
Redox Biology 58 (2022) 102520

Available online 1 November 2022
2213-2317/© 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Redox phospholipidomics analysis reveals specific oxidized phospholipids 
and regions in the diabetic mouse kidney 

Allison McCrimmon a, Sydney Corbin a, Bindesh Shrestha b, Gregory Roman b, Suraj Dhungana b, 
Krisztian Stadler a,* 

a Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, 70808, LA, USA 
b Waters Corporation, 34 Maple St, Milford, MA, USA   

A R T I C L E  I N F O   

Keywords: 
Oxilipidomics 
Lipid peroxide 
Phospholipids 
Diabetic kidney disease 
Desorption electrospray ionization 
Oxidative stress 

A B S T R A C T   

While it is generally accepted that oxidative stress impacts the diabetic kidney and contributes to pathogenesis, 
there is a substantial lack of knowledge about the molecular entity and anatomic location of a variety of reactive 
species. Here we provide a novel “oxidative stress map” of the diabetic kidney – the first of its kind, and identify 
specific, oxidized and other reactive lipids and their location. We used the db/db mouse model and Desorption 
Electrospray Ionization (DESI) mass spectrometry combined with heatmap image analysis. We analyzed a 
comprehensive array of phospholipid peroxide species in normal (db/m) and diabetic (db/db) kidneys using 
DESI imaging. Oxilipidomics heatmaps of the kidneys were generated focusing on phospholipids and their po
tential peroxidized products. We identified those lipids that undergo peroxidation in diabetic nephropathy. 
Several phospholipid peroxides and their spatial distribution were identified that were specific to the diabetic 
kidney, with significant enrichment in oxygenated phosphatidylethanolamines (PE) and lysophosphatidyletha
nolamine. Beyond qualitative and semi-quantitative information about the targets, the approach also reveals the 
anatomic location and the extent of lipid peroxide signal propagation across the kidney. Our approach provides 
novel, in-depth information of the location and molecular entity of reactive lipids in an organ with a very 
heterogeneous landscape. Many of these reactive lipids have been previously linked to programmed cell death 
mechanisms. Thus, the findings may be relevant to understand what impact phospholipid peroxidation has on 
cell and mitochondria membrane integrity and redox lipid signaling in diabetic nephropathy.   

1. Introduction 

Oxidative stress has long been recognized as one of the key players in 
the pathogenesis of diabetic kidney disease [1–4]. Much of the prior 
focus was placed on the superoxide radical anion, as the primary form of 
reactive oxygen species (ROS) produced mostly by mitochondria [5,6] 
or NADPH oxidases [7]. Indeed, overproduction of mitochondrial su
peroxide as a major form of oxidative stress and a primary event in 
diabetic/chronic kidney disease has been postulated [6,8–11]. Very 
often, the umbrella term “ROS” is also used to define several reactive 
species together with different kinetics and compartmentalization 
properties [12]. Charged free radicals (with few exceptions transported 
through ion channels) [13] do not cross membranes and cannot simply 
spread from one place to another in a cell [14,15]. Furthermore, the 
kidney is an organ with a rather heterogeneous cell landscape, where 
some cells may generate more free radicals or may be more sensitive to 

oxidative attack. Because of these limitations, a gap exists in the field to 
better understand how oxidative stress exactly impacts the diabetic 
kidney. 

Lipid/phospholipid (hydro)peroxides are reactive species with 
longer half-life and many lipid peroxidation end products are also 
membrane diffusible. Lipid peroxidation and its basic tenets in biology 
are well established [16,17]. It is also well known that conditions like 
diabetes and kidney disease are associated with an increase in lipid 
peroxidation and that uncontrolled lipid peroxidation causes pathology 
[18,19]. Recent data from us and others [20–24] suggest that lipid 
peroxides, especially the electrophilic products (often termed as reactive 
lipids) are more than just byproducts or markers of disease, - they are 
mediators of multiple cellular processes and (patho)physiological con
ditions [20]. In contrast to superoxide, lipid peroxides have a unique 
biochemical attribute: they propagate, can get farther from their source 
and have preferential reaction affinity to target protein residues, 
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typically in the cysteine » histidine » lysine order [20]. Due to this 
distinct reactivity (electrophilic-nucleophilic), the pool of their potential 
molecular targets is specific. However, it is not well known what are the 
molecular entities and locations of oxidized lipids to begin with, that are 
increased in the kidney under diabetic conditions. 

