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SUMMARY

Neuronal responses of sensory cortex are highly
variable, and this variability is correlated across
neurons. To assess how variability reflects factors
shared across a neuronal population, we analyzed
the activity ofmany simultaneously recorded neurons
in visual cortex. We developed a simple model that
comprises two sources of shared variability: a multi-
plicative gain, which uniformly scales each neuron’s
sensory drive, and an additive offset, which affects
different neurons to different degrees. This model
captured the variability of spike counts and repro-
duced the dependence of pairwise correlations on
neuronal tuning and stimulus orientation. The relative
contributions of the additive andmultiplicative fluctu-
ations could varyover timeandhadmarked impacton
population coding. These observations indicate that
shared variability of neuronal populations in sensory
cortex can be largely explained by two factors that
modulate the whole population.
INTRODUCTION

Repeatedpresentationsof the samestimulus elicit highly variable

responses in sensory cortex (Heggelund and Albus, 1978; Tol-

hurst et al., 1983; Vogels et al., 1989). This variability is correlated

across neurons, so it cannot be easily removed by averaging

across the population, and may thus place critical constraints

on information transmission (Averbeck et al., 2006; Averbeck

and Lee, 2006; Deweese and Zador, 2004; Shadlen and News-

ome, 1998; Zohary et al., 1994). Understanding its nature can

thus shed light on the circuit mechanisms and computations per-

formed by the cortex in health and disease (Dinstein et al., 2015).

Cortical variability does not arise because neurons are intrinsi-

cally noisy. Indeed, cortical neurons can generate highly reliable

spike trains (Mainen and Sejnowski, 1995). The variability of their

responses is therefore more likely to arise from the variability of

their synaptic inputs, reflecting cortical network dynamics (Car-

andini, 2004). Traditionally, variability has been studied in single

neurons or neuronal pairs, but a full description requires under-

standing factors operating at the population level.
644 Neuron 87, 644–656, August 5, 2015 ª2015 The Authors
A clue toward understanding cortical variability comes from

spontaneous activity patterns that the cortex produces in the

absence of stimuli. These patterns share some features with re-

sponses evoked by sensory stimuli (Arieli et al., 1996; Kenet

et al., 2003; Luczak et al., 2009, 2013; Ringach, 2009; Tsodyks

et al., 1999): for instance, pairwise correlations measured dur-

ing spontaneous activity can resemble those seen during sen-

sory stimulation (Jermakowicz et al., 2009; Okun et al., 2012).

Voltage-sensitive dye imaging experiments in visual cortex sug-

gest that the interaction between spontaneous and evoked ac-

tivity is additive: activity would be the sum of a deterministic

sensory response and a stochastic pattern originating from net-

works that generate spontaneous activity (Arieli et al., 1996).

Subsequent work showed that such an additive interaction

could approximate the dependence of pairwise correlations

on cortical state (Schölvinck et al., 2015). Other work suggests

a more complex picture. In auditory cortex, responses to pro-

longed tone stimuli show similar fluctuating activity to those

seen in silence (Luczak et al., 2013). Yet, sensory-evoked

spikes do not occur independently of these fluctuations, as

would be expected from addition, but occur together with

them, suggesting that spontaneous fluctuations gate the repre-

sentation of stimuli. In visual cortex, quantitative analyses sug-

gest that the variability of single neurons and correlations of

neuronal pairs are more consistent with a multiplicative gain

change, whose gain factor fluctuates from trial to trial (Ecker

et al., 2014; Goris et al., 2014).

Such multiplicative variability is consistent with what one

might expect from top-down feedback from higher order

cortices. By targeting layer 1, this feedback can change the

gain with which neurons respond to activity in input layers (Lar-

kum, 2013; Larkum et al., 1999). Top-down feedback might be

involved in spatial attention (Armstrong andMoore, 2007; Moore

and Armstrong, 2003), which can have a multiplicative effect on

neuronal gain (Reynolds and Heeger, 2009). Yet, other evidence

suggests that the influence of spatial attention is additive (Boy-

nton, 2009; Buracas and Boynton, 2007; Murray, 2008; Thiele

et al., 2009). Other modulatory effects, such as those seen in vi-

sual cortex during locomotion, appear to be both additive and

multiplicative (Ayaz et al., 2013).

These observations raise multiple questions. If single-neuron

variability is well-modeled by multiplicative gain changes, can

a single, population-wide gain factor explain the coordinated

fluctuations of the population? Are the additive andmultiplicative

modelsmutually exclusive or is there a common ground between
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Figure 1. Recordings of Population Activity

in Anesthetized Cat V1

(A) Layout of a 10-by-10 electrode array aligned to

the underlying map of preferred orientations

(adapted from Katzner et al., 2009). The electrode

sites are 400 mm apart.

(B) The function fitted to population re-

sponses is the sum of two circular Gaussians:

one peaking at the orientation of grating 1 with

amplitude a1, and one peaking at the orien-

tation of grating 2 with amplitude a2. A base-

line untuned response b provides an additive

offset.

(C) Population response averaged over ten

presentations of a plaid with orientations 60� and

150� and contrasts 50% and 6%. Each circle

shows the trial-averaged normalized firing rate of

an orientation-tuned site, arranged by its preferred

orientation. The firing rate is normalized by each site’s response to its optimal orientation at 100% contrast. The curve indicates the fit of the function in (B).

(D) Two example single-trial population responses to the plaid shown in (C). A filled circle and an empty square represent the normalized firing rates of an

orientation-tuned site on trials 1 and 2; the solid and dashed lines plot the fits of the function in (B) to population responses on trials 1 and 2.

(E) Population responses to ten presentations of the plaid shown in (C) (blue); only fitted curves are shown for clarity. A red curve repeats the trial-averaged

population response for comparison.

(F–H) As in (C)–(E), but for a plaid with component gratings of orientations 0� and 90�, both at 50% contrast.

(I) Variability in population responses measured by their response to grating 1, a1, and their response to grating 2, a2. The blue circles indicate responses to any

plaids with contrasts 50% (grating 1) and 6% (grating 2); the black circles indicate responses to any plaids with contrasts 50% and 50%. Each open circle

denotes population response on one trial; the four solid circles mark the four single-trial population responses shown in (D) and (G). For each component-

contrast combination, the data were pooled across different component orientations. The ellipses show 1 SD contours of Gaussian fits (session 83-7-5,

45 orientation-tuned sites, plaid angle = 90�).
them? And what are the effects of the multiplicative and additive

fluctuations on the cortical code?

