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Lactate, the conjugate base of lactic acid occurring in aqueous biological fluids, has
been derided as a “dead-end” waste product of anaerobic metabolism. Catalyzed by
the near-equilibrium enzyme lactate dehydrogenase (LDH), the reduction of pyruvate to
lactate is thought to serve to regenerate the NAD+ necessary for continued glycolytic
flux. Reaction kinetics for LDH imply that lactate oxidation is rarely favored in the tissues
of its own production. However, a substantial body of research directly contradicts any
notion that LDH invariably operates unidirectionally in vivo. In the current Perspective, a
model is forwarded in which the continuous formation and oxidation of lactate serves
as a mitochondrial electron shuttle, whereby lactate generated in the cytosol of the cell
is oxidized at the mitochondria of the same cell. From this perspective, an intracellular
lactate shuttle operates much like the malate-aspartate shuttle (MAS); it is also proposed
that the two shuttles are necessarily interconnected in a lactate-MAS. Among the requisite
features of such a model, significant compartmentalization of LDH, much like the creatine
kinase of the phosphocreatine shuttle, would facilitate net cellular lactate oxidation in a
variety of cell types.
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INTRODUCTION: LACTATE DEHYDROGENASE REACTION
The reduction of pyruvate to lactate, catalyzed by lactate dehydro-
genase (LDH; Pyruvate + NADH + H+ � Lactate + NAD+) in
the cytosol of many cells, has been regarded as a metabolic “dead-
end” (Luft, 2001; Quistorff and Grunnet, 2011a), or perhaps more
aptly, a metabolic cul de sac (Barros, 2013), because lactate can
only rejoin the metabolic network via pyruvate. In mammals,
the LDH reaction is also considered to be “near-equilibrium”
(Spriet et al., 2000; Quistorff and Grunnet, 2011a,b), meaning
that the reaction is regulated chiefly by the concentrations of its
reactants and products, rather than by more sophisticated means
of allosteric regulation or covalent modification (Crabtree and
Newsholme, 1978). Because the equilibrium for the LDH reaction
lies far to the right (i.e., lactate formation favored) (Williamson
et al., 1967), regardless of LDH isoform (Quistorff and Grunnet,
2011a,b), the implication might be that LDH rarely favors the
reverse reaction (i.e., lactate oxidation) in vivo. Indeed, the mass
action ratio ([lactate][NAD+]/[pyruvate][NADH][H+]) neces-
sary for appreciable lactate oxidation would need to exceed the
equilibrium constant for LDH. However, experimental evidence
increasingly belies any notion that LDH operates unidirection-
ally in vivo, and supports that lactate serves as an important
metabolic fuel for many tissues, including skeletal (Brooks et al.,
1991; Bergman et al., 1999; Donovan and Pagliassotti, 2000)
and cardiac muscle (Gertz et al., 1988; Chatham et al., 2001),
liver (Skilleter and Kun, 1972; Kline et al., 1986), and brain
(Schurr et al., 1988; Bouzier-Sore et al., 2006; Wyss et al., 2011;
Funfschilling et al., 2012; reviewed in Barros, 2013). The pur-
pose of the current Perspective is to forward a model in which

lactate is central to the shuttling of energetic substrate between the
cytosol (glycolysis) and the mitochondria (oxidative phosphory-
lation). Components of such a concept have been demonstrated
in heart (Safer et al., 1971) and skeletal muscle (Schantz, 1986),
were later expanded to a lactate shuttle perspective (Stainsby and
Brooks, 1990; Brooks et al., 1999) and comprehensively reviewed
(Gladden, 2004) and again commented upon (Gladden, 2007).
The concept is particularly supported by recent research in neu-
ronal cells (Gellerich et al., 2012, 2013; Rueda et al., 2014). While
the concept outlined in the current Perspective is not new, per se
(Safer et al., 1971), an apparent lack of conventional recognition
or acceptance of its theoretical underpinnings, warrants further
attention.

