FLAME 1).
Figure 7 depicts regions that were more engaged during visually distinct trials over visually similar
categorization trials (blue), and vice-versa (red). Individual voxels were considered to be active when
reaching a Z > 1.8 and surviving a whole-brain cluster size threshold set at p < 0.05 [27]. This threshold
was used based on the exploratory nature of our small sample pilot experiment, and the reported
results were interpreted for the purposes of motivating Experiment 2.
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Figure 7. Univariate contrasts of visually similar > visually distinct (Red) and visually distinct >

visually similar (Blue) during training displayed in (a) sagittal, (b) coronal, and (c) axial views. Red:
dorsal lateral and inferior frontal areas along with hippocampus were engaged significantly more
during rule application compared to perceptual similarity analysis. Blue: Fusiform gyrus and lateral
occipital cortex were engaged significantly more during perceptual similarity analysis compared to
rule application.

The superior and inferior frontal gyri were engaged significantly more on visually similar categories
when compared to the visually distinct category (red clusters, Figure 7). The right hippocampus,
a region associated with declarative recall, was also engaged during the classification of visual similar
categories, which is consistent with prior work indicating the role of hippocampus in rule-based
categorization [28]. During classification to the visually distinct category, the lateral occipital cortex
and fusiform gyrus were engaged significantly more as compared to visually similar categories (blue
clusters, Figure 7), consistent with what might be expected for similarity-based categorization. Tables 1
and 2 illustrate a summary of the top 11 regions associated with each condition.
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Table 1. Cluster location and size for similar > distinct contrast in blocks 4, 5, and 6.

Location Cluster Size Z-Value X Y Z

L Sup. Fr. Gyrus 58 2.79 −54 44 −10
L. IFG 50 2.95 −50 30 14

L. Sup. Fr. Gyrus 38 2.72 −12 40 56
L. Sup. Fr. Gyrus 34 2.47 −16 56 38
R. Hippocampus 26 2.88 22 −34 −10

L. Sup. Temp. Gyrus 25 2.67 −50 10 −16
R. Fusiform Gyrus 25 3.04 40 −44 −20

R. Lateral Occipital Cortex 24 2.72 −10 −12 56
L. Suppl. Motor Cortex 22 2.42 58 −64 24

Brain Stem 22 2.63 6 −22 −28
R. Mid. Temp. Gyrus 20 2.56 40 −58 2

Table 2. Cluster location and size for distinct > similar contrast in blocks 4, 5, and 6.

Location Cluster Size Z-Value X Y Z

R. Lateral Occipital Cortex 519 3.16 6 −74 36
R. Lateral Occipital Cortex 154 2.87 34 −62 62

L. Fusiform Gyrus 106 3.17 −20 −66 −18
L. Lateral Occipital Cortex 98 2.83 −36 −56 38

R. IFG 89 3.25 20 56 −6
L. Post. Cingulate Gyrus 70 2.88 −8 −40 48

R. Lateral Occipital Cortex 55 2.47 20 −88 38
R. Fusiform Gyrus 52 2.62 20 −54 −16

L. Middle Frontal Gyrus 49 2.77 −38 45 18
R. Occipital Pole 41 2.34 20 −104 −10

Brain Stem 40 3.05 22 −32 −42

Generalization

When modeling the generalization block, visually distinct and visually similar trials were further
separated, depending on whether they were used during training (old) or whether they were new
examples of each category. This resulted in four separate predictors (i.e., Novel-Similar, Novel-Distinct,
Old-Similar, Old-Distinct), with the data from each subject being separately analyzed at a first-level
analysis. Each stimulus onset time was convolved with a hemodynamic response function and entered
into a general linear model with their temporal derivatives to estimate beta weights. Contrast maps
were created for each subject, showing areas that were differentially engaged during visually similar
vs. visually distinct categories. A group analysis was then run using FLAME 1, combining contrast
maps across participants. Figure 8 shows regions that were more engaged during visually distinct
trials over visually similar trials (red), and vice-versa (blue). Individual voxels were considered to be
active when reaching Z > 1.8 and surviving a whole-brain cluster size threshold set at p < 0.05 [27].

The results from our univariate analysis show that the left caudate nucleus, left superior frontal
gyrus, and left inferior frontal gyrus were significantly more engaged on visually similar trials when
compared to visually distinct trials (Figure 8). Caudate nucleus, instead of hippocampus, is one of
the only observable differences between the training and generalization contrasts for this condition.
Table 3 presents a list of the top 11 clusters from this contrast. In addition, the lateral occipital cortex
and right fusiform gyrus were engaged significantly more for distinct trials over visually similar trials
during generalization. Table 4 shows a summary of the top 11 clusters.
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Figure 8. Univariate contrasts of visually similar > visually distinct (Red) and visually distinct >

visually similar (Blue) during generalization displayed in (a) axial, (b) medial sagittal, and (c) more
lateral sagittal views. Red: Frontal control regions were engaged significantly more during the visually
similar trials compared to visually distinct trials during generalization. A cluster over caudate nucleus
was also found. Blue: Visually distinct trials relied more heavily on lateral occipital cortex compared to
trials separable by a counting rule.

Table 3. Cluster location and size for similar > distinct contrast in generalization block.

Location Cluster Size Z-Value X Y Z

L. Caudate Nucleus 290 3.5 −8 −10 24
Cerebellum 129 3.22 16 −72 −28
Cerebellum 125 3.43 32 −80 −22
Cerebellum 90 3.18 4 −50 −10

L. Sup. Frontal Gyrus 88 3.21 −28 6 64
L. Lateral Occipital Cortex 73 3.17 −26 −78 50
R. Lateral Occipital Cortex 71 3.08 40 −74 42

L. Inf. Frontal Gyrus 67 3.22 −42 22 4
Cerebellum 63 3.3 −26 −90 −26

L. Sup. Frontal Gyrus 59 3.17 −42 46 20
Brain Stem 58 2.92 14 −16 −38

Table 4. Cluster location and size for distinct > similar in generalization block.

