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Although intelligent technologies has facilitated the development of precise

orthopaedic, simple internal fixation, ligament reconstruction or arthroplasty

can only relieve pain of patients in short-term. To achieve the best recover of

musculoskeletal injuries, three bottlenecks must be broken through, which

includes scientific path planning, bioactive implants and personalized surgical

channels building. As scientific surgical path can be planned and built by

through AI technology, 4D printing technology can make more bioactive

implants be manufactured, and variable structures can establish personalized

channels precisely, it is possible to achieve satisfied and effective

musculoskeletal injury recovery with the progress of multi-layer intelligent

technologies (MLIT).
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1 Introduction

In the past 30 years, intelligent technologies has facilitated the development of precise

orthopaedic, an important direction in orthopedics/sports medicine, in the following

three areas (Figure 1):
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1) Digital orthopedics technologies have promoted the

appreciation of digital anatomy (Pei and Yan, 2014) and

biomechanics (Bhandarkar and Dhatrak, 2022). The three-

dimensional models of bones reconstructed by digital

orthopedics technologies, provide a means to establish

the spatial relationship between anatomical structures.

Shape statistical analysis allows that Elaborate

anatomical analysis of bone can be performed. F. Chen

Chen et al. (2018a) proposed a method to automatically

identify three subtypes of femur cavities by k-means

clustering analysis algorithm, on the basis of measuring

the angle between the coronal plane and the radius of the

femoral curvature (RFC) plane digitally. This method can

provide a possible solution for the scientific design of

Intramedullary (IM) nails, which will potentially

facilitate IM nail implantation and reduce

complications. Ghezlbash al. Ghezelbash et al. (2020)

reviews the relevant findings of in vitro and finite

element model studies on load-sharing in healthy, aged,

degenerate and damaged human lumbar motion segments.

They believed finite element model studies could improve

understandings of functional biomechanics of human

lumbar spine in normal and perturbed conditions.

2) 3D printing is an innovative technology for personalized

treatment. Y. Liu et al. Liu et al. (2020) have prepared 3D

printed polycaprolactone-hydroxyapatite (PCL-HA) porous

scaffolds with loaded heparan sulfate (HS). This PCL-HA-HS

scaffolds can accelerate the repairing of biological bone

defects with sound compression resistance and good

biocompatibility, which may be an effective biomaterial for

bone defect repair. The study of B. Liu et al. Liu et al. (2021)

showed that 3D printing technology can realize prosthesis

stabilization and new bone regeneration in treating bone

defects of limbs, to make patients achieve satisfactory limb

function recovery. For total knee arthroplasty surgery, 3D

printing navigation templates could predict prosthesis size

accurately and provide an effective and precise guidance of

osteotomy (Ding et al., 2017). 3D printing technology allowed

FIGURE 1
Intelligent technologies for precise orthopaedic.
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accurate surgical simulation using life-size models, to valuate

complex pelvic deformities precisely. This technology can

improve anatomical appreciation and make personalized

preoperative planning (Hughes et al., 2017), leading to

reduce the risk of neurovascular injury.

3) Accurate surgical operations are carried out by robotics. In

the past 5 years, the number of publications on orthopedic

robotics has increased from 2500 to 6500 (Bernardo and

Edoardo, 2021). Robot-assisted orthopedics surgeries can not

only improve the accuracy of the operations (Jamwal et al.,

2021), reduce operation time, radiation dose, and

complications (Ye and Chen, 2009), but also optimize the

learning curve (Nicolas et al., 2016; Kam et al., 2019; Tian

et al., 2019).

However, simple internal fixation, ligament reconstruction

or arthroplasty can only relieve pain of patients in short-term,

because of the complexity of the musculoskeletal system

(Neumann, 2010). The following problems limit the long-term

therapeutic efficacy of precise orthopaedic:

FIGURE 2
Comparison between construction projections and musculoskeletal injury repairs.

TABLE 1 Comparison between construction projections and musculoskeletal injury repairs.

Stage Construction projections Musculoskeletal injuries repairs

Scheme design Draft design Conception: Draw draft on basis of user requirements Surgical plan: Select surgical method according to the patient’s
condition, such as screw fixation, vertebroplasty, etc.

Parameters
measurement

Geographical mapping: Conduct field location-survey to get
engineering mapping, including geotechnical, hydrology, etc.

Physical parameters prediction: Predict physical parameters of
anatomical tissues, including bone mineral density, bone size,
anatomical angle, etc.

Construction plan Construction drawings: Develop detailed construction plan
according to the drafts and the mapping, including processes,
materials, tools, etc.

Pre-operation path planning: Calculate surgical path on basis of
predicted physical parameters and 3D reconstruction models,
such as the position of the screw, the osteotomy plane, etc.

Scheme
implementation

Preparation for
implementing

Foundation building: Lay the foundation of the new building Surgical channel establishment: Establish surgical channels
with the use of a surgical robot

Implementation Construction of the main structure: Conducting the main
structure on basis of construction plan, like reinforced
concrete structures, etc.

