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Deep time‑delay Markov network 
for prediction and modeling 
the stress and emotions state 
transition
Barlian Henryranu Prasetio1*, Hiroki Tamura2 & Koichi Tanno2

To recognize stress and emotion, most of the existing methods only observe and analyze speech 
patterns from present-time features. However, an emotion (especially for stress) can change because 
it was triggered by an event while speaking. To address this issue, we propose a novel method for 
predicting stress and emotions by analyzing prior emotional states. We named this method the deep 
time-delay Markov network (DTMN). Structurally, the proposed DTMN contains a hidden Markov 
model (HMM) and a time-delay neural network (TDNN). We evaluated the effectiveness of the 
proposed DTMN by comparing it with several state transition methods in predicting an emotional 
state from time-series (sequences) speech data of the SUSAS dataset. The experimental results 
show that the proposed DTMN can accurately predict present emotional states by outperforming the 
baseline systems in terms of the prediction error rate (PER). We then modeled the emotional state 
transition using a finite Markov chain based on the prediction result. We also conducted an ablation 
experiment to observe the effect of different HMM values and TDNN parameters on the prediction 
result and the computational training time of the proposed DTMN.

Emotion plays a vital role in communication. Emotional awareness helps us to better understand the feelings 
of a communicator. In the 1970s, a psychologist identified six basic emotions: happiness, sadness, disgust, fear, 
surprise, and anger1. In human life, happiness is the primary purpose to be achieved. Happiness is often defined 
as a pleasant emotion. In contrast, unhappiness is projected to an unpleasant state, such as sadness, depression, 
and stress2. In neurobiology science, stress is a situation that triggers a particular biological response that causes 
hormones to surge throughout the body3. When people are in a stressed condition, it is easy for them to misun-
derstand intentions or what they would like to communicate and express an abnormal emotion as a reaction. 
Stress can affect all aspects of a person’s life, including emotions, behaviors, thinking ability, and physical health4. 
Everyone handles stress in different ways so that the symptoms of stress are also varied. The symptoms of stress 
can be vague and may be the same as other medical conditions. Hence, it is important to recognize stress early.

The body reveals the stress response through facial expression, body language, and tone of voice. Thus, the 
facial expression5–8 and speech of the stressed person9–13 can be used to detect the level of stress14. Since the 
speech-based stress measurement method is non-invasive, it is convenient for measuring stress. Therefore, this 
method has become popular and widely studied. The speech-based stress measurement method, also known as 
stress speech recognition (SSR), uses labeled utterances and learns their patterns to recognize stress12. A large 
quantity of relevant stress speech data is required in the training phase to enable this system to adapt to real con-
ditions. Unfortunately, stress speech datasets are limited. To this end, many researchers use clustering algorithms 
to categorize unlabeled stressed speech data based on the similarity of their characteristics.

In this decade, clustering algorithms have successfully categorized stress speech data using an unsupervised 
approach15–18. Most of them used a similarity algorithm to compute the distance between data points. However, 
it was found that these algorithms become inefficient for high-dimensional data due to their computation time 
and memory usage19, known as the curse of dimensionality. Recently, using a self-learning method to optimize 
the clustering objective, deep clustering algorithms have addressed the curse of dimensionality20 problem. Deep 
clustering applies a deep neural network (DNN)-based autoencoder to compactly transform the data from 
the original space to a lower-dimensional space (embedding space)21,22. By learning in-depth and simultane-
ously minimizing the error, deep clustering can present an excellent feature representation. However, despite its 
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compactness in representing features, most of the deep clustering algorithms have not yet considered the prior 
state. In some cases, emotion (especially stress) may change when triggered by an event while speaking23. In this 
fashion, we argue that the prior emotional states should also be monitored so that the emotion of the speaker can 
be recognized more accurately. By this approach, we can take advantage of larger sets of contextual information24.

Several studies have successfully modeled emotion based on its state transition23–27. Generally, for predictive 
modeling or probabilistic forecasting28, the Markov model is the most used because of its convenience in mod-
eling the temporal context in time-series (continuous) data27,29. The hidden Markov model (HMM) models the 
dependencies between consecutive hidden states. In natural language processing, it was found that there are local 
dependencies and at a distance. Conservative methods that use the most recent history to perform prediction 
produce an overfitting result for short-term patterns and miss the important long-term effects30. Thus, capturing 
the long-term temporal dynamics in-depth is essential for further exploration.