Location Cluster Size Z-Value X Y Z

R. Lateral Occipital Cortex 1922 4 18 −100 6
R. Fusiform Gyrus 335 3.41 12 −72 −2

R. Inf. Frontal Gyrus 213 3.11 62 6 12
Postcentral Gyrus 144 3.35 −40 −26 54

L. Sup. Temporal Gyrus 143 3.49 68 −24 28
Cerebellum 113 3.09 −20 −72 −52

L. Fusiform Gyrus 100 2.88 38 −54 −24
R. Mid. Temporal Gyrus 99 3.13 66 −40 2

R. Mid. Frontal Gyrus 82 3.25 32 18 30
R. Mid Temporal Gyrus 79 3.37 54 −6 −28

R. Angular Gyrus 70 3.7 56 −46 30

2.2.3. Multi-Voxel Pattern Analysis

The univariate analyses provided preliminary evidence that participants may engage distinct
neurocognitive processes when categorizing visually distinct vs. visually similar trials, albeit at an
exploratory threshold. As a second approach, we employed multi-voxel pattern analysis (MVPA;
e.g., [29]), which might provide additional sensitivity. Specifically, we asked whether a machine-learning
classifier could distinguish, based on the pattern of activation across voxels, into which condition
a current trial belonged. First, cortical parcellation and subcortical segmentation was performed
while using Freesurfer software for each participant [30,31]. Given prior work on visual memory
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and the dissociations between rule-based and similarity-based categorization, we focused on regions
within the frontoparietal attentional network and the midline, in addition to the posterior visual
cortex [32–34]. Specific Freesurfer-defined ROIs included superior parietal lobe, anterior cingulate
cortex (ACC), medial orbitofrontal cortex (MOFC), inferior parietal lobe, inferior frontal gyrus (IFG),
and fusiform gyrus.

One participants’ data were lost between the time we performed the univariate analysis and
MVPA due to a site-wide data loss, which left nine out of 11 subjects for MVPA. We modeled the
functional data using a separate regressor for each trial to construct a betaseries representing activation
patterns that are associated with each individual trial to obtain trial-specific activation patterns for each
participant [35]. Each betaseries was smoothed (σ = 3) before being co-registered to each participant’s
high-resolution anatomical image while using Advanced Neuroimaging Tools (ANTs) toolbox [36].
Data were kept in native the space of each participant for the classification. Classification analysis used
a linear Support Vector Machine (SVM), as implemented by the LinearCSVMC classifier in PyMVPA
(pymvpa.org). Data from all runs were included to obtain enough training samples for the classifier.
A leave-one-run-out crossvalidation was chosen, as it would maximize the amount of data in each
training fold for our sample size [37,38]. Within each ROI separately, the classifier was trained on data
from five out of six training runs and tested on the left-out run. The classification accuracy was then
averaged across the six cross-validation folds. Two binary (pairwise) classifications were performed:
visually similar category 1 vs. visually distinct category, and visually similar category 2 vs. visually
distinct category. We subsequently averaged their results together, as there were no differences in
classification accuracy between the two (as expected).

A one-sample t-test was used against a baseline value of 0.5 (50% chance for two equally frequent
categories). Figure 9 shows the classification analysis in each ROI, indicating dissociable patterns of
activation evoked during categorization of stimuli that presumably required rule application vs. those
who could be based on perceptual similarity. The IFG (M = 0.66; t(8) = 4.23, p = 0.003), inferior parietal
lobe (M = 0.70; t(8) = 3.65, p = 0.007), superior parietal lobe (M = 0.76; t(8) = 5.8, p < 0.001), MOFC (M =

0.58; t(8) = 3.3, p = 0.011), and fusiform gyrus (M = 0.62; t(8) = 3.75, p = 0.006) all predicted category
membership with statistically significant accuracy. The ACC (M = 0.58) did not reach significance, t(8)
= 2.02, p = 0.078.Brain Sci. 2019, 9, x FOR PEER REVIEW 12 of 30 
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Figure 9. The inferior frontal gyrus (IFG), inferior parietal cortex, medial orbitofrontal cortex (MOFC),
superior parietal cortex, and fusiform gyrus were able to classify between our two conditions with
significantly above-chance accuracy. Amongst these regions, the superior and inferior parietal
cortices provided the most reliable classification. The Anterior Cingulate Cortex (ACC) did not reach
statistical significance.
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3. dEEG Experiment

3.1. Materials and Methods

3.1.1. Participants

The results from the fMRI pilot motivated the design and interpretation of our fully-powered
EEG experiment. Forty-four right-handed participants were recruited from the University of Oregon
Human Subjects Pool (22 males, 22 females), with ages ranging between 18 and 39 years old (M = 19.5,
SD = 3.2). All of the participants had normal or corrected-to-normal vision, had no history of head
trauma or seizures, and were not consuming medication that could affect their EEG. The participants
were pre-screened online for their experience with football to reduce the chance of contextual familiarity
confounding differences in skill acquisition rate. Only those subjects that were comfortable recognizing
football defensive formations were allowed to participate. The University of Oregon and Brain
Electrophysiology Laboratory Company (BELCO) institutional review boards approved the research
protocol, and the study took place in the laboratory of BELCO.

3.1.2. Task

The task used in this study was an EEG analogue of the fMRI task used in the pilot. Stimuli in
this task consisted of three categories of football defensive formations, with two categories being very
visually similar to each other and one category being visually distinct from the other two. For the
two similar categories, the subjects needed to discover an explicit counting rule to reliably categorize
members of these two groups. For the visually distinct category, subjects could rely on a simple visual
similarity analysis to recognize members of this category. Within each category, all of the players were
shuffled around the field of view with the exception of the players on the line of scrimmage, as the
number of players on the line dictated category membership (Figure 10). This forced subjects to focus
their attention to the line of scrimmage over time while ignoring irrelevant players that are positioned
elsewhere on the field.
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Figure 10. From bottom-left to top right: A fixation cross was shown for 2–3 s. Formations were shown
for 2 s while subjects made their response. Immediately following a response, contingent feedback
was shown for 1.5 s. Upon feedback termination, a fixation mark was shown for the duration of the
inter-trial interval of 2–3 s before the next formation was presented.

Every category had three formations, each sharing the defining number of players on the line of
scrimmage for that category, for a total of nine formations used throughout the experiment. On a given
trial, the participants were randomly shown one of the nine formations for 2000 ms and they were
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instructed to place the stimulus into one of the three categories by pressing a button on a response box
within the stimulus exposure window. Once they made a response the stimulus disappeared, and the
subject was presented with a corrective feedback screen, which indicated whether they were correct
along with text describing the correct category for the stimulus (Figure 10). The feedback was on the
screen for 1500 ms, after which a fixation cross with a variable inter-stimulus-interval was shown
for 2000–3000 ms. The task was divided into eight training blocks that consisted of 90 trials (or 10
exposures per stimulus) per block, which totaled 80 exposures of every stimulus throughout training.

