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Abstract

Background: Considering the remaining threat of drug-resistantmutations (DRMs) to antiretroviral

treatment (ART) efficacy, we investigated how the selective pressure of human leukocyte antigen

(HLA)-restricted cytotoxic T lymphocytes drives certain DRMs’ emergence and retention.
Methods: We systematically screened DRM:HLA class I allele combinations in 3997 ART-naı̈ve Swiss

HIV Cohort Study (SHCS) patients. For each pair, a logistic regression model preliminarily tested

for an association with the DRM as the outcome. The three HLA:DRM pairs remaining after multiple

testing adjustment were analyzed in three ways: cross-sectional logistic regression models to

determine any HLA/infection time interaction, survival analyses to examine if HLA type correlated

with developing specific DRMs, and via NetMHCpan to find epitope binding evidence of immune

escape.
Results: Only one pair, RT-E138:HLA-B18, exhibited a significant interaction between infection

duration and HLA. The survival analyses predicted two pairs with an increased hazard of

developing DRMs: RT-E138:HLA-B18 and RT-V179:HLA-B35. RT-E138:HLA-B18 exhibited the

greatest significance in both analyses (interaction term odds ratio [OR] 1.169 [95% confidence
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interval (CI) 1.075–1.273]; p-value<0.001; survival hazard ratio 12.211 [95% CI 3.523–42.318];

p-value<0.001). The same two pairs were also predicted by netMHCpan to have epitopic binding.
Conclusions: We identified DRM:HLA pairs where HLA presence is associated with the presence or

emergence of the DRM, indicating that the selective pressure for these mutations alternates

direction depending on the presence of these HLA alleles.
Funding: Funded by the Swiss National Science Foundation within the framework of the SHCS, and

the University of Zurich, University Research Priority Program: Evolution in Action: From Genomes

Ecosystems, in Switzerland.

Introduction
Antiretroviral resistance remains a major obstacle to the successful and lasting suppression of HIV

(Gupta et al., 2012; Günthard et al., 2019). While in resource-rich settings the availability of novel

drug classes and personalized HIV treatment have diminished the challenges associated with antire-

troviral resistance, resource-limited settings have experienced a continuous increase in antiretroviral

resistance, which is now threatening the unprecedented success of the global rollout of antiretroviral

treatment (ART) (Fund, 2019; Hauser et al., 2019). In the context of this globalization of antiretrovi-

ral resistance, it is becoming increasingly important to understand how human and viral genetic vari-

ation are affecting the processes generating or limiting antiretroviral resistance (Aghokeng et al.,

2011; Lataillade et al., 2010).

HIV drug-resistant mutations (DRMs) can either be selected in patients on ART experiencing treat-

ment failure (acquired drug resistance, or aDRM) or be transmitted from a patient carrying the resis-

tance mutation to an uninfected individual (transmitted drug resistance, tDRM). As some DRMs have

been shown to carry a cost, feeding on the virus fitness and replication capacity, they can revert in

the absence of ART. Once the selective pressure favoring those mutations is removed, their fre-

quency within a host continuously decreases at the expense of the wild-type variant, and eventually

they become undetectable by standard resistance tests. It has been shown that the time scales on

which reversion occurs exhibit a large variation ranging from several months to over 10 years,

depending on the fitness cost that in turn is governed by both the type of mutation and the genetic

background in which it occurs (Kühnert et al., 2018; Yang et al., 2015). This canonical perspective

based on the evolutionary forces of aDRM and tDRM, and their disappearance from the replicating

quasi-species, generally disregards the possibility that antiretroviral- resistant mutations are selected

in untreated individuals.