Surgical procedure: Implant bone tissue engineering scaffolds

Enhancements Decoration: Decorated the building according to the
functional needs of users

Rehabilitation: Achieve satisfied recovery by staged stimulus
action
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1) Current surgical planning paths are the optimal geometric

paths, but not the optimal bio-mechanical paths, which may

not result in the optimal functional recovery of patients. The

osseous tissue is not a uniform organization, which is mainly

made up of two types of structural tissues, namely cancellous

(trabecular) and cortical bone (Wubneh et al., 2018). The

geometric center and the density center of the femoral head

are different. Moreover, the density of different parts varies

each other (Ahrend et al., 2021). Johns Hopkins University’s

Vijayan R. Vijayan et al. (2019) reported an algorithm for

automatic spinal pedicle screw planning using Active Shape

Model (ASM) registration. But the manual path drawn by

doctor is different with the automatic path calculated by the

ASM algorithm. The fact that the clinical experiences, like

predictions of bone mineral densities of different parts, may

be considered into the manual preoperative planning by

surgeons can result in the differences.

2) The fact that traditional bone grafts and bone substitute

materials cannot provide signals for endogenous repair

(Loebel and Burdick, 2018), can cause failure to induce

bone formation or promote angiogenesis. Therefore,

traditional orthopedics treatments may provide unsatisfied

musculoskeletal rehabilitations. Bone grafts with shape

memory effect, stimuli responsiveness, can maximize the

new bones forming and the neovascularization, which are

of great significance for improving the recovery of patients.

As shown in Figure 2, similarly to the construction process of

a building, MLIT for musculoskeletal injuries consists of three

stages: scheme design, scheme implementation, and

enhancements (Table 1).

Therefore, the multi-layer intelligent technologies (MLIT),

including smart materials, variable structures, and intelligent

therapeutic planning, which are on basis of the

musculoskeletal biomechanical characteristics and the

rehabilitation model of stimulus implants, will be the main

trend of precise orthopaedic. Specifically, three bottlenecks

must be broken through to achieve satisfied recovery:

scientific path should be planned and built by AI algorithms,

bioactive implants should be manufactured with smart materials,

and personalized channels should be established by variable

structures. This article will discuss the feasibility of satisfied

and effective musculoskeletal injury recovery in the following

aspects:

1) Scientific surgical path can be planned and built by through

AI technology

2) Responsive bioactive implants made through 3D printing

technology can provide signals for endogenous repair

3) Personalized surgical channels can be established through

intelligent robotics precisely

2 Status of multi-layer intelligent
technologies

2.1 Scientific surgical path can be planned
and built by through AI technology

Surgical placement and appropriate implant fixation had

equal importance as the inherent implant characteristics in

maintaining long-term implant stability (Li et al., 2019).

Biomechanical surgical path must be planned on basis of the

pathogenesis of musculoskeletal diseases, to reach the satisfied

musculoskeletal injury recovery. This requires physical

parameters to be predicted precisely, to establish build

kinesiology models of musculoskeletal system. In the past

decade, AI technologies has made dramatic advances on

FIGURE 3
AI in surgical planning.
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Orthopaedic in the following four aspects (Zhou et al., 2020a;

Lopez et al., 2021a) (Figure 3): automatic reconstruction, physical

parameters predicting, preoperative planning and intraoperative

images registration.

2.1.1 Automatic reconstruction algorithm
In the early study, threshold segmentation or seed growth

combined with manual repair are often used to segment medical

images like CT, MRI etc. This semi-automatic method is very

inefficient. AI technology, especially the U-net (Li et al., 2017;

Falk et al., 2019), has promoted the rapid development of medical

image segmentation. In general, variants of the U-net can be

divided into four categories (Figure 4): ① Design encoder or

decode structures. Cascade decoder conducted more effective

decoding of hierarchically encoded features (Liang et al., 2019).

The encoder of TernausNet removed the fully connected layers

and replace them with a single convolutional layer of

512 channels that serves as a bottleneck central part of the

network, and the decoder of TernausNet transposed

convolutions layers that doubles thesize of a feature map

(Iglovikov and Shvets, 2018). TernausNet was helpful to

prevent over-fitting. ②Optimize connection modes of

encoding module and decoding module. MNet proposed a

skip connection method to balance the spatial representation

inter axes via learning (Dong et al., 2022); UNet++ redesigned

skip connections to exploit multiscale features in image

segmentation (Zhou et al., 2020b).③ Set new loss function.

Loss function is a method to measure the quality of model

prediction, which is of course important to an AI model. Dice

loss is a common loss function for medical image segmentation.