Here we provide a comprehensive oxilipidomics “map” of the dia
betic kidney, focusing on lipid peroxide species and their distribution 
across regions of the kidney. We used Desorption Electrospray Ioniza
tion (DESI) mass spectrometry in negative ionization mode, combined 
with heatmap image analysis. DESI is a technique that provides chemical 
information obtained directly from a surface, such as an organ (kidney) 
slice. DESI provides qualitative information of the analyte, as well as 
information on the spatial distribution of molecules. Combined with an 
image heatmap analysis, it allows for answering the fundamental 
question in our case: where are the parent phospholipids and the 
oxidized derivatives in the kidney and which ones are changing in 
diabetes? 

2. Materials and methods 

Animals. 8 weeks old male control (db/m) and type 2 diabetic (db/ 
db) mice were obtained from Jackson Laboratories (Bar Harbor, Me; 
strain:000642, BKS background). Mice were kept on chow (Purina 5001 
rodent) and had access to drinking water ad libitum while housed at the 
Pennington Biomedical Comparative Biology facilities (12/12 h light 

dark cycle, air conditioning). Mice were kept until they reached 24 
weeks of age by which time diabetic nephropathy (established but still 
not late stage) has developed. Blood glucose levels were monitored 
weekly using a small blood sample from tail and a One Touch Ultra Mini 
device. At 24 weeks, mice were euthanized by CO2 asphyxiation method 
and kidney tissues were harvested. One kidney was flash frozen in liquid 
N2, the other kidney was cut in halves, placed briefly in ice cold PBS for 
washing, then into buffered 10% formalin for fixation. 

All animal experiments were conducted in accordance with the Na
tional Institutes of Health Guide for the Care and Use of Laboratory 
Animals following protocol review and approval by the Institutional 
Animal Care and Use Committee at Pennington Biomedical. 

Histology analysis. Paraffin embedded kidneys were cut into 5 μm 
sections. Sections were mounted on charged SuperFrost slides (Fisher 
Sci.), deparaffinized and stained with Periodic acid-Schiff (PAS) staining 
to evaluate general morphometrics, glomerular size, presence of scle
rosis and proteinaceous casts and mesangial space expansion. At least 15 
viewing areas per slide were evaluated on each section with a Nano
Zoomer Digital Pathology Virtual Slide Viewer and scored in a blinded 
fashion by trained laboratory members. Glomeruli were scored on a 
scale of 0–4, where 0 is a normal glomerulus, 1: <25% mesangial 
expansion and sclerosis, 2: 25–50%, 3: 50–75%, 4: >75% sclerosis. 
Tubular injury was scored as follows, based on the presence of tubular 
dilation, cast formation, brush border loss and loss of tubular epithelial 
structure: 0: <15%, 1: 15–30%, 2: 30–50%, 3: 50–75%, and 4: >75%. 

Fig. 1. Diabetic kidney disease in db/dbmice. (A) Representative microphotographs of PAS stained healthy (db/m) and diabetic (db/db) mouse kidneys at 24 weeks 
of age, showing characteristic glomerular scaring and tubular damage. 10×, high mag: 40×. (B) Glomerular and tubular scores as well as leukocyte infiltration scores 
were evaluated from the microphotographs. N = 3 mice/group, at least 30 viewing areas/slide ±SEM, *P < 0.05. 

A. McCrimmon et al.                                                                                                                                                                                                                           



Redox Biology 58 (2022) 102520

3

Leukocyte infiltration was scored in a similar fashion by evaluating the 
percentage of the viewing area (at 10×) having immune cell infiltration 
present. 