One process that may act against the paradigm of DRM emerging only in treated individuals and

reverting in untreated individuals is accidental resistance evolution occurring as a collateral effect of

viral immune escape. A well-understood instance of this process is evolutionary escape from binding

to human leukocyte antigen (HLA), an extremely diverse gene complex encoding for major histo-

compatibility complex (MHC) proteins. MHC class I proteins (corresponding to HLA class I) are found

on the surface of all nucleated cells, and by presenting antigens from the cell interior to the surface,

they allow for binding to cytotoxic CD8 T cells (CTL); thus, MHC class I proteins tag the virally

infected cell and can subsequently be eliminated by CTL (Markov and Pybus, 2015;

Zinkernagel and Doherty, 1979). The high mutation rate associated with replicating HIV predis-

poses to cellular and humoral immune escape, where the viral epitopes are no longer recognized by

the mounted immune effectors. For CTL-mediated immune responses, this process of developing

escape mutations remains a critical part of HIV pathogenesis (Leslie et al., 2004). Conversely, the

high variability of encoded MHC alleles and their combinations come into play, as the host

HLA alleles change as a consequence of transmission (Markov and Pybus, 2015; Zinkernagel and

Doherty, 1979; Borghans et al., 2004). If the viral epitope recognized by MHC-I maps to the viral

genome at the same region, this could confer an increased viral fitness leading to mutation persis-

tence or even the emergence of a new DRM in an ART-naı̈ve host (Gatanaga et al., 2013). While

this phenomenon has been reported for individual HIV mutation:HLA pairs, a systematic assessment

of the impact of epitope escape across HIV DRM:HLA pairs in a representative population has not

yet been reported.

In this study, we investigated and analyzed the viral and genetic data from ART-naı̈ve patients in

the Swiss HIV Cohort Study (SHCS). This is leveraging the unique combination of viral and human

Nguyen et al. eLife 2021;10:e67388. DOI: https://doi.org/10.7554/eLife.67388 2 of 15

Research article Epidemiology and Global Health Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.67388


genetic data in the SHCS, with over 20,000 genotypic resistance tests and over 5000 patients with

information on HLA-I alleles. This allowed us to systematically screen the cohort for associations

between DRM:HLA-I pairs and hence for pairs where escape from HLA-I binding might confer the

DRM an evolutionary advantage even in the absence of ART.

Materials and methods

Swiss HIV Cohort Study
The SHCS is a prospective multicenter study with continuing enrollment, aiming to include all people

living with HIV in Switzerland since 1988. About half of all people living with HIV (PLWH) as notified

to the Swiss health authorities are voluntarily participating in the SHCS, and include three-quarters

of all PLWH receiving ART in the country (Schoeni-Affolter et al., 2010). As of August 2019, the

SHCS has a cumulative total of 20,741 patients. Demographic information, mode of HIV transmis-

sion, treatment, clinical, and other data are updated every 6 months per standard protocol.

Drug resistance mutation data
The SHCS Drug Resistance Database contains the HIV sequence data, primarily partial pol gene

sequences, used to determine the presence of DRMs in the viral genome (von Wyl et al., 2007).

This data, currently covering 13,798 patients, was obtained from both routine clinical testing and sys-

tematic retroactive sequencing of stored plasma samples (Kletenkov et al., 2017; von Wyl et al.,

2016). To reduce the scope of our systematic screening to only HIV mutations relevant to drug resis-

tance (thus reducing the risk of overtesting), we only considered the presence of DRMs as defined

by the Stanford Drug Resistance Database (Rhee et al., 2003). To avoid confounding by the effect

of ART, we only considered sequences in ART-naı̈ve individuals (before ART treatment).

HLA data
Data on the HLA class I type was available for 6453 SHCS patients. This information was obtained

from SNP genotype data, using SNP2HLA with the type 1 Diabetes Genetics Consortium reference

panel for HLA imputation techniques on the exome/SNP data (Jia et al., 2013; Szolek et al., 2014;

Dilthey et al., 2016). We limited our analyses to that of the HLA class I (HLA-A, -B, and -C) consider-

ing the existing literature supporting the role of HLA class I peptides in HIV control (Leslie et al.,

2010; Pereyra et al., 2010). Of these patients with HLA data, 3997 additionally had drug resistance

testing data.