However, it may cause oscillation during training when the

prediction is close to ground truth (Chen et al., 2018b). Cos-

Dice loss function was used in W-net to make the network more

stable (Chen et al., 2018b). The adjustable penalty weights of the

misclassified voxels were used in dice coefficient to adapt to

unbalanced class frequency (Huang et al., 2018). Loss functions

based on the Tversky index (Salehi et al., 2017; Abraham and

Khan, 2018; Huang et al., 2018; Das and Zhang, 2020)were used

to address the issue of data imbalance. ④Import attention

mechanism. Swin Unet was a semantic segmentation of brain

tumors in MRI Images using a swin transformer encoder which

can extract features at five different resolutions by utilizing

shifted windows for computing self-attention (Hatamizadeh

et al., 2021). RA-UNet proposed a 3D hybrid residual

attention-aware segmentation method to precisely extract the

liver volume of interests (VOI) and segment tumors from the

liver VOI (Jin et al., 2018). TransUNet was a variant of U-net

using a transformer encodes which tokenized image patches from

a convolution neural network (CNN) feature map as the input

sequence for extracting global contexts (Chen et al., 2021). UNEt

TRansformers (UNETR) utilized a transformer as the encoder to

learn sequence representations of the input volume and

effectively capture the global multi-scale information

(Hatamizadeh et al., 2022). Particularly in 2021, the nn-Unet

proposed by Isensee F. et al. Isensee et al. (2021) at Heidelberg

University in Germany surpasses most existing approaches on

23 public datasets used in international biomedical segmentation

competitions. Variants of the U-net or other deep learning

algorithms are widely used in segmentations for pelvic, spine,

femur, knee arthroscopy and other orthopedics fields (Zeng et al.,

FIGURE 4
Variants of U-net. (A). Cascade decoder: A Universal Decoding Method for Biomedical Image Segmentation (Liang et al., 2019). (B). MNet:
Rethinking 2D/3D Networks for Anisotropic Medical Image Segmentation (Dong et al., 2022). (C). A Novel Focal Tversky loss function with improved
Attention U-Net for lesion segmentation (Abraham and Khan, 2018). (D). Swin UNETR: Swin Transformers for Semantic Segmentation of Brain
Tumors in MRI Images.
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2017; Balagopal et al., 2018; Kolařík et al., 2019; Isensee et al.,

2021).

2.1.2 Physical parameters predicting method
Extraordinarily important is that AI technology perform well

in predicting physical parameters of organizations. In 2019, a

review by Rogers M.A. Rogers and Aikawa (2019) of Harvard

University in the United States showed that AI technology can

analyze the cardiovascular calcification on quantitatively large

data sets. In 2020, Black K.M. et al. Black et al. (2020) of the

University of Michigan automatically detected kidney stones

composition from digital photographs of stones by ResNet-10,

and precisions for each stone type were above 75%. In 2021, the

study of Lopez F. et al. Lopez et al. (2021b) showed that the

DCCN approach is the best method with a precision of 98% for

four kidney stones classification with in-vivo endoscopic images.

In 2021, Molnar D. Molnar et al. (2021) et al. of Gothenburg in

Sweden proposed a Crop-Net for fat prediction, with a precision

of 99.4%.

In the field of orthopedics, AI technology can predict bone

density accurately (Figure 5). Hsieh C.I. from Chang Gung

Hospital in Taiwan (Hsieh et al., 2021) proposed the Dual-

energy X-ray A bsorptiometry (DXA)to predict bone mineral

density and fracture risk, and the accuracy of hip osteoporosis

prediction reached 95%. In 2020, the BMDCNN is applied to

predict the bone mineral density (BMD) of the lumbar spine by

Yasaka K. Yasaka et al. (2020) from the University of Tokyo, and

the internal and external AUC of osteoporosis AUC

0.965 and 0.970.

2.1.3 Preoperative planning
Preoperative planning is an essential part of Clinical Decision

Support System(CDSS). Screw placement position (Cai et al.,

2019), implants size (Dong et al., 2021; Polce et al., 2021),

osteotomy morphology are three common preoperative

planning needs in Orthopaedic surgery (Figure 6). Target

reconstructions, landmark/anatomical components

recognization (Cai et al., 2019; Siemionow et al., 2021),

physical parameters (bone mineral density (Caprara et al.,

2021), morphological parameters (Soodmand et al., 2019)),

finite element analysis (Zheng et al., 2018a; Caprara, 2021),

personal information and other risk constraints may be

possible inputs for preoperative planning. AI technologies can

play a role in the processing of planning inputs. AI applications

in bone reconstructions and physical parameters predictions

have been discussed in Section 2.1.1 and 2.1.2. It is well-

attended to predict how bone adapts to different loads in

surgical planning (Jordi et al., 2022). FE is commonly

performed in biomechanics analysis. It is necessary to build

statistical shape models (SSM) based on a set of landmark

FIGURE 5
Physical Parameters Predicting (Hsieh et al., 2021). (A). Bone mineral density prediction of hip (Yasaka et al., 2020). (B). Bone mineral density
prediction of lumbar spine. (C) automatically detect kidney stones composition (Black et al., 2020). (D). cardiovascular calcification (Dhivya et al.,
2015).(E). Epicardial adipose tissue prediction (Molnar et al., 2021).
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points (Zheng and Yu, 2017) for FE analysis. An SSM built by the

training dataset is a set of annotated images (Zheng and Yu,

2017). AI technologies make the landmarks/anatomical

components recognization automatically (Siemionow et al.,

2021). Nathan proposed a deep learning method based on the

PointNet++ architecture for biomechanical modeling of facial

tissue deformation in orthognathic surgical planning (Lampen

et al., 2022). Xiao Xiao et al. (2021) proposed an estimating

Reference Bony Shape Models for Orthognathic surgical

planning using 3D point-cloud deep learning. Due to the

incompleteness of information and uncertainty of healing

prediction, preoperative planning dose not have a rapid

development like reconstruction technologies.

2.1.4 Intraoperative registration
The accuracy of robotic assisted surgery mainly depends

on the space registration. The 2D-3D registration is

commonly used in spinal surgery or pelvic surgery and the

3D-3D registration is commonly used in TKA (total

knee arthroplasty) surgery. There are always tow workflows

of 2D-3D registration (Figure 7): 1) Projection based 2D-3D

registration. Digitally reconstructed radiographs (DRR) are

generated from CT images, and then mutual information,

normalized cross correlation, sum of square differences or

other similarity measurements are used to calculate the

relationship between X-ray images and DRRs (Guo et al.,

2019). 2) Reconstruction based 2D-3D registration. 3D point

clouds are reconstructed from 2D x-ray or ultrasonic images.