Desorption Electrospray Ionization mass spectrometry (DESI). DESI mass 
spectrometry was performed using a DESI XS equipment (Waters Corp., 
Milford, MA) on a quadrupole time-of-flight mass spectrometer (Xevo 
G2-XS, Waters Corp). Briefly, kidneys were cut frozen at 30 μm thickness 
and kidney slices were stored in − 80 C until analysis. The DESI equip
ment uses a jet of solvent focused at the surface of the sample, causing 
localized microextraction of molecules. The solvent then was desorbed 
from the surface via droplet pick-up and deflected into a mass spec
trometer for analysis of phospholipid species. Negative ion polarity 
mode was used for MS analysis; resolution of DESI is 50 μm. 

Analysis of mass spectrometry and heatmap image generation. The first 
1000 most intense peaks were analyzed in each sample using the High 
Definition Imaging software (HDI v1.5., Waters Inc) from start mass: 
100 m/z, end mass: 1500 m/z, m/z window: 0.02 Da. 

Peaks of each phospholipid compounds and theoretical fragments 
were identified based on accurate mass using a Lipid Mass Database. To 
find or exclude each potential analyte of the same mass, the corre
sponding carboxyl groups present in the sample were also identified. 
Heatmap images of each compound were built in the software visuali
zation tool. Image smoothing was applied using linear interpolation. 
Heatmap intensities were measured and control vs. diabetic groups were 
compared in square root (sqrt) composition scale mode. 

Statistics. Control and diabetic groups for each measurement, 

analysis or amount of oxidized lipid species were compared using un
paired Student’s t-test. Data were expressed as mean ± SEM and dif
ferences were considered statistically significant at P < 0.05. 

3. Results 

Diabetic kidney disease in 24 weeks old db/db mice. Consistent with 
previous data in literature [25–27], db/db mice at 24 weeks of age 
developed characteristic features of diabetic kidney disease. When 
compared to age-matched db/m control mice, db/db mice had signifi
cant glomerular injury and scarring, tubular dilation and immune cell 
infiltration (Fig. 1). 

Fig. 2. DESI MS characterization of phospholipids 
and their oxidation products in kidneys, showing a 
complex array of targets (A). Each phospholipid spe
cies was identified based on their accurate mass. To 
confirm or exclude the possibility of various combi
nations of carbon chain lengths with identical mo
lecular weight the detected carboxyl group accurate 
masses were considered (marked“carboxyl”onthes
pectrum), shown in detail in the inlet, blue arrow and 
Table1. (B) General structure of phospholipids, red 
and blue boxes indicate the full phospholipid mole
cule and the carboxyl chains, respectively. (C) Pri
mary oxidation product of a general phospholipid 
molecule. (D) General structure of a lysophospholipid 
species. LPh: lysophospholipids, Sphingo:sphingoli
pids,CL:cardiolipin. (For interpretation of the refer
ence to colour in this figure legend, the reader is 
referred to the Web version of this article.)   

Table 1 
List of detected carboxyl groups, their accurate mass in negative ion 
mode and identity (C carbon chain length: number of double bonds).  

m/z {M-H]- Identity based on accurate mass 

255.273 C16:0 
279.275 C18:2 
281.29 C18:1 
283.31 C18:0 
303.275 C20:4 
311.21 C20:0 
327.276 C22:6 
329.29 C22:5  
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Oxidized phospholipids unique to the diabetic kidney and their location. 
DESI/MS analysis revealed a wide array of parent phospholipid species 
in the kidney. A representative MS spectrum is shown in Fig. 2, with 
many of the detected phospholipids in the m/z 700–800 range. To assign 
acyl chain combinations for individual phospholipid species, the pres
ence or absence of various carboxylated ions with m/z 255–300 were 
also verified or potential confounding carboxylated daughter ions 
excluded (Table 1). Expected primary peroxidized species (-OOH) were 
also identified and calculated from the m/z values of the corresponding 
parent phospholipids. From the first 1000 most intense peaks, phos
pholipids that underwent substantial oxidative modification were 
identified and mapped to anatomic locations in the diabetic kidney. 
Other, unique reactive phospholipid molecules (which were not per
oxidized species) were also identified as detailed below. 