THE MALATE-ASPARTATE SHUTTLE
Due to the impermeability of the inner mitochondrial mem-
brane to NAD+ and NADH, NADH generated by glycolysis under
aerobic conditions depends on the indirect transfer of reducing
equivalents into the mitochondria via the malate-aspartate shut-
tle (MAS) and glycerol-phosphate shuttle. These shuttles are also
thought to regenerate cytosolic NAD+ necessary to support gly-
colytic flux at the NAD+-requiring glyceraldehyde 3-phosphate
dehydrogenase reaction. The MAS has been demonstrated to be
the predominant means by which this occurs in most oxidative
tissues, and appears to constitute the principal NADH shut-
tle in mature neurons (Kauppinen et al., 1987; Ramos et al.,
2003; Contreras and Satrustegui, 2009; Gellerich et al., 2012).
It is also well established that during conditions of increased
cellular energy demand and/or increased glycolytic flux (e.g.,
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during strenuous exercise), as well as hypoxia, that the con-
centration of lactate will increase as the LDH reaction facili-
tates increased rates of cytosolic NAD+ regeneration (Robergs
et al., 2004). In the brain, however, increasing the concentra-
tion of lactate in circulation (e.g., as during exercise) results
in an increase in lactate disposal in the brain (Quistorff et al.,
2008; van Hall et al., 2009; Boumezbeur et al., 2010; Dienel,
2012). It has also been suggested that the increased LDH activ-
ity (and, in turn, lactate production) simply compensates for the
inability of the MAS to keep pace with cytosolic NAD+ demand
(Schantz, 1986). In neurons, Ca+2 activation of the MAS and
TCA cycle are competitive, such that lower levels of Ca+2 stim-
ulates MAS activity by activating the glutamate/aspartate carrier
(Contreras and Satrustegui, 2009), while higher concentrations
of Ca+2 activate α-ketoglutarate dehydrogenase in the mitochon-
drial matrix, limiting the α-ketoglutarate available for the MAS
(Contreras and Satrustegui, 2009). It is also possible that lactate
is formed continuously in the cytosol, regardless of metabolic
state, and that lactate oxidized at the mitochondria is coupled
to the MAS. In isolated cardiac mitochondria, for example, the
MAS exhibits an excess capacity, suggesting that the MAS activ-
ity alone is sufficient to maintain cytosolic NAD+ regeneration
(Digerness and Reddy, 1976). Why, then, at rest and under fully
aerobic conditions, would lactate be produced during glycoly-
sis, if all the pyruvate should be going to the mitochondria for
oxidative phosphorylation, and the MAS should be regenerating
sufficient NAD+?

CONVENTIONAL (AN)AEROBIC GLYCOLYSIS
The appearance and disappearance of lactate during varying
metabolic states has been a topic of much historical conjec-
ture, controversy, and intrigue. There have been many reviews
of the literature examining lactate metabolism, to which readers
may be directed. Some of the more recent include (Cruz et al.,
2012; Dienel, 2012; Kitaoka et al., 2012; Doherty and Cleveland,
2013; Newington et al., 2013; Brooks, 2014; Schurr, 2014; Todd,
2014). Unfortunately, many contemporary textbooks still use the
metabolic fate of pyruvate to distinguish two types of glycolysis:
aerobic (i.e., requiring oxygen) and anaerobic (i.e., without oxy-
gen). In the presence of oxygen, it has been said, pyruvate will
proceed to the mitochondria to meet its metabolic demise via
oxidative phosphorylation, the net result of which is mitochon-
drial ATP resynthesis and oxygen consumption (i.e., respiration)
(Voet et al., 2011). Conversely, when oxygen is limiting, the pyru-
vate is reduced to lactate in the cytosol by LDH, oxidizing its
cofactor NADH in the process (Voet et al., 2011). A problem
with this traditional construct is that it does not reconcile well
with some recurring scientific observations. For example, it is
well established that lactate is produced, and consumed, under
fully aerobic conditions. Indeed, in healthy, normoxic individ-
uals at rest in the postabsorptive state, it can be expected that
approximately 50 μmol·min−1 of lactate are released from the
brain alone (van Hall et al., 2009; van Hall, 2010). Clearly, lac-
tate is more than a dead-end waste metabolite of anaerobic
glycolysis; rather, shuttling of lactate throughout the organism
provides useful perspective in which to interpret experimental
observation.