Transformation matrix are calculated through tow 3D point

clouds (Wang et al., 2018). The intraoperative point clouds of

knee are commonly collected by probes with markers in TKA

surgery. The preoperative and intraoperative point clouds are

matched through ICP or CPD algorithms.

Due to the sparsity inconsistency of point clouds between

preoperative images and intraoperative images, deformation

differences caused by different parameters of different

imaging devices, the accuracy of surgical registration

methods has been paid a great attention, but not yet been

well solved. Registration methods based on deep-learning (Lu

et al., 2021) have shown be capable of addressing the

FIGURE 6
Preoperative planning.
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limitations of conventional registration methods (Figure 7),

as they have a better performance in predicting deformations,

learning 3D point clouds features, generating DRRs and

optimizing registration strategy. Unsupervised learning

(Chen et al., 2022) estimate voxel-to-voxel deformable

transformation by maximizing image similarity (Fan et al.,

2019). Weakly-supervised regularization loss is able to map

thecomplex appearance to a common space (Blendowski

et al., 2021). Self-supervised anatomical embedding (SAM)

(Yan et al., 2022) is capable of computing dense anatomical/

semantic correspondences between two images at the pixel

level. Feature learning methods use the deep neural network

to learn a robust feature correspondence search (Huang et al.,

2021a), which includes a local PPF feature using the

distribution of neighbour points (Deng et al., 2018), a

rotation-invariant hand-craft feature (Gojcic et al., 2019),

a global features (Qi et al., 2017) etc. There are three

registration strategies using AI (Huang et al., 2021a): ICP-

based variations, graph-based, GMM-based and semi-

definite registration methods. Deep Closest Point(DCP)

uses deep features to estimate correspondences to avoid

spurious local optima of most ICP algorithms (Wang and

Solomon, 2019). The surface registration are solved

effectively by transforming the registration problem into a

graph matching problem (Le-Huu and Paragios, 2017). For

Gaussian mixture models (GMM), DeepGMR (Yuan et al.,

2020) uses a neural network to learn pose-invariant point-to-

distribution parameter correspondences. DRRs are simulated

by algorithm which may differ from the real X-ray images. To

improve the quality of DRRs, GAN-based training, material

decomposition, and incremental learning are proposed. A

GAN-based disentanglement learning framework (Han et al.,

FIGURE 7
Tow workflows of 2D-3D Registration and AI in Registration.
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2021) can transfer the rib structural priors from DRRs.

DeepDRR is a framework for DRRs embedding material

decomposition and scatter estimation in 3D and 2D,

combined with analytic forward projection and noise

injection (Unberath et al., 2018). Incremental learning can

improve continuously acquire new knowledge by

continuously acquiring new knowledge (Jiang et al., 2021).

2.2 Responsive bioactive implants made
through 3D printing technology can
provide signals for endogenous repair

Autograft, allografts and metal-based material scaffolds are

commonly used in the clinical treatment of bone defects.

However, chronic inflammation, immune rejection or stress

shield and inflammation have hindered their clinical application.

New bioactive responsive implants made through 3D printing

technology and adaptively expanded, which can provide signals

for endogenous repair, is highly necessary to promote bone

regeneration (Figure 8). Bioactive materials, especially bioactive

polymers high osteoinduction, excellent angiogenesis,

biocompatibility and unlimited size, can interact with proteins,

cells or tissues in vivo and cause biological reactions.

2.2.1 Responsive bioactive materials can
promote the reconstruction of organizations

Bioactive materials can guide bone regeneration (Mistry

et al., 2015) (Figure 9). Dhivya S.et al. Dhivya et al. (2015)

explored a nanoparticulate mineralized collagen

glycosaminoglycan scaffold that induces healing of critical-

sized rabbit cranial defects. These inorganic nano materials

delivery of bioactive agents. However, their widespread

employment may be reduced due to the possible toxicity and

the lack of biodegradability (Makvandi et al., 2020).

Polymer materials consisting of inorganic nanomaterials and

organic polymer materials, with high ductility, biocompatibility and

biodegradability, are widely used in bone repair scaffolds

(Figure 11). Their specific structure and surface properties can

be specifically recognized and interact with target biomolecules.

Makvandi P.et al. Makvandi et al. (2020) developed a graphene

oxide (GO)–Chitosan (CS)–Hyaluronic acid (HA) based bioactive

composite scaffold containing an osteogenesis-inducing drug

simvastatin (SV). The elongated morphology of the cells after

FIGURE 8
Bioactive materials demonstrating the osteoblast migrations. (A). In vitromineralization on mCT scanning of BMSCs cultured on Col-GAG and
MC-GAG scaffolds in the absence and presence of BMP-2 (Makvandi et al., 2020) (B). In vitromineralization onmCT scanning of BMSCs cultured on
Col-GAG and MC-GAG scaffolds in the absence and presence of BMP-2 (Ren et al., 2016) (C). X-ray analysis of new bone formation in CM-ALs (0%)
and CM-ALs (10%) implanted groups (Wu et al., 2017). (D). Micro-CT images of the artificial defects at weeks 2 and 4. (Chang et al., 2016) (E).
Morphology of cultured HOB on (A,B) BCP, (C,D) BCP/PCL and (E,F) BCP/PCL–silk scaffolds after 2 and 24 h (Roohani-Esfahani et al., 2012)
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48 h incubation has demonstrated the osteoblast migration using