Oxidized phosphatidylethanolamines (PE). Interestingly, PE species 

were the most impacted by oxidative modifications in the diabetic kid
ney. Fig. 3 shows the summary of our findings including the heatmap of 
each species at m/z 738.508, 740.524, 742.53, and 750.543 and their 
corresponding oxidized products at m/z 770.51, 772.52, 774.53, and 
782.55. The majority of oxidized PE species were located in the inner 
cortex and outer medullar region, as judged from the heatmap images. 

Oxidized phosphatidylserines (PS). Only two PS species of significance 
were detected in the diabetic kidneys (m/z 772.563 and 790.56) with 
their corresponding oxidized products (m/z 754.563 and 822.56). One 
of them showed a very marked medullar localization (Fig. 4). 

Oxidized phosphatidylcholines (PC) We have found only one PC spe
cies (m/z 866.581) with a notable difference in the peroxidized PC levels 
(m/z 898.58) in diabetes (Fig. 5). 

Other reactive lipids identified by DESI. Our analysis consistently found 
other phospholipid species elevated in the db/db kidneys at around the 

Fig. 3. Oxidized PE species and their parent PE lipids in diabetes. (A) Representative DESI-MS heatmap images of PE and corresponding peroxide species in healthy 
and diabetic kidneys. (B) Analysis of peak height intensities of each species. N = 3/group, bar graphs show peak intensity average (a.u.) of each oxidized species 
±SEM, *P < 0.05. 
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m/z 450–575 range as well. These were identified as lysophosphatidy
lethanolamine (LPE, m/z 480.3) in the cortex and N-(tetradecanoyl)- 
deoxysphing-4-enine-1-sulfonate, which is a sphingolipid at m/z 572.3 
in the outer medulla (Fig. 6). These are non-peroxidized reactive lipids, 
with known roles in regulation of cell function as it is further described 
in the Discussion section. It is also noteworthy, that we found some of 
the parent phospholipid species that were significantly or markedly 
increased in diabetic kidneys, but without any detectable oxidation 
products, such as: PE (18:0/20:4) at m/z 766.54 with overwhelmingly 
present throughout the diabetic kidney, PC (18:0/18:0)/PC (16:0/20:0) 
at m/z 788.54 in the cortex, and PE (20:4/22:6)/PS (18:4/20:4) at m/z 
810.581 in the outer medulla (Fig. 7), indicating a general change in 
phospholipid profile of db/db kidneys. To have a more complete view of 
various phospholipids in the kidney, we have also listed several other 
species in Table 2 that were detected but were not significantly different. 

4. Discussion 

While approaches like DESI-MS has been used previously to analyze 
normal and diabetic kidneys, for example alterations in lipid composi
tion of PTCs or changes in glomerular and tubular lipid profiles [28,29], 
here we used the method to understand in deeper detail what oxidative 
stress means in a diabetic kidney and provide a novel “oxidative stress 
map” of diabetic kidneys – the first of its kind. We focused largely on 
phospholipid peroxidation for the reasons described above in the 
Introduction: the ability of lipid peroxides to propagate and travel larger 

distances in a complex organ and hit targets farther from their source of 
origin, thus being a form of a target-specific and more “chronic” 
oxidative stress in a chronic pathology like diabetes. Identifying these 
phospholipid peroxides will enrich knowledge in what phospholipids 
are most vulnerable and which regions of the kidney are impacted the 
most. 

Our approach generated interesting and important findings beyond 
what is already known about oxidative stress in diabetic kidney disease:  

1. Of the 1000 most intense peaks analyzed, oxygenated Pes, LPE and a 
sphingolipid were identified as either only present in the diabetic 
kidney or their levels significantly increased.  