After the final training block, a generalization block was used, which tested each subject’s ability
to apply any rules they developed during training to novel stimuli similar to the fMRI pilot. During
the training block, a mixture of the nine training stimuli and nine novel stimuli belonging to the same
categories were used. The subjects were not told that the generalization block would include novel
stimuli. No feedback was given to the participants after pressing a button to categorize each formation.
Instead, a black screen was shown for 1500 ms after a response was made before the fixation cross
appeared to begin the next trial. Each old and novel stimulus (18 total stimuli) was shown five times
for a total of 90 trials in the generalization block.

3.1.3. Procedure

Following the informed consent process, the participants were fitted with a 256-channel EEG net
and placed 55 cm in front of a computer monitor. A chinrest was used to minimize head movements
and keep the distance to the monitor fixed for every participant. The participants were explicitly told
that there were nine defensive formations in this study belonging to three categories, and that they
must learn which formations go into each category. The response feedback that would help teach the
participant to make the correct decision was explained clearly, and the participants were allowed to
ask questions before the experiment began.

Once the participant could demonstrate an understanding of the study to the research assistant,
a short practice block that consisted of 12 trials followed. The formations used in the practice block
resembled different basketball formations to avoid familiarity effects once the real training began. After
the practice block, eight training blocks occurred, followed by a final generalization block to test a
subject’s strategies to novel members of the acquired categories. At the end of the experiment, the
participants filled out a debriefing questionnaire, which asked them to describe the strategies that they
used to categorize each group of formations. Each session lasted around 2.5 H, and the participants
were compensated course credit for their participation.

3.1.4. Learning Criterion

We used the fixed-number of consecutive responses method (FCCR) to simplify the analysis
process in order to determine when a participant had sufficiently acquired the response mapping, as
we have done in the past [38]. With this method, a subject fulfilled the learning criterion when they
could make four correct responses (or non-responses) in a row for each stimulus.

3.1.5. EEG Recording and Pre-Processing

The dEEG was recorded using a 256-channel HydroCel Geodesic Sensor Net (HCGSN) and the
data were amplified using a Net Amps 400 Amplifier (Electrical Geodesics, Inc., Eugene, OR). The
recordings were referenced to Cz and impedances were maintained below 50 kΩ. dEEG was bandpass
filtered (0.1–100 Hz) upon being sampled at 250 s/s with a 16-bit analog-to-digital converter.

After recording, the signals were filtered between 0.1–30 Hz bandpass and segmented into 1200
ms long segments time-locked to the onset of each stimulus (segments extended 200 ms before and 1000
ms after the stimulus onset). Segments containing eyeblinks, muscle tension, major eye movements, or
large head movements with 10 or more channels exceeding an absolute voltage threshold of 140 µV
were excluded from a participant’s average. Segments containing minor eye movements (saccades)
were not fully rejected, given the lack of overlap between the latency and distribution of the saccades
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with the latency and location of the Medial Frontal Negativity (MFN), LIAN, and P300b (P3b). All of
the data were re-referenced to the average reference for analysis.

3.2. Results

3.2.1. Behavioral Analysis

Figure 10 shows learning curves for each category. Similar to the behavioral data from our pilot
experiment (Figure 4), the participants acquired the visually distinct category first, and there were
no performance differences between the two visually similar categories. Based on this, behavioral
measures for the two visually distinct categories were averaged together to represent a single visually
similar condition in our experiment in order to streamline comparison to the visually distinct category.
A paired-samples t-test revealed that, on average, across training blocks, the subjects were significantly
better at categorizing the visually distinct category (95%) than the visually similar categories (90%),
t(43) = 5.45, p < 0.001. Figure 11 indicates that this difference was driven by early runs, but by Run 5
there were virtually no performance differences across all categories.
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Figure 11. Behavioral performance across training for each category. Participants acquired the visually
distinct category first followed by the two visually similar categories. Additionally, there are no
behavioral differences between the two visually similar categories. Performance on the two types of
categories became equivalent in the second half of training.

Experiment 2 also included a questionnaire that explicitly asked participants to describe the
strategies that they used to categorize each formation category. For categorizing visually similar
categories, 91% of participants indicated that they used a counting rule when differentiating between
the two visually similar categories (e.g., “I counted four players on the line of scrimmage for the first
category, and three on for the second category.”), 9% of participants relied on declarative memory
for these two categories, and no participant reported reliance on similarity. For categorizing visually
distinct formations, 21% of participants reported using an explicit counting rule (e.g., “I counted
six people on the line of scrimmage”), 68% reported using declarative recall (e.g., “I memorized
each formation individually”), and 11% reported using a perceptual similarity strategy (e.g., “There
appeared to be a lot of people on the line of scrimmage for formations in this category, such that I did
not need to count any players”). Thus, the self-reported strategies differed between the visually-similar
vs. visually-distinct trials, although the distinction was less pronounced than in Experiment 1.
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3.2.2. Event-Related Potentials (ERPs) Selection Motivation and Analysis

All EEG data were analyzed using Philips Neuro Net Station 5 software. Classic ERP analysis was
chosen, as it allows us to evaluate latency and amplitude differences as a function of categorization
strategy. The distinct nature of individual ERPs enables us to attribute any observed differences
as occurring within the well-studied circuitry that produces each ERP. In the past we utilized two
ERPs to track learning-related changes in the brain: The Medial Frontal Negativity (MFN) and P300b
(P3b)—for review see [13,39,40]. The MFN is a stimulus-locked medial frontal component with its
primary sources in the Anterior Cingulate Cortex (ACC) [13]. The ACC plays a major role in error
monitoring and attention during reward-based learning, which makes it an ideal component for
indexing effortful control seen in the early stage of category learning [41]. On the other hand, the
P300 is elicited under an array of conditions and there is now a well-defined family of different P300
components. Most relevant to learning, the amplitude of the Late Positive Component (referred to as
the P3b) mirrors accuracy improvements during categorization tasks [39,40]. The P3b is hypothesized
to reflect a constant monitoring and updating of the context under which learning occurred. As context
is formed through learning, the maintenance and updating of the context helps to guide a person
toward selecting an action quickly and efficiently. Although the sources of the P3b are still being
debated, intracranial EEG and animal studies suggest multiple sources, including Posterior Cingulate
Cortex (PCC), medial temporal lobe, and superior temporal sulcus—structures that are integral to the
late learning stage [42–49]. In the current experiment, we were interested in examining amplitude
and latency differences in these two components as a function of the categorization strategy used on a
given trial. In theory, the strategies should differ in their reliance on frontal control areas and posterior
corticolimbic structures to complete the task, as seen in Experiment 1. Using ERPs allows for us to
interpret latency differences between trial types (distinct vs similar) as reflecting the time-course under
which the categorization strategies (and their underlying memory systems) are engaged.