the SV loaded GO–CS–HA scaffolds. A

collagen–hydroxyapatite(HA) scaffold (Unnithan et al., 2017)

with a degree of interconnectivity of 99%, can not only deliver

biological factors, promote stem cell differentiation and ossification

(Thitiset et al., 2013; Villa et al., 2015), but also theoretically be

applied in a load bearing application when combined with

mechanical fixation (Zhang et al., 2018). Mouse BMSCs isolated

from the femur and tibia of CD1 wild type animals, were seeded

dropwise on to the top of either the Col–HA scaffold. Cells well were

attached on the scaffolds after 12 h of seeding. In the study of in vivo

bone formation in amouse calvaria defect, scaffolds were implanted.

After 3 weeks of implantation, calvaria containing critical size

defects filled with BMSCs combined with either the Col–HA

scaffold in X-ray images (Unnithan et al., 2017). The research of

Ren X. et al. Ren et al. (2016) demonstrated that a nanoparticulate

mineralized collagen glycosaminoglycan scaffold showed more

efficient mineralization of MC-GAG scaffolds than non-

mineralized Col-GAG scaffolds in either the histologic analyses

or mCT scanning images. Wu H. et al. Wu et al. (2017) has

fabricated a chitosan-based microsphere delivery system to

controlled release of alendronate (AL), which can release AL for

up to 30 days. CM-ALs (10%) scaffolds showed better performance

in large-sized bone defects repairs than CM-ALs (0%). The new

bone increasing ratio (NBIR) of HLA/HA-βTCP samples was

1.78 times higher than the blank group at week 2 (Chang et al.,

2016). The study of Roohaniesfahani S.I. et al. Roohani-Esfahani

et al. (2012) showed that, BCP/PCL scaffolds with silk layer is more

favorable than BCP/PCL scaffolds with collagen layer in mechanical

properties and biological properties.

More importantly, responsive bioactivematerials, especially shape

memory polymers (SMP) (Figure 10), can remember the temporary

shape and return to the original shape under the condition of the

external stimuli, like heat, pH, electricity, magnetic field, etc (Zhang

et al., 2012; Rezwan et al., 2006; Zheng et al., 2018b). This specific

shape memory could simplify complex transplant procedures, with

excellent chemical stability, biocompatibility and biodegradability,

which can stimulate specific cellular responses. Deng Z.et al. Deng

et al. (2016) designed and synthesized a series of shape memory

copolymers with electroactivity, super stretchability and tunable

recovery temperature based on poly(e-caprolactone) (PCL) with

different molecular weight and conductive amino capped aniline

trimer. They proved that they can enhance myogenic

differentiation from C2C12 myoblast cells. Xie R.et al. Xie et al.

(2017) prepared a novel polyurethane or hydroxyapatite based SMP

porous foam for the treatment of load-bearing bone defects by gas

foaming. The foam can match the trabecular bone, possess the

feasibility of minimally invasive delivery. And it can also overcome

the disadvantages of traditional polymer foams in terms of insufficient

mechanical properties, inadequate pore structures, low

FIGURE 9
Materials with biodegradability. (A). Degradation process (Li et al., 2020). (B). SEM images of printed HSP bioceramic scaffolds via core/shell
nozzle of 16/22 18/23 and 20/27 and printed SSP bioceramic scaffolds as the control (Luo et al., 2015). (C). A functionally graded scaffold (Kawai et al.,
2018). (D). Mathematical modeling of total strain energy for defects implanted with the Sr-HT-Gahnite scaffold at 12 months postimplantation (Li
et al., 2019).

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Guo et al. 10.3389/fbioe.2022.1016598

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1016598


biocompatibility and inconvenience in operation. The rabbit femoral

defect model (Xie et al., 2018) demonstrated that a SMP foam bone

scaffold could play an important role in promoting neovascularization

and bone remodeling. A shape memory PCL porous scaffold was

made from photocrosslinking (ε-caprolactone) (PCL) polydiacrylate
through SCPLmethod (Zhang et al., 2014), and it evidently promoted

the adhesion and proliferation of osteoblasts. SMP scaffolds show

strong self adaptability, as evidenced by the following facts. One of

these is that smaller SMP scaffolds than bone defect size can match

bone defect boundary after shape expansion (Zhang et al., 2012; Xie

et al., 2017), the other is that larger SMP scaffolds can promote the

inward growth of bone, due to the binding force with bone tissue

(Zhang et al., 2014; Bao et al., 2016).