2. Some phospholipid species were not prone to oxidation or oxidized 
derivatives were not detected in diabetes.  

3. Several oxidized species were localized at specific regions of the 
kidney. 

Our analysis revealed PEs as the subclass with the most substantial 
oxidative modifications. We identified four different PE species in the 
diabetic kidney that were significantly oxidized (Fig. 3). The location 
and spread of these oxidized species was mostly in the inner cortex and 
outer medulla regions. As such, the presence of many of the oxidized PE 
species also correlated with areas of tubular immune-cell infiltration. 
We propose that these findings are significant for the following reasons. 
PE species – together with CL – make up about half of the phospholipids 
in the highly folded inner mitochondrial membrane in mammalian cells 

Fig. 4. Oxidized PS species and their parent PS lipids in diabetes. (A) Representative DESI-MS heatmap images of PS and corresponding peroxide species in healthy 
and diabetic kidneys. (B) Analysis of peak height intensities of each species. N = 3/group, bar graphs show peak intensity average (a.u.) of each oxidized species 
±SEM, *P < 0.05. 
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and they regulate the curvature of those membranes [30]. Their con
centration is particularly high at the contact sites between inner and 
outer membranes [31–33]. Thus, oxidation of such PE species likely 
disrupts membrane curvature and fluidity in the mitochondria signifi
cantly, contributing to dysfunction of the organelle. The inner 
cortex-outer medullar region of the kidney is a PTC-rich region and these 
cells largely rely on mitochondria for their high energy need [34,35]. 
Any oxidative damage to mitochondrial membranes in these cells 

therefore can contribute to a decline in mitochondrial function in DN. In 
addition, it has recently been shown that 15-lipoxygenase can perox
idize PE species and these peroxidized PE serve as biomarkers of fer
roptosis [36], a form of programmed cell death also relevant to kidney 
pathology [37]. Lastly, PE also has an important function in conjugating 
to LC3 protein, to ensure proper autophagosome formation and auto
phagic process [38]. Thus, oxidation of PE species in diabetes may affect 
autophagy as well. We also found an about 2-fold, significant increase in 

Fig. 5. Oxidized PC species and their parent PC lipids in diabetes. (A) Representative DESI-MS heatmap images of PC and corresponding peroxide species in healthy 
and diabetic kidneys. (B) Analysis of peak height intensities of each species. N = 3/group, bar graphs show peak intensity average (a.u.) of each oxidized species ±
SEM, *P < 0.05. 

Fig. 6. Lysophospholipids and sphingolipids. Representative DESI-MS heatmap images of healthy and diabetic kidneys with lysophosphatidylethanolamine (LPE) 
and N-(tetradecanoyl)-deoxysphing-4-enine-1-sulfonate (Sphingo) location and levels. N = 3/group, bar graphs show peak intensity average (a.u.) of each oxidized 
species ±SEM, *P < 0.05, db/dbvs db/m group. 
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a parent PE species (PE (18:0/20:4) in diabetes. An explanation for such 
increase could be that as PE are important in membrane fluidity and 
curvature, increasing the levels may be an adaptation to the disease to 
protect remaining membrane intactness or a remodeling process in 
making new membranes. On the other hand, changes in PC/PE ratio can 
have an impact on cellular processes associated with health and disease. 
An increase in PE levels would decrease PC/PE molar ratio, and was 
shown to effect cell leakage, lipoprotein synthesis and VLDL secretion, 
impact mitochondrial respiration, oxidative capacity or contribute to 
mitochondrial fragmentation, and cause ER stress (reviewed in 
Ref. [39]). Many of these processes are known to have been linked to the 
development and pathogenesis of DKD [6,10,40–42]. 

Of the detected PS species, one (PS(O-16:0/16:0) was found to have 
increased in the diabetic medulla, with significantly more oxidation 
product detected as well. With regard to PS species, it is important to 
note that kidney injury molecule − 1 (Kim-1) was shown to be a PS re
ceptor, expressed on epithelial cells after injury [43]. Apoptotic cells 
expose membrane PS (and PE) species on the outer part of the plasma 
membrane. Thus, a possible explanation for our finding is that in the 

diabetic kidney, PS species contribute to the remodeling of injured 
epithelia through binding to Kim-1 during injury. 