The Lateral Inferior Anterior Negativity (LIAN) is a third component that could potentially
dissociate between the two categorization strategies. The LIAN is a lesser-known bilateral component
that has shown clear dissociations between the recognition of spatial targets and digit targets in a
visuomotor association task [39]. Specifically, the amplitude of the right LIAN is anticorrelated with
acquiring the ability to recognize spatial configurations and it shows no changes when targets invoke
the phonological loop. However, the amplitude of the left LIAN is positively correlated with learning
to recognize phonological targets and it is insensitive to acquiring an ability to perform spatial analyses.
The Inferior Frontal Gyrus (IFG) is inferred to be the primary source of these components, but it is
worth mentioning that the LIAN is rarely discussed in the literature, where it does not receive any
mention outside of its role in visuomotor learning. This component was selected, as it might show a
dissociation between the two categorization strategies, since they inherently differ in how they engage
the phonological loop.

Please see Section 3.1.5 for a review of how all of the signals were pre-processed. For the MFN
analysis, a cluster of 12 electrodes that best represent the medial frontal distribution of the component
were chosen (see pink electrodes, Figure 12). Consistent with how we have quantified the MFN in
the past, an adaptive mean amplitude corresponding to 20 ms before and 20 ms after the maximum
negative peak amplitude in a window that extends from approximately 180–300 ms after stimulus onset
was computed for the MFN electrode cluster [13,39]. The MFN was referenced to the preceding positive
peak (P200) around 150–200 ms after stimulus onset. This method was applied for the post-learning
trials for all three formation categories. The trials in the visually distinct category were averaged
together to form a single ERP for the similarity-based condition. After analyzing both visually similar
categories individually, we determined that there were no amplitude or latency differences in the MFN
between these two categories, consistent with the idea that both would require the engagement of
explicit, rule-based categorization. In light of this, trials in the two visually similar categories were
averaged together to form a single ERP for the visually similar condition. A paired-samples t-test
was run to evaluate the differences in MFN amplitude for the visually distinct and visually similar



Brain Sci. 2020, 10, 224 16 of 30

categories. The test revealed a marginally significant effect, such that the MFN was the largest for the
visually distinct category (M = −2.31 µV) as compared to the visually similar categories (M = −2.07
µV), t(43) = −1.98, p = 0.054 (Figure 13).
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Figure 12. Electrode montages used for the Medial Frontal Negativity (MFN), P300b (P3b), and
Lateral Inferior Anterior Negativity Event-Related Potential (LIAN ERP) components. Orange and
yellow: Electrodes used for the LIAN analysis. Pink: Electrode cluster used to quantify the MFN. Blue:
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Figure 13. Top: A voltage map displays the voltage across the scalp for the similar and distinct
conditions at the peak of the MFN (asterisk in bottom waveform image). A stronger negative voltage is
seen over the medial frontal areas for the visually distinct condition. Bottom: Representative waveform
(i.e., a single channel over the middle of the negative scalp potential) showing the shape of the MFN for
both conditions. This waveform was derived from the grand-average of all the analyzed subjects. The
amplitude of the MFN is higher (more negative) for the visually distinct condition.
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For the P3b analysis, a set of 17 channels that corresponded to the posterior-parietal distribution of
the component were used (see blue electrodes, Figure 12). An adaptive mean amplitude corresponding
to 22 ms before and after the peak amplitude window extending from approximately 450–950 ms after
stimulus onset was computed for the group of electrodes to quantify the component. This method was
applied for the post-learning trials for all three formation categories and is consistent with how we
have quantified the P3b in previous experiments [40]. Separate ERPs were computed for the visually
similar and distinct categories similar to the method described for the MFN after establishing that
there were no differences in amplitude between visually similar categories. A paired samples t-test
revealed that the amplitude of the P3b for the distinct category (6.02 µV) was significantly larger than
the similar categories (5.34 µV), t(43) = 4.17, p < 0.001. Figure 14 displays this effect.Brain Sci. 2019, 9, x FOR PEER REVIEW 18 of 30 
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Figure 14. Top: A voltage map displays the voltage across the scalp for the visually similar and
distinct conditions at the peak of the P3b (asterisk in bottom waveform image). A stronger positive
voltage is seen over the posterior parietal areas for the distinct condition. Bottom: Representative
waveform showing the shape of the P3b for both conditions. This waveform was derived from the
grand-average of all analyzed subjects. The amplitude of the P3b is higher (more positive) for the
visually distinct condition.

The LIAN was quantified by utilizing a cluster of 22 channels in the left or right frontoparietal
regions (see orange and yellow electrodes in Figure 12, respectively). An adaptive mean amplitude of
these clusters corresponding to 22 ms before and after the peak negative amplitude in a window that
extended from 450–950 ms (the same window as the P3b) was used to quantify the component. This
method was applied for all post-learning trials for all three categories in each subject. Similar to the
P3b and MFN, separate ERPs were computed for the visually similar and distinct categories for both
the left and right LIAN after establishing no differences between the visually similar categories. A
paired-samples t-test showed that the amplitude of the left LIAN was largest for the distinct category
(−7.06 µV) as compared to the amplitude of the visually similar categories (−5.54 µV), t(43) = −2.98,
p = 0.004 (Figure 15). However, no significant amplitude difference for the right LIAN were found
between the similar categories (−3.55 µV) and distinct category (−2.92 µV), t(43) = 1.23, p = 0.23.



Brain Sci. 2020, 10, 224 18 of 30
Brain Sci. 2019, 9, x FOR PEER REVIEW 19 of 30 

 

Figure 15. Top: Voltage maps display the voltage across the scalp for the similar and distinct 
conditions at the peak of the LIAN on the left and right sides (asterisks in bottom waveform images). 
A stronger negative voltage is seen over the left frontal areas for the visually distinct condition and a 
stronger negative voltage is seen over the right frontal areas for the visually similar condition. 
Bottom: Representative waveforms showing the shape of the LIAN for both conditions in the left and 
right hemispheres. The amplitude of the left LIAN is higher (more negative) for the distinct 
condition, whereas the right LIAN is higher (more negative) for the similar condition. 