2.2.2 3D bioprinting technology can personalize
implants

Three-dimensional printing technologies that can fabricate the

microstructure of materials precisely, have shown distinct advantages

to personalize implants in bone tissue engineering (Luo et al., 2015). In

clinical medicine, 3D printing technologies can be divided into two

stages (Figure 11): one is conventional 3D printing objects without

cellular information exchange, like surgical guiding paltes (Butscher

et al., 2013), prosthesis (Xu et al., 2013; Turnbull et al., 2018); the other

is bioactive 3D printing objects can provide signals for endogenous

repair, which particularly is of great significance to bone regeneration

and vascular reconstruction, such as degradable scaffolds (Xu et al.,

2019a), living cell printing (Kolesky et al., 2014), and stimuli-

FIGURE 10
Shape memory polymers in bone tissue engineering. (A) t Fixing of a temporary shape of a 3D-printed PLA/HA scaffold through compression
(Senatov et al., 2016) (Xie et al., 2017). (B). Schematic of body-temperature responsive SMPU/imHA foam forminimally invasive delivery in application
of bone regeneration (Xie et al., 2017). (C). Schematic of self-adaptive SMP foam as a bone scaffold for bone regeneration (Xie et al., 2018). (D). Self-
adaptive process of polydopamine-coated shape memory porous PCL scaffolds (Zhang et al., 2014). (E). Schematic illustration showing the
application of shape-memory-capable scaffold of the Hap/PLMC naofibers (Xie et al., 2018).

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Guo et al. 10.3389/fbioe.2022.1016598

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1016598


responsive printingmaterials with programmable behavior (Gladman

et al., 2016) (Qi et al., 2014).

Degradable 3D printing scaffolds can gradually release the

occupied space with the recovery of the damaged part

(Figure 7.C) (Li et al., 2020). Kawai T. et al. Kawai et al.

(2018) of Stanford University designed and 3D printed a

functionally graded scaffold (FGS) made of

polycaprolactone (PCL) and b-tricalcium phosphate

(b-TCP) to treat Osteonecrosis of the femoral head. The in

vivo degradation rate and the bone ingrowth ratio of the

scaffold is significantly higher than the empty-tunnel

group. Li et al. Li et al. (2019) at University of Sydney

developed a 3D-printed Sr-HT-Gahnite scaffolds implanted

into critical-sized segmental defects in sheep tibia. Compared

with bone autografts, the scaffolds possessing both

osteoconductive and osteoinductive properties, can induce

substantial bone formation and defect bridging. Spiral

fractures were observed in the study. The fractures may

have a negative effect on the recovery. Thus, implants

should be fixed at appropriate position.

2.2.3 Bio implants through bio-inks can migrate
in planned direction

Bioinks is a formulation of cells suitable for processing by an

automated biofabrication technology that may also contain

biologically active components and biomaterials (Groll et al.,

2018). Biomaterials may consist of cells, collagen, and other

bioactive ingredients; Auxiliary biomaterials, such as gelatin,

alginate hydrogel, carbomer glue, etc, can be used to improve

mechanical strength of implants, maintain the shape of the

printed object, and ensure the adhesion and survival rate of cells.

In 2015, Kang H.W. et al. Kang et al. (2016) of the Wake Forest

Institute for Regenerative Medicine developed a system that deposits

cell-laden hydrogels together with synthetic biodegradable polymers

that impart mechanical strength. The printed mandible, skull,

cartilage and skeletal muscle can incorporate multiple cell types at

precise locations to recapitulate native structure and function. In

2016, Zhang Y. S. Zhang et al. (2016) of Harvard Medical School

proposed a novel hybrid strategy based on 3D bioprinting to fabricate

endothelializedmyocardium. Endothelial cells controlled anisotropy,

can gradually migrate towards the peripheries of the microfibers.

FIGURE 11
Development of tissue engineering and 3D bioprinted tissue product. (A). The ITOP system (Groll et al., 2018).(B). Ventricles (Zhang et al., 2016).
(C). Thyroid cartilage (Van Belleghem et al., 2020).
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With the continuous upgrading of material technology,

biological 3D printing strategy is constantly updated. In 2019,

Van Belleghem S.et al. Van Belleghem et al. (2020), from the

University of Maryland College Park, proposed a 3D printing

strategy for dual bioinks. The graft consisting of both degradable

and nondegradable parts, providing long term mechanical integrity

and shape retention. A pre-programmed responsive bioactive

materials can be used in various application where the human

intervention is not possible. This technology may lead to satisfied

repair. The materials which responds to external stimuli is called 4D

printing (Tibbits, 2014). A porous PLA/HAP scaffolds can stand up

to three compression-heating-compression cycles without

delamination. The scaffolds can narrow the cracks during

heating, which may resulted in ‘self-healing’. The significant

changes of post implantation have higher requirements to ensure

the stability during deformation process of the implants, and that the

deformation not cause additional damage to the surrounding tissues.

2.3 Personalized surgical channels can be
established through intelligent robotics
precisely

In clinical, there are linear channels established, due to the

limitation of the structure of instruments (Nicolas et al., 2016;

Zhang et al., 2019). Fracture or scoliosis treatments are great

different between children and the elderly, because children have

better self-healing in growth. Linear channels may be not meet the

biomechanics needs, especially for the elderly. As smart materials and

variable structures developed, such as memory alloys, concentric tube

structures, etc., curved-trajectory, with less trauma and better

therapeutic effect, attracts the researchers’ great attention

(Figure 12). Moreover, intelligent sensing technology and

intelligent operation technology also make the surgery more

efficiency.

2.3.1 Personalized surgical channels can be
established through variable structures

Personalized surgical channels are linear channels, curved-

channels or linear- curved mixed channels based on the status of

patients. In 2011, Watanabe H. Watanabe et al. (2011) et al.

developed a steerable drill for ACL reconstruction to construct an

arbitrary trajectory of a bone tunnel. Gilbert H. Gilbert et al.