Today, deep neural networks (DNNs) are the most popular deep learning technique because of their superior 
in-depth learning of complex patterns. DNNs are composed of multiple layers of nonlinear operations that aim 
to learn features hierarchically, where features in a small temporal context at higher layers are formed using the 
features at lower layers. To process a wider temporal context, from the initial layer, DNN learns an affine trans-
form for the entire temporal context31. Consequently, DNNs become ineffective for modeling the dependencies 
of temporal dynamics (long and short temporal contexts)32, such as stressed speech33. In contrast, to handle a 
long-range temporal dependence, a time-delay neural network (TDNN) creates more large networks from sub-
components across time steps31. In such a way, TDNN learns the dependency inter-contexts at small or long 
temporal scenarios.

To this end, we propose a new framework for predicting and modeling stress and emotions, named the deep 
time-delay Markov network (DTMN). The DTMN analyses in-depth the stress and emotion speech features 
by considering the prior emotional states. Structurally, the DTMN contains Markov method, which is handled 
by HMM and the neural network architecture of TDNN. HMM is trained to generate the transition matrix of 
emotional states and predict the hidden states at each time step. The TDNN is trained to predict the present 
hidden state by considering the present feature and prior hidden states. We explicitly use the embedding feature 
of deep clustering22 as input to the DTMN, which proves able to present a compact feature representation of 
stress and emotion.

We organized the rest of this paper as follows. In the “Related works” section, we review the existing stress 
and emotion models and the related works. The “Results” section demonstrates the evaluation results in the 
prediction task and the modeling of stress and emotion transitions. The prediction result and the state transition 
model of the stress and emotions are discussed in the “Discussion” section. The “Method” section describes the 
material and method of the proposed DTMN that consists of the use of the dataset, network settings, baseline 
systems, and its ablation experiment. Finally, the “Conclusion” section provides the final results and future work.

Related works
In this decade, stress and emotion recognition systems using speech analysis have been extremely studied. Most 
of them used a standard architecture where the feature extraction and classifier were the main components in rec-
ognizing the stress and emotion patterns. The effectiveness of feature representation is a crucial modality to make 
the system efficient. The fundamental frequency, energy, formats, mel-frequency cepstral coefficients (MFCC), 
and the Teager energy operator (TEO) are typical techniques used to capture stress and emotion features34. The 
identity vector (i-vector) and DNN embedding vector (x-vector) that have success in recognizing the speaker35,36 
and language37,38 have also recently proven robust in representing the stress13 and emotion features39.

A single classifier, such as support vector machines (SVMs)40,41, neural networks and their variations12,34, the 
k-nearest neighbor (KNN), Gaussian mixtures model (GMM)42 and HMM43, is commonly used to discriminate 
the types of stress and emotions. To enhance the performance of single classifiers, hybrid classifiers such as SVM/
GMM44 or ensemble models11 have been proposed. An amount of stress and emotion dataset (e.g., Speech Under 
Simulated and Actual Stress (SUSAS)45,46, Emotional Database (EmoDB)47, Keio University Japanese Emotional 
Speech Database (KeioESD)48, Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)49) 
has been provided. However, we know that stress has diverse characteristics and different patterns for each indi-
vidual. It is caused by various aspects, such as characteristics, gender, experience background, and emotional 
tendencies50. Considering these rules, to make the system more robust and able to adapt in real conditions, more 
data training is required. Unfortunately, stress and emotion data are difficult to collect on a large scale.

To address this issue, some studies have explored an unsupervised approach for categorizing stress and emo-
tion speech data based on the similarity of their characteristics. An unsupervised algorithm defines their effective 
objective in a self-learning manner15–18,51,52. Typically, an unsupervised clustering algorithm uses a similarity 
algorithm to compute the distance between data points in feature space17,51,52. However, calculating the distance 
for all data points on high-dimensional data is inefficient and known as the curse of dimensionality issue.