We averaged together the raw voltages of electrodes within 10 regions in order to reduce the 
number of predicting elements in this analysis: left frontal, right frontal, medial prefrontal, medial 
frontal, posterior parietal, left temporoparietal, right temporoparietal, left occipital, right occipital, 
and medial occipital (Figure 16). This process was done for each individual sample for both 
categories. We then averaged together every five consecutive samples together, resulting in 60 
timepoints for each waveform with every timepoint representing 20 ms of data. The first 10 
timepoints were used in the baseline correction and, thus, not included in the analysis. In the end, 
this gave us two matrices (one for visually similar and one for visually distinct) for each subject with 
dimensions 50 (timepoints) × 10 (electrode groups). 

For each timepoint, a linear Support Vector Machine (SVM) classifier, as implemented in 
Matlab, was trained to classify patterns of EEG voltages associated with visually similar vs. visually 
distinct categories across subjects. The patterns of voltages across all 10 electrode groups associated 
with each condition for each subject served as the patterns to be classified. Leave-one-subject-out 
cross validation was carried out, such that patterns from 43 out of the 44 subjects were used to train 
the classifier, and the subject that was left out of training was used as the test subject. This type of 
training and test format was iteratively performed until all subjects were used as a test subject. For 
each iteration and timepoint, the classifier provided an estimate of how likely each of the two test 
patterns from the left-out subject (one pattern for visually similar trials and one for visually distinct 
trials) represented the visually similar category. Because there were two categories (distinct vs 
similar), the classifier-estimated probability that a pattern represents the visually distinct category 
was always 1 minus visually similar. The test pattern with greater visually similar evidence was 
labeled as the classifier’s guess for which pattern represents the visually similar category. The other 
test pattern was labeled as the visually distinct guess. When the classifier’s guess matched the actual 
condition, the classification was considered correct for the given test participant and timepoint. The 
classification accuracies from both pairwise classifications (visually similar 1 vs visually distinct, 

Figure 15. Top: Voltage maps display the voltage across the scalp for the similar and distinct conditions
at the peak of the LIAN on the left and right sides (asterisks in bottom waveform images). A
stronger negative voltage is seen over the left frontal areas for the visually distinct condition and a
stronger negative voltage is seen over the right frontal areas for the visually similar condition. Bottom:
Representative waveforms showing the shape of the LIAN for both conditions in the left and right
hemispheres. The amplitude of the left LIAN is higher (more negative) for the distinct condition,
whereas the right LIAN is higher (more negative) for the similar condition.

3.2.3. EEG Machine Learning Analysis

In addition to traditional ERP analysis, we chose to utilize machine learning, as it provides a
more data-driven approach to measuring functional differences. We were interested in tracking the
earliest timepoint at which brain responses become distinguishable for visually similar vs visually
distinct categories. Group-clusters were used to evaluate the general location of these early temporal
dissociations. This novel approach has the advantage of utilizing information in the entire pattern of
amplitudes across the whole brain, which can potentially increase the sensitivity to subtle differences
or engagement of different networks that may include overlapping regions.

For every subject, post-learning trials were chunked into individual segments extending 200 ms
before and 1000 ms after stimulus onset for each category. Segments containing ocular or movement
artifacts were rejected from analysis. Each segment was baseline corrected while using a 200 ms
pre-stimulus baseline before averaging the segments together to form one averaged waveform for each
category of stimuli. Waveforms for the two visually similar categories were averaged together to be
compared against the distinct category before re-referencing to an average reference. The waveforms
were then broken down into their individual samples, which, at a sampling rate of 250 samples/second,
resulted in 300 total samples per waveform (each sample representing 4 ms of recording).

We averaged together the raw voltages of electrodes within 10 regions in order to reduce the
number of predicting elements in this analysis: left frontal, right frontal, medial prefrontal, medial
frontal, posterior parietal, left temporoparietal, right temporoparietal, left occipital, right occipital, and
medial occipital (Figure 16). This process was done for each individual sample for both categories. We
then averaged together every five consecutive samples together, resulting in 60 timepoints for each
waveform with every timepoint representing 20 ms of data. The first 10 timepoints were used in the
baseline correction and, thus, not included in the analysis. In the end, this gave us two matrices (one
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for visually similar and one for visually distinct) for each subject with dimensions 50 (timepoints) × 10
(electrode groups).
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left frontal, yellow = right frontal, green = medial prefrontal, pink = medial frontal, blue = posterior
parietal, cyan = left temporoparietal, red = right temporoparietal, brown = left occipital, purple =

medial occipital, and black = right occipital.

For each timepoint, a linear Support Vector Machine (SVM) classifier, as implemented in Matlab,
was trained to classify patterns of EEG voltages associated with visually similar vs. visually distinct
categories across subjects. The patterns of voltages across all 10 electrode groups associated with
each condition for each subject served as the patterns to be classified. Leave-one-subject-out cross
validation was carried out, such that patterns from 43 out of the 44 subjects were used to train the
classifier, and the subject that was left out of training was used as the test subject. This type of training
and test format was iteratively performed until all subjects were used as a test subject. For each
iteration and timepoint, the classifier provided an estimate of how likely each of the two test patterns
from the left-out subject (one pattern for visually similar trials and one for visually distinct trials)
represented the visually similar category. Because there were two categories (distinct vs similar), the
classifier-estimated probability that a pattern represents the visually distinct category was always
1 minus visually similar. The test pattern with greater visually similar evidence was labeled as the
classifier’s guess for which pattern represents the visually similar category. The other test pattern was
labeled as the visually distinct guess. When the classifier’s guess matched the actual condition, the
classification was considered correct for the given test participant and timepoint. The classification
accuracies from both pairwise classifications (visually similar 1 vs visually distinct, visually similar 2
vs visually distinct) were averaged together. This was done to provide an overall estimate of how well
the classifier could distinguish between each of the two visually similar categories vs. the visually
distinct category.
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The classification accuracy for each timepoint was averaged across iterations and a one-sample
t-test was performed against a theoretical chance mean (50%, as we performed pairwise classifications).
The cross-validated classification accuracy for each timepoint is chronologically plotted in Figure 17,
and timepoints that had a classification accuracy significantly above chance at p < 0.05 (uncorrected)
are denoted by a blue diamond along the X axis. From this figure, the earliest timepoints at which the
classifier was able to reliable differentiate between the two categories was between 260 and 320 ms,
which coincides with the onset and peak of the MFN. Another extended period reliably above chance
was between 440 and 700 ms, which corresponded to the peak and onset of the LIAN and P3b.
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Figure 17. Whole-brain classification accuracy over time on an experimental trial. Blue diamonds
along the X-axis represent timepoints where classification accuracy is significantly above chance (p
< 0.05). The earliest string of above-chance classification accuracies is observable between 200 and
300 ms after stimulus onset, followed by another group between 430–700 ms. A late string of reliable
classification occurs around 890–1000 ms.