Here, we answer these questions by analyzing the trial-by-trial

activity of large, simultaneously recorded neural populations in

primary visual cortex (V1) of anesthetized cats and quietly awake

mice. We find that cortical variability is best understood at the

population level, where it can be described by a simple mathe-

matical model comprising two sources of shared variability:

multiplicative and additive. This model explained the structure

of trial-to-trial population variability and captured the complex

dependence of neuronal correlations on stimulus and neuronal

tuning. Our results suggest that neither additive nor multiplica-

tive variability alone forms a complete model of cortical vari-

ability; instead, a combination of the additive and multiplicative

components that invest the whole population can explain

much of the shared response variability in visual cortex.

RESULTS

We first analyzed the activity of large neural populations in V1 of

anesthetized cats (seven recording sessions from three neuronal

populations in three cats). Neuronal responses were recorded

from a 10-by-10 electrode array that covered a 16 mm2-region

with a diversity of orientation preferences (Figure 1A). All spikes

detected on a given site of the array were pooled, as they

originated from neurons having similar preferred orientations

(Katzner et al., 2009). Stimuli were contrast-reversing oriented

gratings and plaids consisting of two superimposed component

gratings. These data sets were previously analyzed after aver-

aging across trials of the same stimulus (Busse et al., 2009);

here, we examined them in individual trials.
Variability Is Shared across the Population
Repeated presentations of the same stimulus elicited highly

variable responses, yet this variability was coordinated across

the population. To illustrate the nature of this variability, we

plotted ‘‘population tuning curves’’, a graphical summary of

the population response to a plaid stimulus (Figure 1B). As ex-

pected, a plaid with very different component contrasts

evoked the largest mean activity at sites tuned for the orienta-

tion of the high-contrast component grating (Figure 1C), a

form of winner-take-all competition (Busse et al., 2009). Yet,

the responses of all tuned sites varied from trial to trial; for

instance, firing rate tended to be higher on one trial than on

another, and this difference affected most sites simultaneously

(Figure 1D). As a result, the curves fitted to the population ac-

tivity changed noticeably from trial to trial (Figure 1E). Similar

results were obtained for different stimuli. For instance, as

observed previously (Busse et al., 2009), a plaid with equal

component contrasts elicited large mean responses at sites

tuned for either of the component orientations (Figure 1F).

Trial-by-trial responses were again highly variable, and the

variability seemed to be coordinated at the population level

(Figures 1G and 1H).

Although trial-by-trial variability was clearly coordinated

across the population, the nature of this shared variability

was not immediately obvious. In the first example, population

responses seemed to be scaled multiplicatively between trials

(Figure 1D). Yet, in the second example, population responses

seemed to be shifted by a common offset between trials

(Figure 1G). There were also examples that spoke in favor

of a mixture of additive and multiplicative effects (Figures 1E

and 1H).
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Figure 2. The Additive, Multiplicative, and

Affine Models

(A) The basic structure of the models involves a

unit c, whose expected spike count fc,i on trial i

depends on both the tuning dc,s of that unit for

stimulus s(i) shown on that trial and global, shared

factors that originate from the rest of the brain and

vary from trial to trial. The expected spike count

fc,i is then passed into a stochastic spike count

generator that generates private variability,

yielding an integer spike count nc,i from a negative

binomial distribution with mean fc,i and cell- and

stimulus-dependent Fano factor Fc,s.

(B) In the additive model, the global factor is the

additive offset ai that affects each unit c by an

amount proportional to a coupling term hc.

(C) In the multiplicative model, the global factor is

the variable response gain gi that uniformly scales

the sensory drive dc,s.

(D) The affine model includes both the additive and

multiplicative components.

(E–G) Cross-validated performance of the

response nc,i generated by the multiplicative

model versus the additive model (E) and by the

affine model versus the additive (F) and multipli-

cative (G) models across seven sessions in three cats. The performance wasmeasured by the quality index, which is zero or negative if the prediction is not better

than the independent model and equals 1 for a perfect prediction. Each circle represents the performance on one site across all trials in a session; sites from the

same session share the same color. Only sites that had quality index > 0.1 for at least one of the models were shown.
To explore the structure of this variability and to gain an intui-

tion into how it is shared between neurons, we characterized the

population response on each trial as a single, compact pop-

ulation tuning curve determined by three free parameters.

The population tuning curve Ri (a vector whose values are the

normalized firing rates of all orientation-tuned sites, ordered by

their preferred orientations) on trial i was fit as a linear combina-

tion of prototypical responses to the two component gratings of

a plaid, plus a constant shift (Figure 1B):

Ri =ai
1G

�
qi1
�
+ai

2G
�
qi2
�
+ bi: (Equation 1)

Here, qi1 and qi2 are the component orientations of the plaid stim-

ulus presented on trial i, and GðqÞ is the prototypical response

(a circular Gaussian) to a grating of orientation q. The population

tuning curve Ri on each trial i is thus determined by three

parameters: the tuned response to component grating 1, ai
1,

the tuned response to component grating 2, ai
2, and a baseline

untuned response, bi. These parameters were fit by least-

squares to the population response; they effectively summarized

the population activity of many tens of sites on each trial, ac-

counting for 47 ± 18% (median ± median absolute deviation) of

the variance. We used these fits to examine the population

data and the predictions of various models of neuronal variability

(but not to fit the models, which was done on the actual spike

counts as a function of site and time, as described below).

The parameters of the population tuning curves confirmed

that the trial-to-trial variability included a shared multiplicative

component (Figure 1I). For a plaid with equal component con-

trasts, the tuned-response components to gratings 1 and 2, ai
1

and ai
2, were positively correlated across trials: the ellipse sum-

marizing their distribution was clearly diagonal (Figure 1I, black;
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r = 0.45). By comparison, for a plaid with markedly different

component contrasts, the tuned response ai
2 to the low-

contrast grating stayed close to zero regardless of the tuned

response ai
1 to the high-contrast grating (Figure 1I, blue; r =

�0.05). These two elongated clouds radiating outward from

the origin are what would be expected from shared multiplica-

tive variability. They do not, however, rule out the presence of

additive variability, which causes variations in the parameter

bi (Figure S3).

The Affine Model
The shared nature of trial-to-trial variability described above

suggests that trial-to-trial fluctuations in population activity

might be accountable by a small number of factors, whose joint

effect on each neuron can be multiplicative and/or additive. To

formalize this idea, we turned to a more rigorous approach that

seeks to predict the response of every site to every stimulus on

every trial. We developed a set of models that operate at the

level of spike trains of units (single neuron or multiunit) in a pop-

ulation (not at the level of the summary statistics a1, a2, and b

previously described). In these models, the response of each

unit on a trial depends on both the tuning of that unit to the

stimulus shown on that trial and a trial-varying, global, shared

factor that originates from the rest of the brain (Figure 2A). To

account for the different factors of shared variability, we

considered an additive model (Figure 2B), a multiplicative

model (Figure 2C), and an affine model (Figure 2D), which en-

compasses them both.