Screening candidate pairs of DRM:HLA-type
Our study aimed to retrieve all DRMs identified in the SHCS as well as the HLA-I types found, to ana-

lyze whether or not a specific HLA-I type significantly alters the probability of finding a DRM. As

there were a possible 5561 combinations represented in our dataset, it was necessary to reduce

these candidate pairs to only those for which our data provided sufficient statistical power to detect

an association (Figure 1). To do this, we filtered out only the combinations where the number of

SHCS patients with the given mutation or HLA type were sufficient to provide a statistical power of

0.8, assuming an odds ratio (OR) of 3. This resulted in 225 pairs, from which 225 logistic regression

models were made. For each model, the duration of HIV infection time and the presence/absence of

the queried HLA-I type were used as predictors of the outcome – the presence of the resistance

mutation in the last available resistance test from a given patient when they were ART-naı̈ve. We

then used a Benjamini–Hochberg adjustment to account for multiple testing, considering a false dis-

covery rate of 0.2. We purposefully used a more liberal false discovery rate and OR in the prior steps

to avoid erroneously discarding any mutation:HLA pair with a potentially valid association, with the

intent of compensating for this with the following three analyses assessing the plausibility of the

identified pairs:

1. Testing if the impact of duration of HIV infection on the emergence of DRM of interest
depends on HLA type: For each candidate pair identified and systematically filtered out after
the initial screening, we created a multivariable logistic regression model, where the outcome
is the presence of the mutation in the ART-naı̈ve patients in their earliest available sequence
(before the start of ART), with the predictors being the presence of the queried HLA type,
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duration of HIV infection until time of ART initiation, and additionally, an interaction term
between HLA type and infection time. The purpose of the interaction term is to measure if the
presence or absence of the queried HLA type affects the selection pressure on the resistance
mutation, which would be determined by the interaction term with time since HIV infections –
that is, a significant interaction term would imply that time since HIV infection has a different
effect on the odds of observing the DRM depending on whether the HLA allele is present or
not.

2. Longitudinal/survival analyses: In addition to the cross-sectional logistic regression models, we
used Cox proportional hazards survival models to test whether patients initially free of the
queried DRM developed it over time. We only considered resistance testing data and time at
risk before ART initiation. A patient requires at least two sequences before ART initiation to
be included in this analysis. We observed which of the candidate DRM:HLA pairs yielded a sur-
vival model where the presence of the queried HLA type was significantly associated with a
higher or lower hazard of developing/detecting the mutation over time.

3. Mechanistic plausibility/epitopic binding: To examine whether there was any mechanistic plau-
sibility to the associations found in the above analyses, we utilized the program server
NetMHCpan 4.1 to predict the binding affinity of the HLA allele to the all 9-mer peptides
including the mutation position, with either the wild-type amino acid at the position or one of
the three most common mutated amino acids observed (Reynisson et al., 2020). For the can-
didate pairs where the mutation does cause immune escape, we would anticipate the binding
to be stronger for the wild-type peptide compared to the mutated peptides. Additionally, we
searched the Los Alamos HIV Molecular Immunology Database to corroborate the candidate
pairs with prior experimental studies indicating the HLA–epitope match (Korber et al., 2021).

Software
All analyses (besides the epitope binding predictions performed with netMHCpan) were done in R

(version 3.6.1). The code can be found in Github (Nguyen, 2021).

Figure 1. Flowchart of methodology of obtaining the candidate DRM:HLA pairs with possible epitope

relationship. From the 3997 SHCS patients with both HLA-I data and drug resistance testing data, 5561 potential

combinations of HLA-I type and DRMs were examinable, from which only 225 had sufficient power for testing.

From these 225, three candidate pairs were found to have a significant HLA term in a logistic regression model

predicting the resistance mutation in question. DRM, drug-resistant mutation; HLA, human leukocyte antigen.
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Results

Obtaining candidate HLA–mutation pairs
From the 20,741 patients in the SHCS, 3997 had both HLA-I alleles data and resistance testing data

(Figure 1). Characteristics of these patients are shown in Table 1. Patients with HLA data were more

likely to be Caucasian compared to the general SHCS population, as the HLA SNP imputation meth-

ods were validated on a Caucasian population. In the data set, there were 5561 different combina-

tions of HLA-I types represented and DRMs. Only 225 of these pairs had sufficient diversity at the

HLA and DRM positions to convey a power greater than 0.8 to detect a strong effect defined as

OR = 3 (see ’Materials and methods’). Using logistic regression models, we found three DRM:HLA

pairs after multiple testing adjustment (described in Supplementary file 1), with a significant impact

of the queried HLA type on the odds of observing the DRM: RT-E138:HLA-B18 (OR 6.999, 95% CI

4.662–10.413), RT-E138:HLA-A24 (OR 2.444, 95% CI 1.602–3.658), and RT-V179:HLA-B35 (OR 2.431,

95% CI 1.398–4.108). All three combinations involved a DRM in the reverse transcriptase (RT) gene.