The same SVM classification was run again using only the voltages in each region individually to
determine whether any one particular region was driving the classification accuracy at each timepoint.
The overall classification within each region indicated that the medial prefrontal, left frontal, and
posterior parietal regions show the earliest reliable (and strongest) classification accuracy amongst all
regions, with a maximum classification accuracy of 82% (Figure 18). Within these regions, reliable
differentiation between categories occurs around 250 ms and remains stable until around 740 ms. The
classification accuracy peaked earlier in the posterior parietal region compared to the medial prefrontal
and left frontal regions, even though we can differentiate between the two categories with reliable
accuracy using any of these three regions within the entire 500 ms window.
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Figure 18. Region-based classification accuracy over time and correlated with behavioral performance.
Top: Classification accuracy for the left-frontal electrode montage. Classification accuracy peaks
between 400 and 700 ms. During this timeslot, classification is positively correlated with performance.
Middle: Classification accuracy for the medial frontal electrode montage. Accuracy peaks between 600
and 750 ms after stimulus onset and does not correlate with behavior in any way. Bottom: Classification
accuracy for the posterior parietal electrode montage. Accuracy peaks the earliest in this region,
occurring between 220–500 ms. Interestingly, the classification accuracy is negatively correlated with
behavioral performance within this window.
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We were also interested in whether different neural strategies employed for the two types
of trials—as evidenced by better SVM differentiation between neural patterns that are associated
with each trial type—are beneficial to performance. Thus, we ran an exploratory analysis using a
Pearson’s correlation between the SVM classification accuracy and the behavioral performance on
the categorization task of each subject. In Figure 18, the trajectory lines are color-coded red or cyan
corresponding to timepoints where the SVM classification accuracy was significantly correlated with
behavioral performance below a threshold of p = 0.05. The timepoints that are highlighted in red
indicate that the SVM classification accuracy was positively correlated with behavioral performance,
and those in cyan were negatively correlated with performance. The classification accuracy of the
medial prefrontal region did not significantly predict behavioral outcome at virtually any timepoint.
In contrast, the left frontal region, which is the location of the left LIAN component, was positively
correlated with behavior throughout its classification peak. One interpretation of this finding is that
the ability to flexibly employ different strategies best matching the current demands may optimize
performance overall. Unexpectedly, the classification accuracy of the posterior parietal region was
negatively correlated with behavior in several timepoints between 220 and 500 ms. One interpretation
of this finding is that the shift away from verbalizable rule-based strategies itself requires executive
resources and, thus, excessively differential allocation of resources at this topology and timepoints
might make it difficult to continue learning beyond explicit rule-application [50]. Of all the regions,
the right frontal area (the location of the right LIAN) was responsible for the very latest classification
accuracy peak, occurring between 800 and 1000 ms. The classification accuracy in this region did not
significantly correlate with behavior within this window. The three occipital areas along with the two
parietal areas failed to demonstrate consistent windows of reliable classification accuracy.

4. Discussion

4.1. fMRI Pilot Experiment

The main goal of this pilot experiment was to determine the extent to which people engage
multiple memory systems during a single categorization task. In line with past literature, the results
showed that once subjects acquired the formations in the task, rule-based and perceptual similarity
categoriation strategies engaged separate neural systems. These two systems were also recruited
during a test block where the subjects were forced to generalize the categorizations strategies that they
developed during training. For the machine-learning analysis, regions in the superior and inferior
parietal lobes, along with MOFC, fusiform, and IFG successfully dissociated between conditions in the
task. This provided enough prelimenary evidence to motivate the fully-powered dEEG experiment.

4.1.1. Univariate Analysis

The categories in this experiment were designed, such that they require the subjects to discover a
counting rule to differentiate between two visually similar categories and utilize a perceptual similarity
strategy to identify the members of a visually distinct category. Our subjects’ performance on the
generalization block supports the assumption that they would recruit the proper strategies. Specifically,
they would not have been able to accurately categorize novel formations into the trained categories
had they exclusively relied on declarative recall of individual formations.

The superior and inferior frontal gyri were more active during the categorization of visually
similar trials when compared to visually distinct trials. These regions are a part of the working
memory system, where it is inferred that they are responsible for orienting attention and establishing
executive control [22,51–53]. In our experiment, the subjects focused their attention toward the players
on the line of scrimmage, where they were required to count each player if the formation belonged
to one of the two visually similar categories. This is due, in part, to the visually similar categories
having low between-category variability, which requires the engagement of a rule-based system. The
comparison of the visually distinct category to each of the visually similar categories has much greater
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between-category variability and, thus, do not require the use of the cognitively taxing rule-based
system [54].

Interestingly, caudate nucleus, a region that is integral to rule application, did not reach a level
of significance (although this is expected given the small sample size) for the rule-based condition
during training. Instead, a cluster over the hippocampus had the highest level of activation during
training—a region that is well-known for its role in declarative recall [55]. It is possible that subjects
utilized the rule for a short period of time during training, but relied more on the declarative recall
of the few relevant players, given that subjects only needed to attend to a single feature within each
stimulus to perform categorization (the number of players on the line of scrimmage). However, when
encountering novel formations in the generalization block that belong to the categories acquired during
training, the subjects were forced into applying the counting rule and, thus, the strong presence of
caudate nucleus during generalization could reflect a more consistent reliance on rule application.

In support of our hypothesis, the robust activation of the lateral occipital cortex was present
for the visually distinct category when compared to the visually similar categories. This held true
throughout training and extended into the generalization block. The lateral occipital cortex has been
well-established as the main region governing perceptual similarity categorization [18–21]. Perceptual
similarity categorization can be carried-out with minimal working memory resources and it is optimized
for instances with low within-category similarity [21]. The absence of the working memory system
when subjects viewed members of the visually distinct category further supports our conclusion that
this category engages the perceptual similarity system.