In the affine model, the expected spike count of unit c on trial i,

during which stimulus s(i) is presented, is

fc;i =gidc;sðiÞ + aihc; (Equation 2)
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Figure 3. Variability of Population Response

to Plaid Stimuli

(A) Ellipses showing 1 SD contours of Gaussian fits

to the distributions of population responses to

gratings 1 and 2 (a1 and a2) for an example session.

The 16 ellipses correspond to 16 plaid stimuli in

which the contrasts of the two component gratings

are varied independently. The colors indicate the

component contrasts (RGB color code with red

encoding the contrast of grating 1 and blue encod-

ing the contrast of grating 2). For each component-

contrast combination, the data were pooled across

different component orientations. Two of the ellip-

ses appeared in Figure 1I (session 83-7-5, 45

orientation-tuned sites, plaid angle = 90�).
(B–D) Ellipses fitted to responses simulated by the

additive (B),multiplicative (C), and affine (D)models.

(E–G) Comparison of the ellipse angles generated

by the three models versus experimental data

across seven sessions in three cats. Each plaid

stimulus in each session contributes a dot for the

ellipse fitted to the distribution of a1 versus a2.

(H–J) Same as (E)–(G), but for the comparison of

the major-axis lengths of the ellipses.
where dc;sðiÞ is the deterministic sensory drive to unit c arising

from stimulus s(i). This term reflects the unit’s sensory tuning as

well as its contextual interactions; i.e., anything that contributes

to the unit’smean response to that stimulus; e.g., divisive normal-

ization (Busse et al., 2009). The multiplicative gain gi scales the

firing rate of all units in proportion to their sensory drive; i.e., it

controls their response gain. The additive offset ai adds to their

firing rates in proportion to their coupling factors hc. Constraining

gi = 1 gives a purely additive model (Figure 2B); setting ai = 0 re-

sults in a purely multiplicative model (Figure 2C). Constraining

both gi=1 and ai=0gives amodel that takes no shared variability

into account (referred as the independent model; Figure S4A).

To compare model predictions with recorded spike counts,

we passed fc,i into a stochastic spike count generator, which

yields an integer spike count nc,i from a negative binomial distri-

bution with mean fc,i and cell- and stimulus-dependent Fano fac-

tor Fc,s(i), estimated by maximum likelihood. This stochastic

spike count generator delivers the fraction of variability that is

not shared, but private to each unit (Deweese and Zador, 2004).

Population Variability Is BothMultiplicative and Additive
To study how well these global, shared factors could explain

cortical variability, we fit the affine model and compared the

results with the purely additive and multiplicative models. We

obtained the model parameters by fitting the model predictions

fc,i to the spike counts recorded at each site, and we evaluated

the fits with cross-validation (see Supplemental Information:

cross-validation; Figure S1). Performance was measured by

the quality index q: the improvement in cross-validated predic-

tion compared to the independent model with no shared

variability. The quality index is zero or negative for a model
Neuron 87, 644–65
that offers no improvement over the in-

dependent model, and equals 1 for a

perfect prediction.
This analysis showed that the affine model is superior to both

the additive and multiplicative models (Figures 2E–2G). The mul-

tiplicative model performed better than the additive model (Fig-

ure 2E; Table S1; p < 10�11 for all data together, p < 0.03 in

five out of seven recording sessions evaluated individually;

sign test). In all sessions, the affine model considerably outper-

formed both the additive model (Figure 2F; Table S1; p < 10�43

for all data together, p < 10�6 in five individual sessions, and

p < 0.02 in the remaining two; sign test) and the multiplicative

model (Figure 2G; Table S1; p < 10�43 for all data together, p <

10�8 in four individual sessions, and p < 0.001 for the rest; sign

test). Because these results were cross-validated, the affine

model could not gain a numerical advantage by over-fitting.

Rather, the results indicate that neither the additive nor multipli-

cative factors alone suffice: combining the two forms a better

model for shared cortical variability.

Note that theadditivemodel—unlike themultiplicativemodel—

has a coupling term hc that allows each unit to be coupled to pop-

ulation activity differently, a phenomenon that has been previ-

ously described (Okun et al., 2015). Introducing a similar cell-

coupling term to the multiplicative model did improve its perfor-

mance, but this extended multiplicative model still performed

worse than theaffinemodel (FiguresS2A–S2D;TableS2;Supple-

mental Information: the extended multiplicative model). The su-

perior performance of the affinemodel thus reflects the presence

of an additive component rather than simply its ability to model

different coupling strengths of different neurons.

To gain further intuition into the performance of themodels, we

returned to the reduced representation of the population activity

(Figure 3). We first computed the population tuning curves for the

recorded and simulated activities. We then fit ellipses to
6, August 5, 2015 ª2015 The Authors 647
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Figure 4. Relationship between Noise Cor-

relation and Tuning Similarity

(A) Noise correlation for each pair of orienta-

tion-tuned sites in response to single gratings,

as a function of the difference between their

preferred orientations. A black dot represents

noise correlation calculated for a pair of

sites, and the red curve shows the running

median.

(B–D) As in (A), but for predictions of the addi-

tive (B), multiplicative (C), and affine (D) models.

A gray dot represents noise correlation pre-

dicted by the model for a pair of sites, a black

curve shows the running median, and a red curve repeats the running median of the measured data for comparison.

(E) As in (D), but for spontaneous correlations. Note that even for spontaneous activity, noise correlations were higher for similarly tuned sites, but this could not

be captured by the model. All running medians were calculated with non-overlapping 10� bins (session 83-7-5, 45 orientation-tuned sites).
summarize their variability (as in Figure 1I) and examined the el-

lipses corresponding to all plaid stimuli (Figures 3, S3, and S4). In

the data, the tuned responses to component gratings 1 and 2

tended to be correlated only for plaids with equal component

contrasts, resulting in ellipses emanating from the origin (Fig-

ure 3A). The additive model produced tuned responses that

were slanted (i.e., highly correlated) for all plaid stimuli, including

those with unequal component contrasts (Figure 3B). The multi-

plicative and affine models, by contrast, captured the angle of

the ellipses appropriately (Figures 3C and 3D). Indeed, the affine

model outperformed both the additive and multiplicative models

in predicting the ellipse angles across all seven sessions (Figures

3E–3G). The affine model also provided better predictions of

ellipse lengths, which reflect the strength of correlated vari-

ability (Figures 3H–3J). Analyzing correlations between the

tuned responses and the baseline, untuned activity gave similar

conclusion (Figure S3). Finally, all threemodels outperformed the

independent model (Figure S4).

In short, the affine model was superior in capturing correla-

tions between the two tuned-response components as well as

correlations between the tuned- and untuned-response compo-

nents. The affine model thus explains much of the response vari-

ability and surpasses both the additive andmultiplicative models

in predicting not only the raw individual spike counts (Figure 2),

but also our summary analysis of ensemble activity, the popula-

tion tuning curves (Figures 3, S3, and S4).