(2014) adopted a needle-sized tentacle-like robot that require

access through constrained paths in transnasal skull base surgery.

In 2012, Gosline, A. H. et al. Gosline et al. (2012) manufactured a

steerable curved concentric tube robot that can enter the heart

through the vasculature, using a unique metal MEMS process.

Since 2014, Alambeigi F. of Johns Hopkins University et al.

Alambeigi et al. (2014), Alambeigi et al. (2016a), Alambeigi et al.

(2016b); Wilkening et al., 2017; Bakhtiarinejad et al., 2020) has

researched the novel steerable drill using a continuum dexterous

FIGURE 12
Surgical channels constructed by robot. (A). Straight needle trajectory planning for radiofrequency ablation and microwave ablation of liver
tumors (Zhang et al., 2019). (B). Linear surgical channel for spinal screw internal fixation (Nicolas et al., 2016). (C). A “Steerable Drill” for ACL
Reconstruction to Create the Arbitrary Trajectory of a Bone Tunnel (DePhillipo et al., 2018). (D). Endoscopic Add-on Stiffness Probe (Gilbert et al.,
2014). (E). A less-invasive surgical workstation to treat osteolytic lesions behind a well-fixed acetabular implant (Bakhtiarinejad et al., 2020)-
(Alambeigi et al., 2014).
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manipulator (CDM), and carried out experiments on both

simulated and human cadaveric bones. Bakhtiarinejad M.

Bakhtiarinejad et al. (2020) studied the use of curved drilling

technique for treatment of osteonecrosis of femoral head. The

biomechanical study demonstrated that a novel robot-assisted

curved core decompression (CCD) technique is introduced to

provide surgeons with direct access to the lesions causing

minimal damage to the healthy bone. The progress of bistable

structure, shape memory polymer and intelligent variable

structure promoted the adaptability of surgical robot, which

enable the biomechanical channels for orthopaedics.

2.3.2 Intelligent sensing technology can lead to
precise trajectory in complex environment

Unlike industrial scene, the intraoperative environments are

always complex. The robot cannot perceive, explain and understand

the surrounding environment as well as surgeons is one of the key

factors that the robotics ca not perform surgery automatically.

Deformation predicting and tracking, and haptic feedback are

tow common intelligent sensing technologies in surgical robotics

(Figure 13). Shademan Shademan et al. (2016) demonstrated in vivo

supervised autonomous soft tissue surgery which can suture a

wound automatically. Deep reinforcement learning policies were

used in Pattern Cutting task to induce tension in the material as

cutting proceeds (Thananjeyan et al., 2017). Force sensors were

developed to estimate interaction forces in robotic surgery (Kesner

and Howe, 2011; Marban et al., 2018). And a Semi-Supervised Deep

Neural Network Model was applied to understand the operation

pattern (Marban et al., 2018).

2.3.3 Robotic skill learning can improve the
automation level of surgical robotics

The surgical robotics in clinical are commonly semi-automatic.

They can perform intraoperative actions based on the double closed-

loop control of force position mixing in puncture (Wells et al., 2016),

cochlear implant (Wang et al., 2020), fracture reduction (Lei et al.,

2019) or other surgeries. However, it is impossible to dynamically

adjust the task strategy according to the actual situation (Grahamet al.,

2008; Zhang, 2018). Skill learning (Silver et al., 2016; Mahler et al.,

2019) make robots execute task which difficult by traditional control

methods (Levine et al., 2016; Sun et al., 2017; Mandlekar et al., 2018),

like pouring water and screwing screws, automatically.

3 Future research directions for
satisfied repair of musculoskeletal
injuries

The multi-layer intelligent technologies (MLIT) offer

possibilities to achieve satisfied repair of musculoskeletal

FIGURE 13
Intelligent Sensing Technology. (A) in vivo supervised autonomous soft tissue surgery (Shademan et al., 2016) (B). Deep reinforcement learning
policies were used in Pattern Cutting task (Thananjeyan et al., 2017). (C). Force sensors in robotic surgery (Kesner and Howe, 2011) (D). Semi-
Supervised Deep Neural Network Model (Marban et al., 2018).
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injuries. However, there are still no wide range of clinical

applications, because of the following reasons: 1) the

pathogenesis like the femoral head necrosis or the spinal

tumor, the healing process like the ligament or the bone

repair, and the biomechanical or kinematics models are not

clarified in detail. 2) the real environment is hard to simulate.

As there are differences between the simulation environment and

the real environment, further verification of some research

results should be implemented. 3) some theoretical designed

surgical plan cannot be realized as expected. Further research will

be needed for satisfied repair of musculoskeletal injuries:

3.1 The research on the pathogenesis or
the healing process can be more effective
through new AI technologies

3.1.1 Biomechanical models based on multi-
physical parameter prediction will be built

Current biomechanical models are always based on 3D

reconstructed models. However, morphology and parameters of

the ligament, meniscus (Antico et al., 2020) and other tissue are

always artificially devised (Viris et al., 2016), and the same density of

different bone tissues like cortical bone, cancellous bone and

trabecular bone structures are commonly set in biomechanical

analysis. It is said that kinematics simulations are greatly

different from real scene (Bell et al., 1996). To build real

biomechanical models, physical parameter such as the bone

density, ligament elastic modulus, must be predicted precisely.