THE LACTATE SHUTTLE CONCEPT
Two lactate shuttle concepts have been forwarded which describe
the movement and utilization of lactate within and between cells
(Brooks, 1998). The intracellular lactate shuttle hypothesis posits
that lactate formed during glycolysis can be continuously used
as an energy source within the same cell (Brooks, 1998). The
intercellular, or cell-cell lactate shuttle involves lactate generated
and exported from a cell to be taken up and utilized by another
cell (Brooks, 1998). The cell-cell lactate shuttle has gained general
acceptance; the finer details of the intracellular lactate shuttle con-
tinue to be investigated, however. Recently, we demonstrated both
a physical, as well as functional association of LDH with mito-
chondria in skeletal muscle (Elustondo et al., 2013). Using laser-
scanning confocal microscopy, we confirmed the colocalization
of LDH with mitochondrial membrane proteins in rat skeletal
muscle. We found that mitochondria in saponin-permeabilized
skeletal muscle fibers from rats oxidized lactate in the presence of
NAD+, malate, and ADP (Elustondo et al., 2013); this was found
similarly by another group in human fibers (Jacobs et al., 2013).
The pyruvate was then transported into the mitochondria where
it was further oxidized by pyruvate dehydrogenase (PDH), then
the TCA cycle, with reducing equivalents stimulating respiration
(Elustondo et al., 2013; Jacobs et al., 2013). We were able to inhibit
respiration with just 5 μM alpha-cyano-hydroxycinnamate, an
inhibitor of mitochondrial pyruvate transport, further sup-
porting that pyruvate, but not lactate is transported into the
mitochondrial matrix. These findings support that LDH is strate-
gically positioned to functionally interact with mitochondria,
and suggest that lactate oxidation occurs near the outer surface
of the inner mitochondrial membrane. How might an intracel-
lular lactate shuttle operate in an intact cell? Let us return to
the MAS.

In vivo, cytosolic NAD+ could, in theory, be regenerated by
malate dehydrogenase outside of the mitochondrial matrix, as
part of the MAS. The literature gives some insight into dif-
ferent tissues and their mitochondrial shuttling activities. In
the brain, the MAS has been considered the most important
shuttle system for getting cytosolic NADH into the mitochon-
dria (McKenna et al., 2006, and references therein); conversely,
the glycerol-phosphate shuttle appears to be of lesser impor-
tance (Nguyen et al., 2003). Indeed, the intimate association
of the MAS and the biosynthesis of neurotransmitter gluta-
mate has been reported (Palaiologos et al., 1988). The pub-
lished activities of the MAS measured in mitochondria iso-
lated from rat brain are in the order of 26.7 nmol·min−1·mg−1

(Pardo et al., 2006). In synaptosomes, pharmacological inhibi-
tion of the MAS results in a pronounced (i.e. 50%) decrease
in lactate oxidation (McKenna et al., 1993), supporting the
model illustrated in Figure 1. Intracerebral production of lac-
tate from 13C labeled glucose further supports the notion
that lactate is an important fuel for neurons (Sampol et al.,
2013).

It should be noted that the MAS may have its limits.
At high cardiac workloads, it has been shown that the α-
ketoglutarate/malate transporter of the inner mitochondrial
membrane cannot compete with matrix α-ketoglutarate dehy-
drogenase for their shared substrate, α-ketoglutarate (O’Donnell
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FIGURE 1 | Schematic representation of the link between glycolysis

and lactate oxidation at the mitochondria outlined in this

Perspective. Overall, glycolysis yields pyruvate and NADH, in addition to
ATP. NAD+ can be regenerated for glycolysis by the reduction of
pyruvate to lactate (LAC) by lactate dehydrogenase (LDH). LAC can
diffuse to the mitochondria where it is oxidized to pyruvate by LDH.

NAD+ is regenerated by extra-matrix malate dehydrogenase (MDH) of
the malate-aspartate shuttle. Pyruvate is subsequently transported
across the inner mitochondrial membrane into the matrix, where it
is then oxidized by pyruvate dehydrogenase (PDH) to acetyl CoA.
Abbreviations: α-KG, alpha-ketoglutarate; Glu, glutamate; AAT,
aspartate-aminotransferase; OAA, oxaloacetate; Mal, malate.

et al., 2004). This results in a limiting effect to the MAS and
its shuttling of NADH into the mitochondria. The net effect
of this limitation to the MAS would be a rise in cytosolic lac-
tate concentration as NAD+ regeneration via the LDH reaction
would help to preserve homeostatic NAD+/NADH, even in the
presence of adequate oxygen. Indeed, this is the classic phe-
nomenon observed during especially strenuous exercise where
lactate can accumulate in the blood, despite adequate oxygen
availability.

INTRACELLULAR COMPARTMENTALIZATION OF LDH:
LESSONS FROM THE PHOSPHOCREATINE SHUTTLE
The notion of shuttling compounds between the mitochondria
and cytosol to meet the energetic demands of the cell using near-
equilibrium enzymes is certainly not new. The phosphocreatine
(PCr) shuttle involves distinct mitochondrial and cytosolic cre-
atine kinase (CK) isoforms to essentially shuttle “high energy”
phosphate from the mitochondria to the cytosol. Like the LDH
reaction, the CK reaction (phosphocreatine + ADP + H+ � cre-
atine + ATP), is considered to be “near-equilibrium,” favoring
ATP resynthesis. However, experimental evidence demonstrates
that in myocardial cells, only cytosolic CK is actually at, or near,
equilibrium (Reviewed in Joubert et al., 2004). Mitochondrial