In the past year, some researchers have offered another approach for solving the problem of the curse of 
dimensionality by presenting a compact feature representation in the clustering assignment, known as deep 
clustering53. Deep clustering uses a DNN-based autoencoder to transform input into a low-dimensional feature 
representation and simultaneously learn the clustering assignment20. With this ability, deep clustering has become 
a popular clustering method and is widely used in many practical applications. Technically, deep clustering 
strengthens the feature representation by pushing the inter-cluster compactness. However, it accidentally ignores 
the effect of inter-cluster similarity. The unsupervised deep time-delay embedded clustering (DTEC)21 offers 
discriminative loss supervision to address this issue. DTEC has proven more effective in categorizing stress and 
emotions. Since DTEC is unsupervised learning, the correspondence between the output class and informational 
classes cannot be confirmed yet because there was no given measured information about the relationship between 
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observed clusters. By incorporating prior knowledge, a semi-supervised DTEC framework (SDTEC)22 is proven 
to provide information for guiding the clustering assignment.

In some cases, emotion (e.g., stress) may change when triggered by an event while speaking23. Thus, we 
argue that the exploration of emotional state transition becomes a crucial consideration to recognize emotion 
accurately. Several studies explicitly modelled the speaker’s emotion by its state transition using KNN23, the long 
short-term memory (LSTM)24, Bayesian network25, finite state machine (FSM)26, and the Markov model27. Due to 
its ability to provide excellent representation for time-series (sequences) data54,55 with temporal variations56, the 
HMM is widely used to model the emotion state transition. A Markov model assumes that only the dependencies 
between consecutive hidden states are modeled so that there are local dependencies and limits for capturing a 
long-term temporal. To address this, the deep Markov neural network (DMNN) is proposed to learn in-depth 
the hidden representation of HMM using a recursive neural network30.

In this paper, the stress and emotion prediction model is proposed by considering its state transition. The 
proposed DTMN can learn in-depth the hidden representation of HMM using a fixed-dimension size of con-
volution networks (known as the time-delay neural network or TDNN). Different from DMNN that uses the 
recursive neural network to connect the previous time step of its hidden states, the proposed DTMN uses TDNN 
to model the relation between hidden states and the observations by receiving as input the activation patterns 
over time from units below. In addition, we apply a softmax function in the last layer to define the probability of 
each class. We evaluate the effectiveness of the DTMN to predict the stress and emotion state from the speech 
data of SUSAS45,46 and compare it with state-of-the-art state transition models, such as KNN23, LSTM24, the 
Bayesian network (BN)25, HMM54, and DMNN30. For further evaluation, we conducted an ablation experiment 
to investigate the effect of HMM and TDNN parameters on the prediction result.

Results
We demonstrate the effectiveness of the proposed DTMN to predict the present state of stress and emotion and 
then model their state transition. The proposed DTMN is assigned to predict the state of stress and emotion 
from the speech data from the SUSAS dataset. The performance of DTMN is evaluated by comparing it with 
the baseline systems in terms of the prediction error rate (PER). Furthermore, we model the state transition of 
stress and emotions based on the speech label from the prediction result.

Prediction accuracy.  The effectiveness of the proposed DTMN is evaluated in predicting the emotional 
state of the time-series observations. In this experiment, we set the input and the parameters of DTMN as 
mentioned in the “DTMN parameters setting” section and the “Baseline systems setting” section, respectively. 
We run each system independently 10 times, and on average, the evaluation results are summarized in Table 1.

Table 1 shows that BN presents a lower error than KNN. This is because KNN should provide proper scaling 
among variable time steps, while BN depicts the relationships between variables on each time step in the manner 
of conditional independencies. However, BN cannot represent the nonlinear functions of state variables. Hence, 
BN has a higher error rate than HMM. The performance gap between LSTM and HMM shows that in-depth 
learning of the hidden state is more effective than statistical machine learning. Although the LSTM has learned 
the long-term temporal context dependencies, many emotional states are hard to determine or even unobserv-
able. The combination between HMM and DNN (such as DMNN and the proposed DTMN) presents a better 
ability in solving the LSTM’s limitations by demonstrating a lower error rate. By considering the activation pat-
terns over time, the proposed DTMN significantly outperforms the DMNN in predicting the emotional state. 
The proposed DTMN is a sophisticated emotional state transition model that achieves an average prediction 
error rate of 8.55%.

Emotional states transition.  In the “Prediction accuracy” section, the proposed DTMN demonstrates 
an effective result in predicting the stress and emotion by its state transition. This indicates that the proposed 
DTMN can accurately predict the present state based on the prior states. Furthermore, we use a finite Markov 
chain to model the pattern of emotion transitions. Since males and females express emotion in different ways57, 
we present the state transition of males and females in the different diagrams.