Dependence of Noise Correlations on Tuning Similarity
Our results suggest that the correlated response variability of

neuronal populations can be well modeled by only two global

factors, additive and multiplicative, that are shared across the

population. In a population ofN neurons, there are order N2 pair-

wise correlations. To what extent can these pairwise correlations

be explained by these two factors?

To address this, we measured pairwise noise correlations for

all pairs of orientation-tuned sites in response to single-grating

stimuli. Correlations tended to be high because they were

measured over long time windows and involved multiunit activity

(Cohen and Kohn, 2011). We found that noise correlations pre-

dicted by the affine model were closer to the measured values,

compared to either the additive model (Figures S5A–S5U;

p = 10�48 for all data together, p < 10�4 in four individual ses-

sions, and p < 0.05 in one session; sign test on the squared errors
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between measured and predicted noise correlations) or the mul-

tiplicative model (Figures S5A–S5U; p < 10�54 for all data

together, p < 10�5 in five individual sessions, and p < 0.05 in

the remaining two; sign test).

We next asked whether the affine model could predict the

well-known relationship between signal and noise correlations:

noise correlations are larger between cells with similar sensory

tuning (reviewed in Cohen and Kohn, 2011). This relationship is

often attributed to increased connectivity between neurons

with similar sensory tuning, but it can also arise from sharedmul-

tiplicative variability (Brody, 1999; Ecker et al., 2014; Goris et al.,

2014). This is simply because multiplication affects neurons that

are responding to a stimulus more than neurons that are not re-

sponding, thus introducing correlations among neurons with

similar tuning.

We measured the dependence of noise correlations on the

difference in preferred orientations and compared it to the one

calculated fromspikecounts simulatedby the additive,multiplica-

tive, and affine models (Figure 4). As expected, noise correlations

showed a clear dependence on orientation-tuning similarity: sites

preferring thesameorientationweremorestronglycorrelated (Fig-

ure 4A). This dependence could not be captured by the additive

model, which predicted a negligible dependence on tuning simi-

larity (Figure 4B). The multiplicative model predicted stronger

noise correlations when preferred orientations were more similar,

but correlations were generally underestimated (Figure 4C). The

affine model almost completely accounted for the dependence

of noise correlations on tuning similarity (Figure 4D); this superior-

ity was statistically significant in all sessions (p < 0.05 for both

additive versus affine and multiplicative versus affine; t test on

each session’s sum of squared errors between running medians

of data and model; Figure S6).

Still, the affine model slightly underestimated the depen-

dence of pairwise correlations on tuning difference (Figure 4D).

To investigate this mild imperfection, we looked at the sponta-

neous correlations; i.e., the pairwise correlations measured in

the absence of stimuli (Figure 4E). Spontaneous correlations

have been reported to be strongest for similarly tuned cells

(Jermakowicz et al., 2009; Kenet et al., 2003; Okun et al.,

2015). Our data showed this effect, albeit weakly (Figure 4E,

red curve). Unsurprisingly, none of the three models could pre-

dict this dependence; for instance, the predictions of the affine

model were essentially flat (Figure 4E, black curve). This small,
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Figure 5. Dependence of Noise Correla-

tions on Stimulus Orientation and Tuning

Preferences

(A) Noise correlation for each pair of sites in

response to a single grating was analyzed as a

function of three parameters: the stimulus orien-

tation, qs; the preferred orientation of site 1, q1; and

the preferred orientation of site 2, q2. Assuming

rotational symmetry, we could reduce these three

parameters to two: the difference between the

preferred orientations of the two sites, and the

stimulus orientation, Dqc = qc � qs, for c = 1 or 2.

(B) The dependence of noise correlations on

stimulus orientation and tuning preferences are

summarized by three numbers: the median noise

correlations in the center bin (black circle,

measuring the correlation produced when two co-

tuned sites are stimulated with a grating of their

preferred orientation), the corner bin (red circle,

measuring the correlation produced when two co-

tuned sites are stimulated with a grating whose

orientation is orthogonal to their preferred orien-

tation), and the edge bin (blue circle, measuring the

correlation produced when two oppositely tuned

sites are stimulated with a grating of one of their

preferred orientations).

(C) Pseudocolor representation of median noise

correlations for all pairs of orientation-tuned sites

as a function ofDq1 andDq2. The data were pooled

across all contrasts and orientations (session 83-

7-5, 45 orientation-tuned sites).

(D–F) As in (C), but for predictions of the additive

(D), multiplicative (E), and affine (F) models.

(G–J) Same as (C)–(F), but for a different session

in which the multiplicative model alone could

reasonably reproduce the structure of the

measured correlation matrix (session 83-10-15, 42

orientation-tuned sites).

(K–M) Scatter plots comparing the measured and

predicted correlations for the additive (K), multi-

plicative (L), and affine (M) models across seven

sessions in three cats. Each circle shows the

measured and predicted noise correlations for one

bin and one session, color-coded as in (B).
but noticeable, error in accounting for spontaneous correla-

tions hints at what might be missing from the affine model: a

slightly higher coupling between neurons that are similarly

tuned.

To further understand the predictions of the three models, we

considered an additional factor that determines noise correla-

tions: theorientation qs of the stimulus relative to thepreferred ori-

entations q1 and q2 of the two sites. Noise correlations between a

neuronal pair dependnot only on theneurons’ sensory tuning, but

also on the attributes (orientation in this case) of the stimulus

(Kohn and Smith, 2005; Ponce-Alvarez et al., 2013). Assuming

rotational symmetry, this dependence on stimulus orientation

and cell tuning can be summarized by a function rðDq1;Dq2Þ,
where Dqc = qc � qs is the preferred orientation of site c relative

to stimulus orientation qs (Figure 5A). This representation was

particularly informative in three locations: (1) the ‘‘center’’ bin,

where the preferred orientations of both sites match the stimulus

orientation; (2) the ‘‘edge’’ bin, where one site’s tuning matches

the stimulus and the other is orthogonal to it; and (3) the ‘‘corner’’
bin, where the preferred orientations of both sites are orthogonal

to the stimulus orientation (Figure 5B).

This representation revealed a rich structure of pairwise corre-

lations (Figures 5C–5J). In a typical session, noise correlations

peaked in the center bin (Figure 5C); this observation was well

predicted by the multiplicative and affine models (Figures 5E

and 5F), but not by the additive model (Figure 5D). As has

been previously observed (Cotton et al., 2013), correlations be-

tween similarly tuned sites were also high in the corner bins;

this was predicted by the additive and affine models (Figures

5D and 5F), but not by the multiplicative model (Figure 5E).

Finally, the data showed the lowest correlations in the edge

bins; this was predicted by the affine and additive models (Fig-

ures 5D and 5F), but not by the multiplicative model (Figure 5E).