4.1.2. Multi-Voxel Pattern Analysis

Our region-based MVPA showed that the lateral frontal and parietal regions provided the most
reliable classification between the visually similar and visually distinct categories, as consistent with
previous findings that rule-based categorization requires a higher degree of attentional resources. On
the other hand, MVPA provides a more sensitive measure of these conditional effects. More specifically,
MVPA provides an avenue for detecting more subtle differences between our conditions that lie within
the activity patterns of single regions–information that is sometimes subtracted-out by traditional
analyses [56]. These small activation patterns can potentially code for task-relevant information that is
important to both memory systems in our experiment.

Frontoparietal regions are well-known for their importance to cognitive control; mainly selective
attention to information that is relevant to the task [57,58]. However, non-human primate experiments
have demonstrated that activity in the frontal and parietal regions is predictive of an array of different
task-relevant features, such as representations of individual stimuli, rule selection, or response
selection [59–61]. Follow-up studies in humans have shown similar dissociations between stimulus
sets and rules using MVPA [62,63]. These task features are essential to the rule- and perceptual
similarity-based systems. The successful dissociation between category structures while using MVPA
over frontoparietal regions in our task supports these previous findings.

4.2. Experiment 2 (dEEG)

The primary objectives of this experiment were to further determine whether multiple memory
systems are recruited in a single task and evaluate the time course under which these systems are
recruited. The results showed that, once the participants acquired the task, clear differences in the
Left LIAN, MFN, and P3b components were seen between our two conditions. Overall, the amplitude
of each ERP that reflected a difference between the visually similar and visually distinct categories
was largest for the similarity-based category. However, the amplitude for the right LIAN was larger
for the visually similar categories, although this effect did not reach statistical significance. For the
machine learning analysis, the classification accuracy peaked earliest in the posterior parietal region
(the location of the P3b), but reliable classification could be performed while using additional electrode
clusters, including the left prefrontal and medial prefrontal areas.
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4.2.1. ERPs

The MFN amplitude in this experiment was larger for the visually distinct category, albeit the
significance of this effect was only marginal. The moderate difference in amplitude between our
categories support recent findings that suggest multiple categorization strategies—even those inferred
to rely very little on the working memory system—need executive functions in order to select the
memory system that is optimal for a task [50]. For stimuli that would benefit most from perceptual
similarity, this requirement of effortful control would be very brief—commencing well before an
action is committed [50]. The latency of the MFN (180–300 ms) corresponds to the initial orienting of
attention in a visuomotor association task and, thus, we propose that the MFN in our task is indexing
the controlled attention that is required to select the memory system best suited for categorizing the
presented stimulus and does not depend on the optimal system needed to perform a task.

Like the MFN, the P3b in our experiment was larger for the visually distinct stimuli when
compared to stimuli that required the application of an explicit rule. Our initial assumption for this
component was that the amplitude should be largest for the visually similar categories based on the
perceptual similarity literature, which typically describes the robust activation of posterior visual
cortex (and no posterior corticolimbic areas) for the visually distinct category [18–20]. However, this
would only be the case if the participants were exclusively relying on perceptual similarity to categorize
members of the visually distinct category. High trial counts could result in subjects utilizing different
systems to categorize formations in the visually distinct group as their performance improves. When
we analyzed the strategies that subjects were using post-hoc, 89% of participants reported using an
explicit counting rule or declarative recall for categorizing the visually distinct formations (68% of the
total count being declarative recall and 21% counting rules), while only 11% reported using a perceptual
similarity strategy. This theory satisfies the two-stage learning and multiple memory systems models,
where the early stages of learning are marked by a reliance on a variety of strategies (that may rely
on dissociable neural systems) to work toward a more routinized and automatic recall of declarative
information. However, more studies are required that track changes in the P3b across training to
further associate the amplitude of the P3b with specific categorization strategies. Theoretically, we
would see changes in the P3b amplitude as participants progress throughout training and, in turn, that
should mirror any changes in the strategy they were using for specific categories.

The amplitude of the left LIAN was the largest for the visually distinct condition, whereas the
right LIAN was largest for the visually similar condition, although the latter effect did not reach
statistical significance. The left/right conditional flip makes the interpretation of this component fairly
difficult. At this time, we are unsure whether both components are interpretable on their own, or
if the LIAN is a hemisphere-specific component and the effect observed on the contralateral side is
a byproduct of volume conduction. Luu et al. (2007) found that the amplitude of the right LIAN
decreased as subjects acquired the ability to perform spatial analyses in a visuomotor association task,
but the amplitude of the component remained unchanged when the targets in the task were digits that
evoked the phonological loop [39]. They also found that the amplitude of the left LIAN increased as
the subjects acquired digit targets in their task, whereas the amplitude remained unchanged as they
acquired the ability to perform spatial analyses. Motivated by the findings of their experiment, we
drew an initial assumption that the amplitude of both the left and right LIAN should be largest for
visually similar condition in the current experiment. As similarly discussed in our interpretation of the
P3b, however, this would only be the case if the subjects exclusively relied on perceptual similarity
analyses to categorize formations in the visually distinct category—similar to the spatial analyses that
were performed in Luu et al. (2007) [39].

Given the vast majority of subjects in our experiment used rote learning to categorize the visually
distinct condition instead of the hypothesized perceptual similarity, one interpretation of our findings
is to view them as a contrast between declarative recall of individual stimuli (visually distinct category)
and explicit rule application (visually similar categories). When viewed from this perspective, the
location of the LIAN coincides with structures that are essential for both forms of analysis, such
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as the temporal lobe and inferior frontal gyrus (IFG) [64,65]. Based on the higher accuracy for the
visually distinct category, our findings that the right LIAN was smaller for this category is in-line
with meta-analytic findings that show a right hemisphere-specific reduction in anterior temporal and
IFG activity with the development of expertise in visuomotor tasks [8]. We could be seeing right
hemisphere-specific reductions in the attentional resources that are needed to categorize the visually
distinct group of formations simply because our subjects are consistently at a more advanced stage of
learning for this condition when compared to the visually similar condition. Our left LIAN results
also become more interpretable through this lens. If our subjects are significantly more advanced
at declaratively recalling the visually distinct formations, then we would expect the left LIAN to be
larger for this condition based on the findings of Luu et al. (2007) [39]. The amplitude of the left LIAN
linearly increased for digit targets in their visuomotor learning task, which theoretically engage the
same explicit form of memory as both conditions in our experiment. Thus, the left LIAN differences
seen in our study could be reflecting differences in expertise between our subject’s ability to categorize
the visually similar and visually distinct categories.