Figure 1 shows the emotional state transition model. Tables (a) and (b) denote the state transition probability 
for males and females. Pi,j indicates the transition probability from state i to states j. For instance, P1,5 is the state 
transition probability from the state “angry” to state “soft” with the probability “0.02” for males and “0.26” for 

Table 1.   The evaluation result of the proposed DTMN and the baseline systems in predicting the emotional 
state.

Method Prediction error rate (% PER)

KNN23 48.27

BN25 41.63

HMM54 28.82

LSTM24 24.19

DMNN30 10.61

Proposed DTMN 8.55
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females. Each table shows that the sum of each row is one. As an example, the first row of Table (a) represents 
that sum of the transition probability from the state “angry” to the other states (angry, high stress, low stress, 
neutral, and soft) is one. This indicates that the transition matrix is a stochastic process, i.e., 

∑
j P(i, j) = 1 . From 

Tables (a) and (b), it is clear that the highest probabilities of each row and column are diagonal. This indicates 
that emotions typically do not change in a short time. The current emotional state will be retained if there are no 
typical effective stimuli. However, the highest sum of each column is “neutral” for males and “soft” for females. 
This proves that females are more emotional than males. Another surprise is that females are more likely to be 
“soft”, while males are more likely to angry after stressful conditions, which indicates that gender responds to 
emotional stress in different reactions, both psychologically and biologically, depending on their background 
experience, behavioral, and physiological domains.

Discussion
In this paper, we present a novel framework of stress and emotion prediction and modeling. Structurally, the 
DTMN consists of a HMM and the TDNN. The HMM is trained to produce the transition probabilities and the 
hidden states at each time step. TDNN can learn in-depth the hidden representation of HMM by creating more 
extensive networks from sub-components. In the prediction task, the DTMN is assigned to predict the emotional 
state of the time-series observations. As shown in Table 1, DTMN can outperform the baseline systems by achiev-
ing the lowest prediction error rate. This result indicates that the proposed DTMN overcomes the challenge by 
predicting the change in emotion accurately while speaking. Moreover, we showed that our method is efficient 
and effective in predicting stress and emotion.

Figure 1.   The state transition model of stress and emotions. Males and females present a similar emotional 
state transition model. Tables (a,b) show the transition probability from state i to state j for males and females, 
respectively.
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As mentioned above, emotion can usefully be defined as states elicited by reinforcements. These reinforce-
ments or stimuli can be considered emotional information. As we know, every person can recognize and under-
stand other emotions without any training, and it is too complex to be described by machine learning. Therefore, 
we argue that there are common patterns of emotional events. In this work, we presume that the cognitive assess-
ments to basic emotional stimuli are the same. Then, we use the five discrete emotional states (high stress, low 
stress, neutral, soft, and angry) from the SUSAS database and the movements of emotional states taken by the 
Markov process, as shown in Fig. 1. We represent males and females in different schemes because they express 
emotion in different ways. Generally, males and females present a similar emotional transition representation. 
However, there are some fundamental differences between male and female emotional transition tendencies. 
Females tend to more easily change their emotions, but they have a tendency to longer stress than males. After 
a stressful period, females tend to become “soft”, while males more easily become “angry”.

Method
The proposed DTMN structurally consists of a Markov model that is denoted by the HMM and a neural network 
that is represented by the TDNN. Figure 2 shows the framework for predicting and the stress and emotions 
using the proposed DTMN that is performed in three phases: the training phase, the prediction phase, and the 
emotional states transition modeling phase.

We perform a series of training procedures to obtain estimated parameters of DTMN. The HMM is trained 
using the time-series observation to produce the transition probabilities and the hidden states at each time 
step. Then, the TDNN is trained to predict the present hidden states using as input the present speech features 
and the prior hidden state. After the training phase, we obtain the estimated parameters of HMM and TDNN.

In the prediction phase, the trained DTMN is used to predict the emotional state label of the unlabeled 
observations. We conduct an opposite procedure with the training phase. First, the TDNN model predicts the 
present hidden states using the present speech features as input. Then, the HMM model predicts the emotional 
state label of the unlabeled observations using the predicted hidden states.

In the emotional states transition modeling phase, we model the transition pattern of emotions using the 
Markov chain with the predicted emotional states as input. This phase aims to illustrate the pattern of emotional 

Figure 2.   The framework for prediction and modeling the stress and emotions using the DTMN. The colored 
blue indicates the training phase, the color red denotes the prediction phase, and the colored green is the 
emotional states transition modeling phase.