While this particular structure of the correlation matrix was the

most common (four out of seven sessions), it was not the only

one we observed. Other recordings showed a different correla-

tion structure that, again, was well captured by the affine model

(e.g., Figures 5G–5J).
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Figure 6. Performance of the Additive, Multiplicative, and Affine

Models in Single-Unit Data from Quietly Awake Mice

(A–C) Cross-validated performance of the multiplicative model versus the

additive model (A) and of the affine model versus the additive (B) and multi-

plicative (C) models (cf. Figures 2E–2G). Each circle represents the perfor-

mance on one neuron across all trials in a session; neurons from the same

session share the same color (five recording sessions in four mice). Only

neurons that had a quality index > 0.1 for at least one of the models were

shown.
To assess each model’s performance across sessions, we

computed the median noise correlations that fell into the center,

corner, and edge bins of the correlation matrix (Figures 5K–5M).

As in previous examples, the additive model tended to underes-

timate correlations in the center bin (Figure 5K). The multiplica-

tive model did better (Figure 5L), but not as well as the affine

model (Figure 5M). Note that the correlation matrices predicted

by the extended multiplicative model were similar to the multipli-

cative model (Figures S2H–S2O). Only the affine model could

predict all possible structures of the correlation matrices. In

fact, the rich structure of these correlation matrices can be

analytically predicted by the affine model (see Supplemental In-

formation: analytic calculation of pairwise correlations; Fig-

ure S7). We conclude that the affine model concisely accounts

for the complex, session-dependent relationship of noise corre-

lations to neuronal tuning and stimulus.

Shared Cortical Variability in Quietly AwakeMice Is Both
Multiplicative and Additive
We next asked whether the affinemodel—derived from anesthe-

tized cat data—is also a good description of shared variability in

the unanesthetized cortex. To this end, we used multisite silicon

probes to record population activity in V1 of quietly awake, head-

fixedmice (five sessions in five neuronal populations in fourmice)

in response to drifting gratings (12 directions at 100% or 60%

contrast). The data were spike-sorted and only stable, well-iso-

lated single units were used for further analysis. As expected

(Busse et al., 2009; Niell and Stryker, 2008), the mean firing rates

were substantially lower for single neurons in mouse V1 than for

multiunit activity in cat V1 (mean of 2.8 versus 30.3 spikes/s).

Even with such low firing rates, a majority (58%) of neurons

showed detectable shared variability (quality index q > 0.1 for

at least one of the models; Table S3). We focused on these neu-

rons, fit the models, and asked which model better described

this shared variability.

The results demonstrate that as in anesthetized cats, shared

cortical variability in awake mice could be described by a com-

bination of additive and multiplicative components (Figure 6).

Differences between the multiplicative and additive models
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were small (Figure 6A; Table S3; p = 0.30 for all data together

and p > 0.05 in all individual sessions; sign test). The affine

model, on the other hand, performed significantly better than

either the additive model (Figure 6B; Table S3; p < 10�12 for all

data together and p < 0.008 in all individual sessions; sign test)

or the multiplicative model (Figure 6C; Table S3; p < 10�16 for

all data together and p < 0.002 in all individual sessions; sign

test). Again, the extended multiplicative model did not fare as

well as the affine model (Figures S2E–S2G; Table S4).

The affine model also outperformed the additive and multipli-

cative models in predicting noise correlations in single-unit data

from quietly awakemice. As expected on the basis of lower firing

rates (de la Rocha et al., 2007; Dorn and Ringach, 2003),

measured correlations were considerably lower than in themulti-

unit data from anesthetized cats (noise-correlation means of

0.09 versus 0.38). Nonetheless, they could still be used to distin-

guish the performance of the models. As with the cat data, the

affine model trumped both the additive model (Figures S5,

p < 10�4 for all data together, p < 0.005 in two individual ses-

sions, and p < 0.04 in two others; sign test on the squared errors

between measured and predicted noise correlations) and the

multiplicative model (Figures S5, p < 10�31 for all data together

and p < 0.001 in all individual sessions; sign test).

Effect of Multiplicative Gain and Additive Offset on
Population Coding
We have shown that cortical population variability can be well

described by two sources of shared fluctuation: multiplicative

and additive. How do these two sources of fluctuation impact

information coding? To address this question, we used the re-

sponses of a neuronal population governed by the affine model

to distinguish stimuli that differ subtly in orientation or contrast.

To quantify this aspect of population decoding, we used a

linear discriminability measure (Averbeck and Lee, 2006;

Poor, 1994):

d2 = ðn2 � n1ÞTS�1ðn2 � n1Þ: (Equation 3)

Here n1 and n2 are the trial-averaged population response vec-

tors to stimuli 1 and 2, and S is the population covariance matrix,

derived from all presentations of the two stimuli. Since n1, n2,

and S can be analytically calculated under the affine model

(Supplemental Information: analytic calculation of pairwise cor-

relations), we can estimate the dependence of d2 on model pa-

rameters. For comparison, we also evaluated this measure for

a population of independent, uncorrelated neurons having the

equivalent amount of variability. To obtain a discriminability mea-

sure d2
shuffled based on those uncorrelated responses, we set all

off-diagonal values of the covariance matrix S (corresponding

to correlations between neurons) to zero. Depending on the

structure of the correlation, its value can be superior or inferior

to d2 (Abbott and Dayan, 1999; Averbeck et al., 2006; Moreno-

Bote et al., 2014).

We first considered the effect of changing the mean of either

the additive offset or the multiplicative gain. Increasing the

mean of the multiplicative gain enhanced coding, whereas

increasing the mean additive offset slightly degraded it

(data not shown). This accords with classic studies of tuning
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Figure 7. Effects of Fluctuations in Multipli-

cative Gain and Additive Offset on Contrast

Coding

(A) Cartoon depicting the contrast discrimination

task. The simulated activity of a homogenous

neuronal population was used to discriminate two

gratings of the same orientation at 6% and 12%

contrasts; curves indicate population tuning

curves in response to the two stimuli to be dis-

cerned. The population tuning curve on each trial is

fitted as a linear combination of a unit Gaussian

and a constant offset.

(B and C) Discriminability measure d2 (solid) and

the corresponding d2
shuffled (dashed) between

population responses in the discrimination task

as a function of the coefficients of variation (CV) of

the additive offset (B) and the multiplicative

gain (C).

(D) Distributions of tuned-response amplitudes a

from simulated population activity on 104 trials of

a discrimination task for a low value (blue) and a high value (red) of CV(ai). The two values used are marked by triangles of the same color in (B).

(E) As in (D), but for two different values of CV(gi), the variability of sharedmultiplicative fluctuations. The two values aremarked by triangles of the same color in (C).