Although some physical parameters predicting methods are

proposed, which are discussed in Section2.1.2, lots of parameters still

cannot be predicted for the lack of datawith high-quality labels. Standard

labeling procedure, and cross check of data labels are necessary.

3.1.2 Causal relationship between symptoms and
physiological factors will be discovered by
causal discovery

R Ganz (Siebenrock et al., 2010) proposed a surgical plan

which can retain the vascular supply of the femoral head, to

guarantee the oxygen and nutritional supply to the cells (Kramer

et al., 2009). However, excessive vascular supply may be not

conducive to recovery. Further research on the pathogenesis or

the healing process for femoral head necrosis, especially the

causality, but not only the correlation between the symptoms

and physiological factors should be deserved. Now causal

discovery, which can promote the research of disease

mechanism, has been applied in hippocampal function

analysis (Mannoor et al., 2013; Sanchez-Romero et al., 2018).

FIGURE 14
Research directions for satisfied repair of musculoskeletal injuries: 1) Smart implants. (A)A bionic ear (Mannoor et al., 2013). (B). An odor-
perceptive nose-like hybrid (Jodat et al., 2020). (C). Smart prosthesis (Zimmerbiomet, 2021) 2)AI technology optimize the bioprinting process. (D).
Example neural network for process optimization in three-dimensional bioprinting (Ruberu et al., 2021). (E). FCNNs for multi-objective optimization
of drop-on-demand (DOD) bioprinting (Shi et al., 2019). 3)Advanced robots. (F). Tissue engineering robot with light activated deformable wing
(Xu et al., 2019b). (G). Variable-stiffness tensegrity structures (Zappetti et al., 2020). (H). An ultrasound-controlled actuator for targeted drug delivery
(Lee et al., 2020). (I). Acoustic powering and magnetic steering for actuating and navigating microrobots (Aghakhani et al., 2020).
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Causal discovery can be a useful theory for the research on the

pathogenesis or the healing process.

3.2 Intelligent technologies will make add
the functionality of implants and make the
implants manufacture process more
efficiently

3.2.1 Implant with intelligent sense will provide
real recovery status

Implants bioprinting combined with intelligent sense is also a

research hotspot (Figure 14). In 2013, Mannoor M.S.et al. Mannoor

et al. (2013) generated a bionic ear via additive manufacturing of

biological cells with structural and nanoparticle derived electronic

elements. In 2019, Jodat, Y.A. et al. Jodat et al. (2020) designed an

odor-perceptive nose-like hybrid, with 3D cartilage-like tissue

constructs. It is composed of a mechanically robust cartilage-like

construct and a biocompatible biosensing platform. Patients can not

recover only by surgery without rehabilitation training as the human

body systems has changed after operations. Doctors can obtain the

patient’s status through regular follow-up. These data were often

temporary and fragmented, and could not truly reflect the patient’s

postoperative status. The smart prosthesis persona IQ of Zimmer

Biomet has passed FDA certification (Zimmerbiomet, 2021). Persona

IQ can not only implant in patients like the traditional prosthesis, but

also record the range, speed and other index of gait, for assessing

postoperative recovery progress. Implant with intelligent sense will

provide real recovery status for changing rehabilitation plans.

3.2.2 Intelligent models 3D/4D printing process
will optimize the manufacturing process

The performance of 3d/4d printedmatter is not only related to its

own physical, mechanical and biological properties, but also affected

by the process parameters of the printing process (Naghieh et al.,

2020). Study of Zheng W. et al. Zheng et al. (2021) showed the

following facts: ① Higher pressures caused instability of extruded

biomaterial, and subsequently, poor printability; ②Fell under or

above the range of nozzle speeds caused poor strand printability;③

The more viscous the biomaterial, the more appropriate printability

could be achieved. Due to the complex conditions, it is hard to build

an accuratemathematical printingmodel. Data drivenAI technology

(Shi et al., 2019; Yu and Jiang, 2020; Ruberu et al., 2021) has obvious

advantages in the multi-objective optimization of biological printing

process (Figure 14).

3.3 Advanced materials and variable
structures will improve the treatment
performance of robotics

As the physiological state of patients are different and

changing (Ionov, 2018), such as temperature, pH (Ca2+

concentration), to achieve satisfied repair in long-term

therapy, personalized surgical channels should be conducted

(Xu et al., 2019b; Zappetti et al., 2020; Wang et al., 2022) or

the endogenous repairs should be guided by the micro nano

robots (Aghakhani et al., 2020; Lee et al., 2020). Combining the

improvement of intraoperative operation skills and the providing

signals for postoperative repair, the treatment effect can be

improved through robots.

4 Conclusion

Satisfied recovery, a key goal of precise orthopaedics, has

became possible, as AI technology in orthopaedics has

progressed in the following apsects: physical parameters

can be predicted precisely through AI technology,

bioactive implants made through 3D printing technology

can provide signals for endogenous repair, and

personalized surgical channels can be established through

intelligent robotic technology. However, the multi-layer

intelligent technologies (MLIT) has not been used widely.

With further study on biomechanical models for multi-

physical parameter prediction, stimulus response

mechanism of bioactive implants, smart implants,

intelligent modeling of 3D/4D printing process and

variable structure in long-term therapy (Senatov et al.,

2016; Lin et al., 2019; Su et al., 2019), satisfied repair may

be achieved by the multi-layer intelligent technologies

(MLIT).
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