Figure 3.   The hidden Markov model (HMM) training phase.
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state transitions of males and females. The Markov chain models five emotional states: high stress, low stress, 
neutral, soft, and angry.

Deep time‑delay Markov network.  Hidden Markov model.  The hidden Markov model (HMM) is a 
Markov chain whose internal state cannot be observed directly but only through some probabilistic function. In 
other words, the internal state of the model alone determines the probability distribution of the observed vari-
ables. This unobservable state is known as the hidden state. The advantage of the hidden states does not need to 
emphasize discretization and normalization issues so that we can deal with an arbitrary observation. In addition, 
the random noise in the observation can be handled by the hidden states. Therefore, the proposed DTMN uses 
the representation of the hidden states for connecting between observations.

For instance, given an observation ft and a state label yt , where t = 1, 2 . . . ,T . As shown in Fig. 3, ft and 
yt are the speech feature and the item that we want to predict at time t. By giving tuples (ft , yt) , a classification 
model is used to predict yt . We present a hidden state variable qt on each time step to connect the observation 
ft and the label yt . The parameter learning task in HMM is to find the best set of state transitions and emission 
probabilities. We establish the relationship between the hidden state and the labels as follows:

where i, j = {1 . . .N} . Each aij represents the probability of transition from state i to state j, and each eij expresses 
the probability of yt being generated from state j.

Time‑delay neural network.  We use convolution networks with a fixed-dimension size (known as the time-
delay neural network or TDNN) to predict the present hidden states. TDNN is a multilayer artificial neural 
network architecture that uses modular and incremental design to create more extensive networks from sub-
components. It makes TDNN effective in learning the temporal dynamics of the signal even for short-term fea-
ture representation31. Unlike a standard DNN, in processing a wider temporal context, the first layer of TDNN 
learns the context in a narrow temporal window and continues to a deeper layer. Distinctively, TDNN receives 
input not only from the hidden state representation at the below layer but also from the activation pattern of the 
unit output and its context.

In this paper, TDNN is used to model the relation between the hidden states and the observations by applying 
the relation of the hidden state and the labels (Eq. 1). Specifically, TDNN predicts the present hidden state qt by 

(1)
A = [ai,j] = P(qt = i|qt−1 = j)

E = [ei,j] = P(yt = i|qt = j)

Figure 4.   The structure of the TDNN.

Table 2.   The TDNN layer temporal context structure.

Layer Feature context Function

Layer-1 [qt−5, qt−1] Without sub-sampled

Layer-2 {qt−3, qt−1} Sub-sampled

Layer-3 {qt−1, ft } Concatenated

Layer-4 {0} Fully connected

Layer-5 {0} Softmax
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taking as input the prior hidden states qt−1...N and the present features ft . The structure of the TDNN is shown 
in Fig. 4, and each layer function is summarized in Table 2.

As shown in Fig. 4 and Table 2, we designed a TDNN with five layers. Layer-1 holds full temporal contexts of 
prior hidden states from qt−5 to qt−1 that splices together frames [0,−2] . In Layer-2, we apply the sub-sampling 
technique (locally connected)32 so that only two temporal contexts ( qt−3 and qt−1 ) are held. Then, we concatenate 
the present speech features ft and qt−1 feature from the second layer in Layer-3. A fully connected and softmax 
layer are performed in Layer-4 and Layer-5 of the TDNN, respectively. A softmax function is used to define the 
probability by taking a C-dimensional vector Z (from Layer-4) as input and outputs C-dimensional vector τ (real 
values between 0 and 1). The normalized exponential of the softmax function is expressed as follows:

where Z = wi
q,α(qt−1)+ wi

f ,β(ft)+ b . wq and wf  are the coefficients to be estimated. α and β are the functions 
that are used to transform qt−1 and ft into feature vectors. We perform a binary approach to α(qt−1) by assuming 
that the coordinates of qt−1th = 1 and the others are zero. The denominator 

∑C
d=1 e

zd is a regularizer that aims 
to ensure 

∑C
c=1 τ = 1.

Training phase.  In the training phase, DTMN is trained to obtain the estimated parameters of HMM and 
TDNN. We perform the training phase in two steps. As shown in Fig. 2, the first step is to estimate the hidden 
state qt based on the labels yt using the Baum–Welch algorithm, and the transition matrix A and emission matrix 
E are estimated.