(F and G) As in (D) and (E), but for their uncorrelated counterparts.
curves: the steeper the tuning curve and the lower the baseline,

the larger the decoding accuracy (Dayan and Abbott, 2001).

We next considered the effect of trial-to-trial fluctuations in

the additive and multiplicative terms. We simulated a contrast

discrimination task (Figure 7A) and an orientation discrimination

task (Figure 8A). The contrast discrimination task involved distin-

guishing two gratings of the same orientation, but different con-

trasts (6% and 12%); the orientation discrimination task involved

distinguishing two 12%-contrast gratings whose orientations

differed by either 6� or 90�.
In the contrast discrimination task, shared multiplicative fluc-

tuations had a much larger effect on stimulus coding than addi-

tive ones. Increasing the variability of the additive offset hardly

had any impact on discriminability, triggering a small decline

that became noticeable only after trial-shuffling, when variability

was uncorrelated across neurons (Figure 7B). On the other

hand, increasing the variability of the multiplicative gain sharply

decreased discriminability; e.g., discriminability dropped by a

factor of 5 when the coefficient of variation of gi increased from

0 to 0.5. This decline was reduced in d2
shuffled, indicating that

it is specific to multiplicative variability that is shared across

neurons (Figure 7C). These trends also held for tasks involving

different pairs of contrasts (Figures S8B–S8D).

To understand why contrast discrimination would particularly

suffer from shared multiplicative fluctuations, we fit the simu-

lated population response on a single trial as a linear combina-

tion of a unit circular Gaussian and a constant offset (Figure 7A).

Population activity on each trial was thus summarized by two pa-

rameters: the tuned amplitude a and the baseline amplitude b.

Discriminability could then be understood from the overlap of

the distributions of the tuned responses a to the two stimuli:

the more they overlap, the lower is discriminability. Increasing

the variability of the additive offset hardly altered the shapes of

these distributions, explaining the negligible effect of additive

fluctuations on coding (Figure 7D). Rather, additive fluctuations

affected the baseline amplitude b, which cannot be used to
discriminate the two stimuli (data not shown). By contrast,

increasing the variability of the multiplicative gain broadened

the distributions of the tuned amplitudes a, making them much

harder to discern (Figure 7E).

We obtained further insight into the effect of correlations

induced by shared additive and multiplicative fluctuations by

comparing them to the effect of equivalent uncorrelated vari-

ability using a shuffling analysis (Figures 7F and 7G). Comparing

the a distributions calculated from the additive-correlated re-

sponses to stimuli 1 and 2 (Figure 7D) to their shuffled counter-

parts (Figure 7F) showed that additive-correlated variability

was less detrimental than its shuffled equivalent (see also

Figure S8M). By contrast, the a distributions obtained with

shared multiplicative fluctuations (Figure 7E) had a greater over-

lap than the ones from the corresponding shuffled trials (Fig-

ure 7G). This indicates that in the contrast discrimination task,

additive-correlated variability had a minor effect, but multiplica-

tive-correlated variability worsened discriminability.

The effect of shared fluctuations on the orientation discrimina-

tion task depended on the type of fluctuations and the difficulty

of the task (Figure 8). Shared additive fluctuations had no effect

on discriminability, which deteriorated only after trial-shuffling,

when variability was no longer shared among neurons (Figures

8B and 8C). Shared multiplicative fluctuations, on the other

hand, had large consequences that depended on the difficulty

of the task (Figures 8D and 8E). For most orientation differences,

they had a strong detrimental effect, which was reduced by trial-

shuffling (Figures 8D, S8G, S8H, S8K, and S8L). Yet, when the

task involved discriminating stimuli of fine orientation difference,

performance was actually worsened by trial-shuffling (Figures

8E, S8E, and S8I), indicating that shared multiplicative fluctua-

tions allow better fine-orientation discrimination than the equiv-

alent uncorrelated variability.

To understand these effects, we fit population responses as a

sum of responses to the two gratings being discriminated

(Figure 8A) and plotted ellipses illustrating the means and
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Figure 8. Effects of Fluctuations in Multipli-

cative Gain and Additive Offset on Orienta-

tion Coding

(A) Cartoon showing two orientation discrimination

tasks. The activity of a homogenous neuronal

population was used to distinguish two 12%-

contrast gratings whose orientations differed by

90� and 6�. The population tuning curve on each

trial was fitted as a linear combination of two unit

Gaussians centered on the orientations of stimuli 1

and 2. a1 and a2 thus summarized the tuned am-

plitudes of the population activity to stimuli 1 and

2, respectively.

(B–E) Discriminability measure d2 (solid line) and

the corresponding d2
shuffled (dashed line) between

population responses in the two tasks as a func-

tion of the coefficients of variation (CV) of the

additive offset (B and C) and the multiplicative gain

(D and E). The results from discriminating an

orientation difference of 90� were plotted in (B) and

(D); and results from fine discrimination (6�) were

plotted in (C) and (E).

(F–I) Ellipses showing 3 SD contours of Gaussian

fits to the distributions of population tuned re-

sponses to stimuli 1 and 2 on 104 trials of an

orientation discrimination task at two different

values of CV(ai) (F and G) and CV(gi) (H and I). For

simple visualization, these plots show ortho-

normalized responses a0
1 and a0

2. The two values

of CV(ai) and CV(gi) were marked by triangles in

(B)–(E) with the same color coding.

(J–M) As in (F)–(I), but for trial-shuffled responses in

which the equivalent variability occurs across un-

correlated neurons.
covariances of the population responses (Figures 8F–8M; see

also Supplemental Information: decoding analysis with reduced

dimensionality). For two gratings of very different orientations,

the mean responses were far apart; shared multiplicative fluctu-

ations elongated the two ellipses in such a way that they started

to overlap, which reduced their discriminability (Figure 8H).

Introducing the same amount of variability to uncorrelated neu-

rons by trial-shuffling did not increase the overlap significantly

(Figure 8L). Conversely, for fine-orientation discrimination, the

mean responses to the two stimuli were very close (Figure 8I).

Shared multiplicative fluctuations again elongated the two ellip-

ses, but because the direction of this elongation was almost

orthogonal to the separation between the centers, its effects

on overlap were relatively minor. When the equivalent variability

was applied independently to the neurons via trial-shuffling, the

elongated ellipses were replaced by nearly circular shapes that

showed greater overlap (Figure 8M). We observed similar trends

in orientation discrimination tasks that involved gratings of a

different contrast (Figures S8I–S8L).