Of the three combinations, two were with HLA-B, while one was with HLA-A. These three candidate

pairs were further evaluated with three complementary methods: (1) a further cross-sectional analysis

examining the presence of an interaction term between infection time and HLA type, (2) a longitudi-

nal survival analysis examining time to the DRM detection among treatment-naı̈ve patients initially

without the queried DRM detectable, and (3) NetMHCPan MHC binding prediction analysis to exam-

ine mechanistic plausibility.

HLA-I types and DRMs in study population
The most commonly found HLA-I types are summarized in Table 2. Of note, 668 (16.7%) have an

HLA-A24 allele, 376 (9.4%) with an HLA-B18 allele, and 728 (18.2%) with HLA-B35. Of the 3997

patients with both DRM and HLA-I data available, 719 (18.0%) had at least 1 DRM, of which 209

(5.2%) had multiple DRMs. Overall, 2267 of all 5155 DRMs in the study population are found among

treatment-naı̈ve individuals, and the most frequent of the 1072 DRMs found in the first resistance

test in treatment-naı̈ve individuals are summarized in Table 3. As for the two DRMs of interest, 145

had a DRM at RT-E138: 124 RT-E138A, 14 RT-E138G, 6 RT-E138K, and 1 RT-E138Q. Eighty-two

were found at RT-V179: 68 RT-V179D, 13 RT-V179E, and 1 RT-V179F.

Cross-sectional analyses/logistic regression models
To examine the effect of having a given HLA-I allele on the presence of the DRM in question, we cre-

ated for each candidate pair a logistic regression model predicting the presence of that specific

DRM (at the earliest resistance testing), given the presence/absence of the queried HLA-I type.

From the three candidate pairs, one resultant logistic regression model had a significant interaction

term between presence of the queried HLA type and duration of HIV infection (Figure 2). For RT-

Table 1. General characteristics of SHCS patients and those with resistance mutation and human leukocyte antigen (HLA) data.

Overview of general characteristics of SHCS patients and the subsets with sequencing resistance testing data, HLA-I data, and both.

IQR: interquartile range; MSM: men who have sex with men; HET: heterosexual; IDU: intravenous drug use.

All SHCS
participants

SHCS patients with resistance
testing data

SHCS patients with HLA-I
data

SHCS patients with HLA-I and resistance
testing data

Number 20,741 13,116 6450 3997

Median age
(IQR)

56 (48–62) 54 (47–60) 55 (49–62) 54 (47–60)

Male (%) 15,064 (72.6%) 9402 (71.2%) 4836 (75.0%) 3027 (75.7%)

Risk group:
MSM

8100 (39.1%) 5226 (39.8%) 2777 (43.1%) 1784 (44.6%)

HET 6841 (33.0%) 4731 (36.1%) 2173 (33.7%) 1439 (36.0%)

IDU 4840 (23.3%) 2568 (19.6%) 1255 (19.5%) 620 (15.5%)

Other 960 (4.6%) 591 (4.5%) 245 (3.8%) 154 (3.9%)

White (%) 14044 (67.7%) 9993 (76.2%) 5661 (87.8%) 3487 (87.2%)
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E138:HLA-B18, duration of HIV infection (OR 0.918, 95% CI 0.862–0.971 [p-value=0.004]) and the

HLA:time-to-DRM interaction term (OR 1.169, 95% CI 1.075–1.273 [p-value<0.001]) were both signif-

icant predictors of an RT-E138 mutation. Greater infection time was thus correlated with a smaller

chance of having/detecting the RT-E138 mutation (due to the fitness cost of the mutation). However,

in individuals with HLA-B18, the HLA:time-to-DRM interaction terms cause the selection pressure to

reverse direction, hence greater infection time is instead correlated with a greater probability of an

RT-E138 mutation for HLA-B18 individuals.