After qt is estimated, the second step is to estimate the parameter of the TDNN. We use the structure of the 
TDNN (Fig. 4) in the task of supervised prediction. The TDNN is trained to predict the hidden state qt on each 
time step. Iteratively, we estimate the TDNN’s parameters ( wq , wf  , and β ) by minimizing the log-likelihood using 
stochastic gradient descent (SGD).

Prediction phase.  After the training phase, we obtain the estimated parameters of HMM (A and E) and 
TDNN’s parameters ( wq , wf  , and β ). These estimated parameters are used to build the DTMN model.

In the prediction phase, we perform an opposite procedure with the training phase. The DTMN model is used 
to predict the label yt of the unlabeled observations using the present feature ft and prior hidden state qt−1 . By 
Eq. 2, we use f1 to predict qt , and then q1 and f2 are used to predict q2 . Next, to predict q3 , we used (q2, f3) . This 
procedure continues until Q = {qt,(t=1,2...,T)} are reached. Since each qt is a random variable and P(qt |f ) is 1-by-1 
from t = 1 to t = N , the probability distribution of the labels yt that gives the prediction for the label is as follows:

Emotional states transition modeling phase.  A study58 defined emotions as discrete patterns of sys-
temic activity. Emotions are categorized clearly and consistently across multiple levels of analysis, such as sub-
jective experiences, physiological activity, and neural activation patterns. It supports that emotions are discrete 
systems that are organized in a distributed fashion across the brain.

A discrete system is characterized by a set of states and transitions between the states. To formally describe a 
discrete event simulation, many works use a stochastic process algebra59,60. In a discrete system, it can describe 
the passing of time and probabilistic choice between a limited number of processes, called the discrete stochas-
tic process. Here, the universal quantifier is limited to feasible sequences of states to sequences that occur with 
positive probability. In other words, it is defined as a discrete stochastic process with a finite number of states.

Since emotions are discrete system activity58, we apply the finite Markov chain to model the state transitions 
of emotion. A finite set of states is high stress, low stress, neutral, soft, and angry. The emotional state updates 
its state depending on its current features and the prior states as input.

In this emotional state transition modeling phase, the state transition matrix P is represented by an n× n 
square Markov matrix in which each element is non-negative, and the sum of each row of P is one. Each row of 
P denotes a probability mass function for all n possible states. Given a finite set of state space S with n state value 
elements x1, . . . , xn . A Markov chain Xt is a sequence of random variables on S that have the Markov property. 
This means that for any time step t and any state y ∈ S,

It indicates that probabilities for future states are known by just knowing the current state. Specifically, the set 
of values fully determines the dynamics of a Markov chain.

where (x, y) ∈ S . With regard to P(x, y) being the transition probability from x to y in one step (time) and P(x.) 
being the conditional distribution of Xt+1 given Xt = x , P is obviously a stochastic matrix where:

(2)τ = P(qt = i|Z) =
eZc

∑C
d=1 e

Zd
for d = 1 . . .C

(3)

P(yt = i|f ) =
∑

j

P(yt = i|qt = j).P(qt = j|f )

=
∑

j

ei,jP(qt = j|f )

(4)P{Xt+1 = y|Xt} = P{Xt+1 = y|Xt ,Xt−1...}

(5)P(x, y) := P{Xt+1 = y|Xt = x}
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Experiments.  The experiments are conducted on a single personal computer with specifications: Intel Core 
i7-7700K CPU @ 4.2 GHz, 16 GB installed memory RAM, and a 64-bit operating system with an x64-based 
processor. For the software package, we used MATLAB software version R2017b61 with several toolboxes, such 
as deep learning, digital signal processing (DSP) systems, econometrics, audio, and signal processing.

Dataset.  We used the stress speech data from the Speech Under Simulated and Actual Stress (SUSAS) data-
bases that were collected by the Linguistic Data Consortium (LDC)45. The SUSAS database is divided into four 
domains of various stresses and emotions that were obtained from 32 speakers (13 women, 19 men)46. More than 
16,000 utterances are provided in labeled and unlabeled data. SUSAS labels the speech data into five stress and 
emotion states: neutral, medium stress, high stress, soft, and angry. We used two labeled conversations data for 
estimating the two sets of parameters (HMM and TDNN). For evaluation, we used the six unlabeled conversa-
tions that have various speech durations.