4.2.2. dEEG Machine Learning

Using machine learning, we were able to successfully dissociate between our two conditions
when utilizing raw voltages distributed across the entire scalp. We were especially interested in
the timepoint-by-timepoint classification to identify the earliest point at which we can differentiate
between our conditions as subjects view a stimulus. In our study, the onset of a stable period of reliable
dissociation was around 200 ms after stimulus onset, which coincides with the initial onset of the MFN
ERP component. We interpret this early classification timepoint as reflecting the initial controlled
attention required to select a memory system based on the stimulus being presented.

We ran a second machine learning analysis on only the voltages of single groups of electrodes in
20 ms intervals to understand which individual regions were driving the classification accuracy. Our
results from this analysis showed that the medial prefrontal, left frontal, and posterior parietal regions
collectively contributed to the earliest reliable classification point. fMRI studies using multi-voxel
pattern analysis (MVPA) have consistently demonstrated that individual rules can be reliably decoded
in frontal and parietal regions [32–34]. Our EEG decoding results expand on these findings by
specifying that the pattern representations of these concepts coincide with the initial orientation of
attention. Through sufficient trial and error learning, the context under which an action is learned in a
visuomotor task becomes tied to each individual stimulus in the task [66]. We can assume that the
initial conscious registration of a stimulus prompted a conditioned re-establishment of the explicit
rules (the learning context) that would dictate their subsequent action selection since we only analyzed
trials after our subjects had been sufficiently trained on the task. This theory could explain why the
first pattern dissociation between our two categories happens around the earliest time that a person
can explicitly orient attention.

4.3. Category Learning Strategies as a Function of Expertise

The theories of categorization that formed the basis for our experiments commonly discuss these
memory systems individually. However, the results from our experiments indicate that multiple
memory systems may develop alongside one another in a single task, alternating from trial-to-trial to
meet task demands. The development of expertise within each system could happen independently,
and they likely share the same end-goal of automating the attention process with extended training.

Palmeri (1997) made one of the first attempts at describing the time that it takes subjects to reach
automaticity while using perceptual similarity versus rule-based categorization [67]. In one experiment,
Palmeri had subjects categorize objects with high within-category similarity, whereas in a separate
experiment had subjects categorize objects with high between-category similarity, which required
the discovery of a rule. The results from these experiments demonstrated that subjects utilizing
perceptual similarity reached automaticity notably faster than those that relied on rules. This led to
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the development of a new theory termed Exemplar-Based Random Walk (EBRW) which proposes
that, when a probe is presented, exemplars stored in memory race to be retrieved with a speed that is
proportional to their similarity to the probe. Each one of the retrieved exemplars drives a random walk
until sufficient evidence is presented. Once enough evidence has been retrieved, a subject makes a
response [68,69].

Computational models of EBRW allow for the reaction times to be sped up by increasing
within-category similarity and increasing the number of exposures to an exemplar [67]. This would
result in a shorter training period before subjects reach automaticity when categorizing visually similar
exemplars. The model also accounts for a longer training period when the subjects are forced to
rely more on the random walks or the evidence-gathering aspect of the process when the categories
have low within-category similarity and/or high between-category similarity, which was the case
for our visually similar categories. EBRW, when interpreted on a conceptual level, helps to explain
how implicit and explicit forms of categorization are a simple function of expertise development.
The different strategies are called upon, depending on the structure of a category being presented
and they share the common function of serving as an intermediate strategy before transitioning to
an automatic mode of operation. However, a potential shortcoming of EBRW is that it postulates a
single, unitary memory system underlying performance, which does not align well with neuroscience
evidence in favor of multiple category learning systems [15,70]. We propose that this theory be altered
to accept these processes as the work of distinct memory systems. It is clear that future work is needed
to develop new theories for how these distinct systems develop under learning conditions that may
require more than one type of system to optimize performance.

4.4. Alternative Interpretations and Limitations

While we interpret the neurophysiological differences between categories to reflect the use of
different categorization strategies, a key challenge to clear interpretation is that the conditions differ in
difficulty. The subjects had an easier time recognizing and categorizing the visually distinct category,
whereas it took longer to do the same for the visually similar categories. The current task and result can
be alternatively framed in terms of the differences in the relative contribution of top down vs. bottom
up processes during learning. Specifically, for the visually distinct categories, subjects could largely rely
on bottom-up (stimulus-driven) signals. In contrast, the categorization of visually similar categories
requires a greater involvement of top-down signal guiding attention to relevant details to implement an
explicit counting rule. Relatedly, we can view our results from a general cognitive resources framework.
As stated earlier, the two visually similar categories have a relatively small between-category variance,
which would require more working memory resources to discern, and arguably engage, the rule-based
categorization system. On the other hand, the between-category variance between each of the two
visually similar categories as compared with the visually distinct category is much higher. In theory,
making a distinction with high between-category variance should not be as cognitively taxing. The
differences seen in our ERPs reflect the differential allocation of cognitive resources, and this difference
has been argued to be controlled by dissociable memory systems [15,54].

Unfortunatley, a fundamental feature of naturalistic learning environments is that some deviation
in individual learning strategy is expected. Although we make the argument that rule-based and
perceptual simliarity-based judgements play an intermediate role on the path to declaritive recall and
automazation, there is no clear way to determine whether the subjects switched their strategies with
extended training in the current experiments. A future experiment is necessary to further explore the
finer details of any inferred stategy shifts related to expertise.

5. Conclusions

A large number of studies have outlined the behavioral and neural processes that are associated
with different methods of categorization. The overwhelming consensus amongst these studies is that
different categorization strategies serve the purpose of making learning as efficient as possible under
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different learning conditions. These strategies rely on distinct memory systems. A common feature of
category learning studies is that they use tasks that are designed to recruit these systems and strategies
one at a time. Yet, real-world learning likely involves the ability to switch between memory systems,
including different approaches to different stimuli within a seeming same task. Through the conducted
experiment, we provided initial evidence that people can switch between memory systems to optimize
performance in a single task. In addition, we determined the time course by which the brain shows
dissociable neural signatures signifying the selection of these different memory systems.
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