Table 2. Distribution of most common HLA-I A, B, and C alleles in study population.

Ten most common HLA-A, -B, and -C types in study population individuals with both HLA-I and DRM

information. Frequency and percentage of individuals with each allele are indicated. DRM, drug-resis-

tant mutation; HLA, human leukocyte antigen.

HLA-A type Frequency Percentage

02 1838 46.0

03 964 24.1

01 857 21.4

24 668 16.7

11 493 12.3

68 340 8.5

32 302 7.6

30 300 7.5

26 272 6.8

29 261 6.5

HLA-B type Frequency Percentage

44 905 22.6

07 814 20.4

35 729 18.2

51 639 16.0

15 582 14.6

08 500 12.5

40 410 10.3

18 376 9.4

57 328 8.2

27 294 7.4

HLA-C type Frequency Percentage

07 1794 44.9

04 941 23.5

03 812 20.3

06 772 19.3

12 510 12.8

05 485 12.1

02 401 10.0

16 341 8.5

01 328 8.2

15 320 8.0
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Longitudinal/survival analyses
To examine the effect of having a given HLA-I allele on the development of the DRM in question, we

performed for each pair a survival analysis to observe how many individuals initially without the DRM

eventually develop it prior to initiation of ART. Two of the three candidate DRM:HLA pairs were

shown to have a significant difference in the probability of the queried mutation arising in initially

wild-type individuals. For RT-E138:HLA-B18, 63 (7.7%) of the 813 patients without an RT-E138 muta-

tion were HLA-B18, among which 5 (7.9%) developed it before ART initiation, compared to the 5

(0.7%) of the 750 with another HLA-B18 type (hazard ratio [HR] 12.211, 95% CI 3.523–42.318 [p-

value<0.001]) (Figure 3). RT-V179:HLA-B35 showed a similarly sharpened increased hazard of devel-

oping the mutation. Of the 150 (18.3%) of the 821 patients with HLA-B35 (initially without an HLA-

B35 mutation), 3 (2.0%) developed a mutation at RT-V179, compared to only 1 (0.1%) of the 671

with another HLA-B type (HR 16.116, 95% CI 1.673–155.216 [p-value=0.016]).

Mechanistic plausibility/epitope binding
NetMHCpan predictions of HLA binding were performed to gauge the mechanistic plausibility of

the effects observed in the first two analyses. These also indicated weakened HLA binding to the

DRM-peptide (i.e. supporting the putative association) for two of the three candidate pairs: RT-

E138:HLA-B18 and RT-V179:HLA-B35 (Supplementary file 2). Thus, in these two DRM:HLA pairs,

the HLA-I allele is driving viral immune escape by reducing avidity to MHC. The two pairs supported

by mechanistic plausibility are the same two pairs having a significant relationship between

HLA type presence and survival in the longitudinal analyses (Table 4). Prior literature indicating

experimentally verified epitope binding of the HIV proteome to HLA also exists for these two pairs

(Gatanaga et al., 2013; Kopycinski et al., 2014; Liu et al., 2006; Li et al., 2011; Llano et al., 2019;

Pereyra et al., 2014; Kiepiela et al., 2007; Peretz et al., 2011; Rowland-Jones et al., 1995;

Tebit et al., 2009; Bond et al., 2001).

Discussion
Our analyses indicate strong evidence for the presence of an evolutionary intrapatient interaction

between HIV DRMs and certain HLA-I alleles. Of the three candidate DRM:HLA pairs analyzed by

three methods, two were supported by two of the analyses to show this relationship, of which one,

RT-E138:HLA-B18, was supported by all three (Table 4). This is notable as this pair has been specifi-

cally investigated by Gatanaga et al., 2013, who showed both experimentally and through structural

modeling that HLA B18-restricted CTLs select for a mutation in RT138. Our study independently

demonstrates that this interaction is relevant at the population level, both in cross-sectional and in

longitudinal cohort data. Of note, both DRMs are associated with the nonnucleoside analogue

Table 3. Distribution of most common drug-resistant mutations (DRMs) in study population.