We conditioned the speech input using their activity62, speakers63, and gender64. Then, each speech is repre-
sented in a low-dimensional embedding space using the SDTEC algorithm22.

DTMN parameters setting.  In the HMM model, we set the number of hidden states to 8030, and the matrix of 
state transition and the initial state distribution are initialized randomly between 0 and 1. Gaussian distributions 
are used to determine the emission probabilities.

In the TDNN model, we perform batch normalization with a 256 batch size to stabilize the training 
procedure30. The rectified linear unit (ReLU) activation function is used on each hidden layer that has a dimen-
sion of 4000.

Baseline systems setting.  The effectiveness of the proposed DTMN is evaluated to predict the stress and emo-
tion state from the speech data of the SUSAS. We then compare it with five state-of-the-art state transition 
models, as follows: 

KNN:	� run KNN with all parameter settings and architecture the same as23

BN:	� run the BN with all parameter settings and architecture as in25

HMM:	� run the HMM method with the same settings and architecture in54

LSTM:	� run the LSTM network with all parameter settings and architecture same as24

DMNN:	� run the DMNN with same setting and architecture in30

We use embedding feature representation from SDTEC (Section “Dataset”) as input to all systems (baseline 
and proposed system).

Ablation experiments.  The ablation experiment is a method used to investigate the abilities of the system’s rep-
resentations. It is especially helpful for observing the robustness of the system in an extensive work area65. The 
ablation experiment is an essential factor for safety-critical applications. Thus, to investigate the effectiveness of 
the proposed DTMN in more advanced applications, we conducted an ablation experiment. This experiment 
observes the effect of different values of the HMM and TDNN parameters on the prediction result. In particular, 

(6)Pij = P(xi , xj)

Figure 5.   The effect of the number of hidden states in the prediction result.
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we analyze whether the number of hidden states (HMM model) and the number of temporal context inputs 
(TDNN model) are related to the prediction error rate (PER). In addition, we also observe the computational 
training time of the proposed DTMN compared to the baseline DMNN.

We estimate the hidden states qt based on the labels yt using the Baum-Welch algorithm. Additionally, the 
estimated state transition matrix A and emission matrix E are obtained, as expressed in Eq. (1). Specifically, the 
Baum-Welch algorithm uses the expectation-maximization (EM) algorithm to find the maximum likelihood 
estimate of the parameters of the hidden Markov model (HMM) given a set of observed feature vectors. The 
maximum likelihood approach can produce an HMM that significantly overfits the limit and consequently 
exaggerates the number of hidden states present in the signal. Hence, we argue that a correct selection of the 
number of hidden states in the HMM context is a crucial problem that should be observed. In this experiment, 
we run the HMM model by setting a different number of hidden states (5–100). Figure 5 shows the prediction 
error rate in different numbers of hidden states. It shows that the increase in the number of hidden states reduces 
the prediction error rate significantly. The lowest error rate is achieved when the number of hidden states is 80.

Because each process in the TDNN architecture is bound to the time steps, they look like the convolutional 
network. An accumulated gradient updates the lower-layer hyperparameters across input time steps. TDNN com-
putes the activation of the time steps at each layer and the dependencies across layers. Hence, a correct temporal 
contextual input determines the effectiveness of the TDNN architecture. Thus, in this section, we investigate the 
effectiveness of the TDNN with various temporal contexts on the prediction result. We set each neural network 
to have 4000-dimensional input. The investigation of the various temporal contexts is conducted on the first two 
layers of the TDNN architecture (Layer-1 and Layer-2), see Fig. 4.

TDNN predicts the present hidden state by using as input a set of the prior hidden states qt−1...T from the 
HMM. The prediction error rate of the TDNN with various temporal context inputs is demonstrated in Table 3. 
TDNN-1 presents the highest error prediction compared to the other models. This indicates that multi-temporal 
context input is better for predicting present emotional state than a single temporal context. Furthermore, the 
increase in the number of temporal contexts (TDNN-2 and TDNN-3) can decrease the prediction error rate 
significantly. TDNN-4, which uses [−1,−5] as input, is the optimal temporal context for predicting the emotional 
state. It achieves 8.31% PER.