Interestingly, we did not find any significant change or oxidation 
products of PI species in diabetic kidneys. One possible explanation for 
this is that PI species make up only a small fraction of cellular phos
pholipids [44]. Thus, with our settings, oxidized PI species may have 
been under the detection limit. Another important thing to consider is 
that while PI do not make up a large amount of phospholipids, they 
control several important aspects of cell life and death [44]. These 
include regulation of ion channels, pumps and transporters or exocy
tosis. It is then possible, that they are either not prone to oxidation or are 
protected by some mechanism in diabetes – at least in the db/db model 
and at time point in the disease we used herein - so that renal cells in the 
diabetic kidney can still maintain basic functions. 

Furthermore, we also found two unique reactive lipids that were 
specific to the diabetic kidney: LPE and a sphingolipid species N-(tet
radecanoyl)-deoxysphing-4-enine-1-sulfonate. Lysophospholipids (such 
as LPE) are a unique subclass of phospholipids in a sense that they are 
membrane-derived bioactive lipid mediators [45]. Lysophospholipids 
are generated from membrane phospholipids and sphingolipids by 
phospholipase-facilitated hydrolyzation. They elicit cellular responses 
including promoting cell survival, apoptosis, cell shape and motility, 
adhesion, migration, cytoskeletal arrangements or for example Ca2+

signaling [46], via G-protein coupled receptor-mediated pathways. 
Consequently, they can influence biological processes such as inflam
mation, healing, angiogenesis, immune processes, among many [47,48]. 
Many of these reactive lipids react with redox sensitive cysteine residues 
of small G-proteins like RhoA or Rac, thereby regulating cell function 
[49]. The increased levels of LPE in db/db kidneys –especially in the 
outer cortical region - suggest that under diabetic conditions, lyso
phospholipids may play a significant role in dysregulation of processes 
that rely on cytoskeletal dynamics, for example, podocyte foot process, 
cell motility or cell cycle. Indeed, lysophospholipids have also been 
suggested to have translational value to predict fast decliners with dia
betic kidney disease [50]. Similar increases in LPE levels were found in 
an in vivo acute kidney injury model caused by ferroptosis where Gpx4 
was deleted [37]. Pathological role for sphingolipids in diabetic kidney 
diseases has also been suggested before [51,52], thus it is not surprising 
that we found a specific species in diabetic kidneys of the db/db model. 
Similar to oxidized PE, the area where sphingolipids were identified 

Fig. 7. Representative DESI-MS images of phospholipid species with significant 
difference in healthy vs diabetic kidneys but without significant oxidation 
products (not prone to oxidation). N = 3/group, bar graphs show peak intensity 
average (a.u.) of each oxidized species ±SEM, *P < 0.05, db/dbvs db/m group. 

Table 2 
List of other phospholipids detected by DESI-MS in healthy and diabetic kidneys 
with no significant difference nor significant oxidation products.  

m/z {M- 
H]- 

Tentative identity 
based on accurate 
mass 

peak height 
db/m (au.) 

peak height 
db/db (au.) 