Ten most common DRMs from the earliest available resistance testing of the study population, with

the frequency and percentage of each among the study population indicated. Specific amino acid

mutations represented in the population are shown.

Gene Specific DRM Frequency Percentage

RT-E138 AGKQ 145 3.63

RT-T215 ACDEFILNSVY 132 3.30

RT-V106 AIM 95 2.38

RT-V179 DEF 82 2.05

RT-M41 L 72 1.80

PR-M46 ILV 47 1.18

RT-K103 NS 46 1.15

RT-K219 ENQR 34 0.85

RT-D67 EGN 34 0.85

RT-M184 IV 30 0.75
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reverse transcriptase inhibitor class of ART drugs, with RT-V179D/F/T being associated with resis-

tance to Etravirine and RT-V179L being associated with Rilpivirine. RT-E138A/G/K/Q is associated

with resistance to Etravirine and Rilpivirine (International Antiviral Society, 2019). Estimates of viro-

logical failure for these two drugs are upwards of 5% and 11%, for Efavirenz and Rilpivirine, respec-

tively (Sanford, 2012).

These results have major implications for our understanding of the evolutionary epidemiology in

viral infections as they demonstrate a considerable interaction between the processes of drug resis-

tance evolution and immune escape observed for several drug classes and HLA alleles in a represen-

tative patient population. This extends the standard paradigm that resistance mutations are

acquired in treated individuals, may become transmitted, but eventually disappear in treated individ-

uals with the possibility that resistance mutations newly emerge in untreated individuals due to

immune escape. While this mechanism does obviously not account for the majority of DRMs in

patients with untreated HIV, it may not be a negligible phenomenon.

In fact, HLA type-driven viral evolution in DRM-relevant CTL epitopes may be particularly relevant

in light of the estimated 10% with a DRM in ART-naı̈ve European HIV-positive patients, and even

higher figures in low-resource settings, where continuing issues with access to treatment and adher-

ence exacerbate the risk of treatment failure (Günthard et al., 2019; Hofstra et al., 2016;

Wittkop et al., 2011; Chimukangara et al., 2019; Pessôa and Sanabani, 2017). As HLA is

extremely diverse in the human population, and exhibits high variation in allelic frequency in

Figure 2. Logistic regression models testing for interaction between the queried human leukocyte

antigen (HLA) type and duration of infection in predicting the presence of drug-resistant mutation (DRM). Of the

three candidate DRM:HLA type pairs, one pair, RT-E138:HLA-B18, indicates a significant interaction term between

the presence of the queried HLA type and the duration of HIV infection in a logistic regression model predicting

the presence of a mutation at RT-E138 (A). (B) Details of all three candidates’ logistic regression models.
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different geographic regions (Piazza et al., 1980), this DRM:HLA link may partially explain regional

variations in pre-treatment drug resistance. Accordingly, we would expect the emergence of certain

DRMs in the population that is ART-naı̈ve, or specifically, naı̈ve to Etravirine and Rilpivirine, if the

local population has a higher prevalence of the HLA types indicated in our analyses.

As the SHCS primarily consists of individuals of white ethnicity from Switzerland and surrounding

countries, our study is statistically best powered to detect DRM:HLA pairs amongst white patients,

and may be too underpowered to detect DRM:HLA pairs involving HLA-I alleles more prevalent in

non-white, low-resource settings – precisely where DRMs are a more urgent issue. This is even con-

cerning considering the high number of pairs eliminated after filtering out those with insufficient

numbers to power an analysis (Figure 1). This lack of power may explain, for example, RT-V179:

HLA-B35 indicates a DRM:HLA association in the longitudinal analysis, but not in the cross-sectional

analysis with the interaction term (Table 4). It is conceivable that with greater numbers of patients

and more years of follow-up that more DRM:HLA pairs would be detected and that these inter-anal-

yses inconsistencies would be resolved, though we should not exclude the possibility of other

Figure 3. Hazard ratios and cumulative hazards of developing queried drug-resistant mutation over time in

relation to the presence of human leukocyte antigen (HLA) type. (A) Cox proportional hazard ratios for developing

the queried drug-resistant mutation with the queried HLA-I type. (B, C) Cumulative hazard plots of the two pairs

from (A) where the hazard ratios were significant, indicating cumulative hazards of developing the mutation among

those initially wild type, with red lines indicating individuals with the queried HLA type and blue lines for those

with another HLA type.