In short, shared additive fluctuations are not detrimental to

either contrast or orientation discrimination. Shared multiplica-

tive fluctuations, on the other hand, are detrimental to the

discrimination of contrast and of coarse orientation differences,

but are less harmful to fine-orientation discrimination than an

equivalent amount of uncorrelated variability.
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DISCUSSION

We analyzed the activity of large neuronal populations in V1. We

found that much of the trial-by-trial variability is shared across

the population and can be summarized using only two global fac-

tors: additive and multiplicative. These results may reconcile the

long-held view that variability is additive (Arieli et al., 1996; Schöl-

vinck et al., 2015) with subsequent claims of it being predomi-

nantly multiplicative (Ecker et al., 2014; Goris et al., 2014). The

former view hypothesizes that the large response variability on

individual trials comes from adding ongoing cortical activity

onto a deterministic sensory response. The latter postulates

that much of the response variability arises from fluctuations in

excitability. We argue that it is not one or the other, but a combi-

nation of the two.

Our data suggest that commonmultiplicative gain fluctuations

play a dominant role in the structure of pairwise noise correla-

tions. There are two long-standing hypotheses for the circuit

mechanisms underlying the similarity of signal and noise correla-

tions. The first is that correlations arise from synaptic connectiv-

ity patterns. In visual cortex, neurons with similar orientation

preferences are preferentially connected, thus co-tuned neurons

will also share a larger fraction of common input from cells of

similar sensory preference (Ko et al., 2011), increasing their

correlations. The second is that correlations reflect common



modulation by multiplicative gain fluctuations (Brody, 1999).

Indeed, even a pair of neurons that are unconnected and share

no inputs would exhibit noise correlations if they experienced

common multiplicative modulation, and the strength of these

correlations would be stronger for neurons with similar sensory

tuning. Our data provide evidence in favor of both hypotheses,

but ascribe a larger role to the mechanism of shared multiplica-

tive fluctuations. Indeed, the affine model generated a good fit to

the dependence of noise correlation on orientation tuning (Fig-

ures 4 and S6) and only a small residual was left to be explained.

Intriguingly, this residual resembled the small, but significant,

dependence of spontaneous correlations on tuning difference.

The affine model could not possibly capture this dependence,

because it has no way to preferentially assign shared factors

as a function of tuning similarity. The similarity of spontaneous

and signal correlations, matching the residual error in the affine

model’s prediction, thus suggests that specific synaptic connec-

tivity does contribute to producing noise correlations, although

this contribution is numerically smaller than the contribution of

common gain fluctuations.

Our results lend weight to the multiplicative model, but also

reveal its possible limitations. For example, shared multiplicative

fluctuations alone were insufficient to predict the complex rela-

tionship between correlations, the sensory tuning of both units,

and the stimulus (Figure 5). The affine model—by adding an

additional common additive offset on each trial—resolved this

limitation.

Nevertheless, there are certain features that may further

improve the affine model. For instance, Okun et al. (2015)

show that different neurons are coupled to global fluctuations

differently. In the current affine model, only the additive compo-

nent has a cell-coupling term that allows each neuron to be

coupled to population activity to different degrees. We saw

that it is possible to extend the multiplicative model in such a

way; this extension improved the fit of the multiplicative model,

but not to the extent that it matched the affine model (Figure S2).

Future work could explore the possibility of combining the

extended multiplicative model and the additive model; however,

this would require substantially greater amounts of single-unit

data than analyzed here.

What candidate circuit mechanisms might underlie the multi-

plicative and additive fluctuations described here? A possibility

lies in different interneuron classes: activation and inactivation

of parvalbumin- or somatostatin-positive interneurons have

been variously suggested to have multiplicative, additive, and

combined (affine) effects on the firing rates of pyramidal cells

(Atallah et al., 2012; Lee et al., 2012; Wilson et al., 2012). Another

possibility lies in top-down connections from higher order

cortices and thalamus. These inputs, which target distal apical

dendrites in layer 1, can rarely elicit spikes in pyramidal cells,

but may boost the gain of pyramidal cells’ responses to more

proximal sensory inputs (Larkum, 2013; Larkum et al., 1999,

2004). Such top-down connections are believed to play a role

in attentional modulation of V4 firing (Armstrong and Moore,

2007; Moore and Armstrong, 2003), which has been reported

to have both a multiplicative and an additive effect on visual re-

sponses (Boynton, 2009; Buracas and Boynton, 2007; Murray,

2008; Reynolds and Heeger, 2009; Thiele et al., 2009; Williford
and Maunsell, 2006). In addition, multiplicative effects have

been observed in other contexts such as normalization (Busse

et al., 2009; Carandini and Heeger, 2012). The multiplicative

and additive fluctuations might also share circuits with those

that modulate responses based on locomotion, which has both

an additive and a divisive effect (Ayaz et al., 2013).

Additive and multiplicative fluctuations have very different

consequences for the cortical coding of sensory information.

An analytically tractable model based on our experimental

results revealed that for both contrast and orientation discrimina-

tions, additive fluctuations had negligible effect on the discrimi-

nability of sensory stimuli, whereas multiplicative fluctuations

had a much larger effect. These results have a simple intuitive

explanation. Variability in population activity reduces the ability

to discriminate stimuli, when it means that a single population-

firing pattern can be induced by two different sensory stimuli.

A change in multiplicative gain can affect population activity in

a very similar way to a change in stimulus contrast; it is thus

not surprising that contrast discrimination is impaired strongly

by multiplicative fluctuations. Likewise, the small effect of addi-

tive fluctuations may be understood from the fact that the result-

ing changes in baseline could not have been generated by any of

the stimuli presented.

While correlated fluctuations were originally believed to only

worsen stimulus discriminability (Zohary et al., 1994), responses

with correlated variability can often outperform responses with

the same amount of uncorrelated variability (Abbott and Dayan,

1999; Averbeck and Lee, 2006; Moreno-Bote et al., 2014). This

does not mean that correlated variability helps discrimination

(compared to zero variability); it means that its correlation struc-

ture interferes less with stimulus coding than might otherwise be

expected. Indeed, we found that correlations frequently help

discriminability. Shared additive fluctuations, for example, had

a less detrimental effect on discriminability than their uncorre-

lated counterparts. This may be because the effect of shared ad-

ditive fluctuations lies along a different direction in population

vector space than differences between stimuli; shuffling thus

adds variance to a dimension that can interfere with stimulus

coding (Figure S8M). For shared multiplicative fluctuations, the

effect of correlations on orientation discrimination depended

on the difficulty of the discrimination task. For easy tasks (large

orientation differences), correlations hurt. In this case, the pools

of neurons responding to the two very different stimuli are largely

distinct; the arguments of Zohary et al. (1994) therefore apply,

and correlations cause averages over populations to be taken

less accurately. For fine discrimination, however, correlations

improved performance, possibly because the multiplicative

fluctuations move population responses in a different direction

to differences in stimulus orientation (akin to differences in

contrast). Our decoding results therefore suggest that the nature

of shared variability in visual cortical populations is well-suited

for stimulus discrimination: additive variability has little conse-

quence, while multiplicative-derived correlations benefit fine-

orientation discrimination over uncorrelated variability.