The proposed DTMN models the temporal dynamics by capturing the long-term dependencies between states. 
Hence, it requires an acoustic model that can effectively deal with long temporal contexts. In the “Prediction 
accuracy” section, the effectiveness in modeling the temporal dynamics of the DTMN is evaluated in terms of 

Table 3.   The performance comparison of TDNN with various temporal contexts.

Model Network context

Layerwise context

PER (%)1 2 3

TDNN-1 {−1} {−1} {−1} {−1} 10.08

TDNN-2 {−1,−2} {−1,−2} {−1} {−1} 9.76

TDNN-3 [−1,−3] {−1,−2} {−1,−2} {−1} 9.02

TDNN-4 [−1,−5] [−1,−3] {−1,−3} {−1} 8.31

TDNN-5 [−1,−7] [−1,−3] {−1,−3,−5} {−1} 8.79

TDNN-6 [−1,−9] [−1,−5] {−1,−5,−9} {−1} 8.80

Figure 6.   The computational training time of the proposed DTMN and the baseline DMNN for different 
numbers of training samples.
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the prediction error rate (PER). The accuracy of the prediction result is essential, but in practice (implementation 
phase), the time complexity of the model should also be considered. Training involves finding a specific set of 
weights based on training examples, which yields a predictor that has excellent performance. Thus, training time 
is the main challenge in developing a model. Existing theoretical results show that a model that is computationally 
difficult is the worst model66. Hence, in this ablation experiment, we observe the training time of the proposed 
DTMN, presented in Fig. 6. We demonstrate the computational training time of the proposed DTMN compared 
to the baseline DMNN in different numbers of training samples (from 500 to 8,000). In this experiment, we 
train the systems on a computer with specifications, as mentioned in the “Experiments” section. Figure 6 shows 
that DTMN presents a lower computational training time than DMNN (1,433 seconds for DTMN and 8,952 
seconds for DMNN in 8,000 training samples). As mentioned before, DTMN uses TDNN to model the relation 
between hidden states and observations. TDNN operates at a different temporal resolution, which increases on 
higher layers of the network. The transforms in the TDNN are tied across time steps, and for this reason, the 
lower layers of the network can learn invariant feature transforms effectively. Moreover, as shown in Fig. 4, we 
applied the sub-sampled technique. This technique makes the computations of the time step activations more 
efficient than standard DNN.

Conclusion
In this paper, we proposed a new framework for predicting and modeling stress and emotions, named the deep 
time-delay Markov network (DTMN). DTMN predicted the state of stress and emotions by considering its state 
transition. Structurally, the proposed DTMN consisted of a hidden Markov model (HMM) and the time-delay 
neural network or TDNN. HMM was used to predict the hidden states at each time step, while the neural network 
was applied to learn in-depth the hidden representation of HMM. The TDNN predicts the present hidden state 
using as input the prior hidden states and the features of the present time. We explicitly used a compact feature 
representation of stress and emotion (embedding features) of SDTEC as the input of DTMN. The effectiveness 
of the proposed DTMN was evaluated by comparing it with some state transition models, such as KNN, LSTM, 
the Bayesian network, HMM, and DMNN, in the task of predicting the emotional state from the time-series 
data of the SUSAS dataset. Based on the evaluation result, the proposed DTMN outperformed the baseline state 
transition systems by achieving a prediction error rate (PER) of 8.55%. In further analysis, we conducted a com-
prehensive ablation experiment to investigate whether the estimated parameters of HMM and TDNN are related 
to model performance. In particular, we investigated a different number of hidden states in the HMM and the 
various temporal contexts in the TDNN parameters to the prediction result and the computational training time 
of the proposed DTMN. The experimental results showed that the lowest error rate was achieved for the number 
of hidden states by 80, the temporal context of TDNN is [t − 1, t − 5] , and the computational training time of the 
DTMN is 1,400 seconds for 8,000 training samples. Furthermore, we performed a finite Markov chain to model 
the state transition of stress and emotions. Based on the emotional state transition model, females have a trend 
in longer stress conditions than males. After a stressful period, females have a probability to be more easily soft, 
while males tend more easily to anger. In general, females are more emotional than males.

Non-intrusive measurement methods (such as facial or speech) are not as effective as non-invasive methods 
(such as EEG and ECG). However, based on the experimental results, the proposed method presented a low 
error rate in recognizing stress and emotions. In other words, the proposed system demonstrates great promise 
to be leveraged in real life. Therefore, in the future, we will implement a smart-phone application-based proposed 
system as an early detection system of emotion.
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