Table 4. DRM:HLA pairs corroborated by each analytical approach.

Summary of HLA–drug-resistant mutation pairs in all three approaches. Methods that corroborate the HLA–mutation relationship are

indicated by ‘yes.’ DRM, drug-resistant mutation; HLA, human leukocyte antigen.

DRM:HLA pair
Interaction term in
cross-sectional logistic regression

Longitudinal/
survival analysis Mechanistic plausibility

RT-E138:HLA-B18 Yes Yes Yes

RT-E138:HLA-A24 No No No

RT-V179:HLA-B35 No Yes Yes
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sources for such discrepancies, for example, imprecise estimates of HIV infection time. The limitation

of most sequences to the pol gene also made the analyses underpowered to find DRM:HLA relation-

ships in other genes.

Despite these limitations, our study is strengthened by its methodological breadth and thorough-

ness. While other studies have examined the link between HLA-I and DRMs (Ahlenstiel et al., 2007;

Bailey et al., 2007), this study is on a numerically larger scale, and is unique to systematically exam-

ine an entire HIV cohort population’s DRM profiles and HLA-I types to screen for potential DRM:HLA

pairs. As the cross-sectional analysis took into account duration of infection, it thus effectively

excluded from consideration tDRMs that were disadvantageous to viral fitness in ART-naı̈ve patients,

identifying any DRMs that remained over time despite the lack of selection pressure from ART, thus

mitigating the possibility that these DRMs are merely tDRMs with no relevance to viral pathogenesis

in the patient. Additionally, as it is now clinical practice to immediately initiate ART in newly diag-

nosed patients since several years, there is now hardly ever more than one ART-naı̈ve sequence per

patient, thus making our longitudinal analysis very unique and difficult to replicate in the future

(World Health Organization, 2016; Ryom et al., 2016).

By utilizing three different analytical approaches, especially by combining the longitudinal and

cross-sectional approaches, we are able to identity and validate DRM:HLA pairs where there is this

epitope–mutation interaction. The NetMHCPan analyses allowed us to connect the associations we

statistically detected at a population level with predicted MHC binding, which was additionally sup-

ported by prior experimental findings. This screening process is also strengthened by the restriction

to pairs where the HLA-I and DRM frequencies have sufficient power, thus reducing the number of

performed tests and the magnitude of the Benjamini–Hochberg multiple testing adjustment.

Our findings not only have an impact on our understanding of why DRMs tend to be transmitted

and maintained in certain individuals, but may also help inform ART in the future. While it would not

be feasible to tailor ART treatment based on personal HLA genotyping in resource-limited settings,

this information could be used to help anticipate a higher frequency of certain DRMs where a corre-

sponding HLA-I type is more prevalent. As HIV sequencing progresses, more complete DRM:HLA

data on other genes, particularly integrase, will become available at sufficiently powered frequen-

cies, enabling us to detect potential DRM:HLA pairs that may affect the efficacy of integrase inhibi-

tors, a newer and increasingly used ART drug class.
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von Wyl V, Yerly S, Böni J, Bürgisser P, Klimkait T, Battegay M, Furrer H, Telenti A, Hirschel B, Vernazza PL,
Bernasconi E, Rickenbach M, Perrin L, Ledergerber B, Günthard HF, Swiss HIV Cohort Study. 2007. Emergence
of HIV-1 drug resistance in previously untreated patients initiating combination antiretroviral treatment: a
comparison of different regimen types. Archives of Internal Medicine 167:1782–1790. DOI: https://doi.org/10.
1001/archinte.167.16.1782, PMID: 17846398
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Masquelier B, Stephan C, Torti C, Antinori A, Garcı́a F, Judd A, Porter K, Thiébaut R, Castro H, van Sighem AI,
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