P 
value 

742.53 PE (18:2/18:0) 1326.7 ±
843.7 

2454 ± 964.6 0.43 

747.568 PG (16:0/18:1) 22360.33 ±
4044 

28,641 ± 2749 0.28 

750.543 PE (O-18:0/20:5) 11115.7 ±
2535 

20744.3 ±
4645 

0.143 

772.578 PE (20:0/18:1) 34081.33 ±
2397.7 

45,964 ± 5608 0.16 

774.593 PE (18:0/20:0) and PE 
(16:0/22:0) 

27756.67 ±
2318 

41,012 ± 4629 0.09 

790.56 PS (16:0/20:0) and PS 
(18:0/18:0) 

14711.7 ±
1140.7 

16,762 ± 2650 0.53 

834.581 PC(18:0/22:5) 8713.33 ± 941 10544.3 ±
3828.5 

0.68 

841.58 PI (P-16:0/20:4) 433.67 ± 411 1098.33 ±
957.5 

0.573 

850.596 PI (20:0/16:0) 172.33 ± 60.3 548.33 ±
192.55 

0.182 

865.5 PI (18:0/18:0) and PI 
(16:0/20:0) 

80,770 ±
40,982 

52,639 ±
23,976 

0.593 

909.603 PI (18:0/22:6) 35428.33 ±
1753.9 

18203.33 ±
9628.7 

0.213  
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largely correlated with the area of immune cell infiltration areas. 
In the current study we have not analyzed cardiolipin (CL) species or 

CL oxidation. It is important to recognize that CL plays a crucial role 
maintaining the stability of mitochondrial membrane and protecting 
several aspects of mitochondria health. Oxidation of CL is a well- 
established phenomenon with regards to mitochondrial dysfunction, 
including alterations related to diabetic kidney disease or acute kidney 
injury [53,54]. Peroxidation of CL has been established as essential for 
the release of pro-apoptotic factors from mitochondria into the cytosol 
[55]. Our limitation was simply technical: with the DESI-MS we used we 
did not observe high abundance of lipids over 1000 m/z. Thus, CLs (m/z 
= 1449.981, 1473.981, 1475.981) were either not detected in a repro
ducible manner with our current set up or were under the detection 
limit. Further studies should aim at identifying OOH-derivatives of CL 
species and the impact of such oxidation processes in the diabetic 
kidney. 

A limitation of the DESI –based approach is that, while very infor
mative about the presence of lip oxidative stress in various regions of the 
diabetic kidney, does not provide enough resolution to go to the single 
cell level to identify specific cell types. It would be also difficult to 
distinguish for example on a heatmap with the highest intensity in the 
cortical region, whether the cells are mostly of tubular or glomerular 
origin. Histology images from the same section however could be used to 
first identify glomeruli, and then superimposing this image with the 
heatmap of DESI could further enhance and refine analysis. Regardless, 
we suggest that our results will open new avenues to further research in 
a cell-specific manner to understand which cell types of the diverse 
kidney cell landscape are major sites or targets of oxidative stress. For 
example, the immuno-spin trapping approach (developed by Mason 
et al. [56,57] and successfully applied in vivo by our laboratory [58] and 
others [59–61]) can be used to capture and identify protein targets in 
diabetic renal cells where electrophile lipid peroxides react with 
cysteine residues of functionally relevant proteins [21]. Here, a specific 
spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) is used to label and 
identify those residues that were modified by oxidative attack. DMPO is 
injected into mice. In vivo, it traps protein-centered radicals (oxidation 
happened on protein residues as a result of redox signaling). DMPO is 
specific to these redox reactions and would not label other residues. 
Kidney cells from regions identified on the DESI heatmap then can be 
separated through sieving or other established methods and the 
DMPO-labeled protein adducts analyzed by MS/MS. To identify a group 
of plausible targets with functional significance, we propose two ap
proaches: cross-referencing targets detected in the MS/MS analysis with 
a) literature data of proteins with functional importance to T2DM, or b) 
transcriptomic analysis of genes corresponding to functionally relevant 
proteins in T2DM models. Such approach can enhance our under
standing of redox regulation in renal cells. On one hand it can reveal 
specific, redox sensitive, functionally important and thus potentially 
druggable targets, on the other hand it can identify protective cell 
signaling pathways modulated by reactive lipids. 

5. Conclusions 

To summarize, here we provide a new, comprehensive mass spec
trometry imaging analysis of oxilipidomics in the diabetic kidney. Our 
approach is a first step to go beyond the umbrella term of “ROS” and 
provide a more specific understanding of the identity and distribution of 
oxidized species, specifically lipid peroxides, as well as the regions that 
are more prone to oxidative stress and consequently, to cell or mito
chondria phospholipid membrane injury in the kidney during diabetes. 
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