But why should shared multiplicative and additive variability

occur at all? Why not simply have private variability or no vari-

ability? Multiplicative variability might reflect the same circuit

mechanisms that are responsible for top-down processes,
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such as attention. It has been suggested that visual attention

modulates visual cortical responses in a similar manner to an in-

crease in stimulus contrast, which could explain its primarily

multiplicative effect similar to a contrast change (Reynolds and

Heeger, 2009). While fluctuations in this process would clearly

impair fine-contrast discrimination, contrast discrimination may

be a task only rarely required. Indeed, much of the visual system

appears to be geared toward making contrast-invariant judg-

ments (Finn et al., 2007). Because our results show that multipli-

cative fluctuations have little effect on fine-orientation discrimi-

nation, we conclude that multiplicative fluctuations might allow

the visual system to modulate the salience of visual stimuli, while

having relatively little impact on stimulus coding. Additive fluctu-

ations may allow the population to include an additional dimen-

sion of salience or other non-sensory factors, with only minor

impact on representation of sensory information.

EXPERIMENTAL PROCEDURES

Anesthetized cat recordings were approved by the Animal Care and Use Com-

mittee of the Smith-Kettlewell Eye Research Institute. Experimental methods

have been previously described by Busse et al. (2009). Briefly, responses, pri-

marily from layers 2/3, were recorded with a 10-by-10 electrode array. All

threshold crossings on each channel were pooled and only orientation-tuned

sites were considered in subsequent analyses. Sequences of 2 s contrast-

reversing oriented gratings and plaids, interspersed with 2 s blanks, were

shown in random order in blocks (see Supplemental Information: anesthetized

cat recordings).

Awake mouse recordings were conducted under personal and project

licenses issued by the Home Office, in accordance with the UK Animals

(Scientific Procedures) Act 1986. A head plate with a recording chamber

was affixed to the skull. After 3 days of recovery and 3 head-restraint acclima-

tization sessions, a craniectomy (and durotomy, if necessary) was made over

the left V1. The animal was allowed to recover for at least 1.5 hr before the

recording. Multisite silicon probes were inserted to a depth of 500–800 mm

(median 615 mm). Animals were judged to be quietly awake by video moni-

toring. Spikes were detected using NDManager (Hazan et al., 2006) and clus-

tered using KlustaKwik (Harris et al., 2000; Kadir et al., 2014), followed by

manual adjustment using KlustaViewa (Rossant and Harris, 2013). Detailed

analysis was carried out only on well-isolated units that showed consistent

firing throughout a recording session. Sequences of 1 s oriented drifting grat-

ings, interspersed with either 1 or 6 s blanks were shown on three liquid-crystal

display monitors, covering a field of view of�120� 3 60� that extended in front

and to the right of the animal (see Supplemental Information: awake mouse

recordings).

Population tuning curves Ri were fit to population responses to plaid stimuli

as a linear combination of prototypical response to the component gratings

and a constant baseline shift. The percentage of variance of the population ac-

tivity that could be explained by the population tuning curve analysis on each

trial was estimated as 1� ðPcðrc;i � Rc;iÞ2Þ=ð
P

cðrc;i � riÞ2Þ, where rc,i is the

normalized firing rate for each site c and trial i, and ri is the measured site-

averaged response on trial i (see Supplemental Information: population tuning

curve analysis).

Full details of the models considered in this study can be found in Sup-

plemental Information: the models. Briefly, we denote the experimentally

measured spike counts of unit c (single neuron or multiunit) on trial i as Nc,i

and the stimulus presented on trial i as s(i). Each model predicts an expected

spike count fc,i of unit c on trial i that approximates Nc,i.

In the independent model, the expected spike count on each trial is a deter-

ministic quantity:

fc;i =dc;sðiÞ; (Equation 4)

where the matrix dc;sðiÞ is estimated as the trial-averaged spike count of unit c

to stimulus s(i).
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In the additive model, the expected spike count is

fc;i =dc;sðiÞ + aihc; (Equation 5)

where dc,s represents the sensory drive of unit c from stimulus s, ai the com-

mon additive offset on each trial i, and hc the degree to which each unit c is

susceptible to this offset. The total number of parameters in this model is

MunitsMstimuli +Mtrials +Munits: dc;s is estimated as in the independent model,

and the parameters ai and hc were fit by least-squares.

In the multiplicative model, the expected spike count is given by

fc;i =gidc;sðiÞ: (Equation 6)

gi is the common multiplicative gain on trial i. Note that unlike the model of

Goris et al. (2014), where on each trial each cell has its own (private) gain

(i.e., fc;i =gc;idc;sðiÞ), we propose a common multiplicative gain that is shared

across the population. This model contains MunitsMstimuli +Mtrials parameters,

which were fit by least-squares.

The affine model incorporates both the additive and multiplicative

components:

fc;i =gidc;sðiÞ + aihc: (Equation 7)

The total number of parameters in this model is MunitsMstimuli + 2Mtrials +Munits.

We fit the affine model by an alternation method that was repeated until the

convergence criterion wasmet, specifically that the difference in squared error

per unit per trial
P

c;iðfc;i � Nc;iÞ2=MunitsMtrials between two iterations was lower

than 10�10. Typically this took several hundred iterations.

The predictions of these models represent expected spike counts rather

than actual integer observations. To generate spike counts nc,i from each

model, we used a negative-binomial spike generator with mean fc,i and a

Fano factor parameter Fc;sðiÞ that was estimated for each unit c and stimulus

s by maximum likelihood (see Supplemental Information: spike count gener-

ator). Spike counts generated by thismethodwere used for the analyses in Fig-

ures 3, 4, and 5.

We assessed the models’ goodness of fit by cross-validating the simulated

spike count nc,i (see Supplemental Information: cross-validation; Figure S1).

Model performance was assessed for each unit c by quality index

qc = 1� ðPie
2
c;i=

P
ie

02
c;iÞ, where e02c;i was the squared error of the independent

model. This cross-validation method was used to generate the plots in Figures

2E–2G, 6, and S2B–S2G; only units that showed shared variability (qc > 0.1 for

at least one of the models) were included in statistical analysis.

To estimate how the linear discriminability measure d2depends on the fluc-

tuations of additive offset and multiplicative gain, we constructed a homoge-

neous neural population with translation-invariant orientation tuning curves

(see Supplemental Information: decoding). To visualize the population

patterns produced by this population, we simulated population responses

on 104 trials of the contrast and orientation discrimination tasks, assuming

Gaussian distributions for both multiplicative gain and additive offset. The cor-

responding uncorrelated responses were obtained by trial-shuffling. These

population responses were then projected onto a low-dimensional space for

visualization (see Supplemental Information: decoding analysis with reduced

dimensionality).
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