CK, on the other hand, localized to the intermembrane space,
is displaced from equilibrium, favoring net PCr resynthesis. By
way of analogy, two distinct LDH populations are thought to
be involved in the intracellular lactate shuttle: cytosolic and
mitochondrial. The cytosolic LDH would be at or near equi-
librium, whereas the mitochondrial LDH would be displaced
from equilibrium. The cytosolic LDH would favor net lactate
production, while the mitochondrial LDH would favor lactate
oxidation. And much like the adenine nucleotide translocase
(ANT), which transports ADP into the matrix across the inner
mitochondrial membrane in exchange for ATP, facilitates the
displacement from equilibrium for mitochondrial CK in the
intermembrane space, so too would the pyruvate transporter con-
tinuously transport pyruvate, displacing the mitochondrial LDH
reaction from equilibrium (Figure 1). Such a lactate shuttle would
benefit from LDH localization in the intermembrane space near
the inner mitochondrial membrane, bound to the outside of
the outer mitochondrial membrane at contact sites of the outer
and inner mitochondrial membrane, or both. If intracellular
lactate oxidation is to occur at the mitochondria via compart-
mentalization, as with the PCr shuttle, the cellular localization
of LDH in, at, or about the mitochondria would be a salient
feature.
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INTERCELLULAR COMPARTMENTALIZATION OF LACTATE
METABOLISM: THE ASTROCYTE-NEURON LACTATE
SHUTTLE
A rich and growing body of neuroenergetic research also sup-
ports the existence of compartmentalized lactate metabolism
among neighboring brain cells—namely, astrocytes and neu-
rons (Reviewed in Pellerin and Magistretti, 2012). A variant
of the intercellular lactate shuttle generally (Brooks, 2009), the
astrocyte-neuron lactate shuttle (Pellerin and Magistretti, 2012)
is based upon the idea that astrocytes are predominantly gly-
colytic, whereas neurons are more oxidative (Bouzier-Sore and
Pellerin, 2013 and references therein). Using a metabolic model-
ing approach, it was argued that greater metabolic flux through
PDH and the mitochondrial NADH shuttles in neurons com-
pared to astrocytes necessarily dictates net lactate release by
astrocytes and oxidation by neurons (Neves et al., 2012), support-
ing many experimental observations (reviewed in Bouzier-Sore
and Pellerin, 2013). As mentioned previously, the MAS consti-
tutes the major mitochondrial NADH shuttle in mature neu-
rons (Kauppinen et al., 1987; Ramos et al., 2003; Contreras and
Satrustegui, 2009; Gellerich et al., 2012). Hence, an important
feature of the lactate-consuming neuron may well be its high
MAS activity (Neves et al., 2012). Is it time for a lactate-malate-
aspartate shuttle? Is there additional theoretical support for such
a model in which lactate serves as a reducing equivalent?

REGENERATION OF CYTOSOLIC NAD+
Lactate oxidation at the mitochondrion further makes sense of
aerobic glycolysis by permitting cytosolic NAD+ regeneration by
cytosolic LDH. Indeed, evidence in cultured cells points to a
highly labile lactate/pyruvate ratio which varies to preserve home-
ostatic NAD+/NADH (Sun et al., 2012). This would be advanta-
geous for the cell for a number of reasons. Firstly, it would provide
an immediate means by which to regenerate NAD+ locally (i.e.,
in the cytosol, where glycolysis occurs); the greater relative dif-
fusability of lactate (molecular weight = 89.07 g/mol) vs. NAD+
(molecular weight = 663.43 g/mol) means lactate can readily dif-
fuse from the cell under conditions of increased glycolytic flux
(e.g., intense exercise, hypoxic stress), while also being directed
toward the mitochondria. During times of reduced cellular energy
demand, continued lactate production during much lower rates
of glycolytic flux would still be used to maintain homeostatic
NAD+/NADH within the cell, as well as for continued coupling
of intracellular lactate shuttling to the MAS.

PROTON SHUTTLING AND MITOCHONDRIAL SUBSTRATE
TRANSPORT
Lactate oxidation at the mitochondria makes sense of aerobic
glycolysis because lactate production in the cytosol effectively
consumes a proton (Robergs et al., 2004), which is thought to help
mitigate the metabolic acidosis associated with increased ATP
turnover and high rates of glycolysis (Robergs et al., 2004). The
cytosolic concentration of lactate typically exceeds that of pyru-
vate by at least 10-fold, meaning that lactate, and not pyruvate
is the predominant monocarboxylate entering the mitochondria
intermembrane space (Brooks et al., 1999). By oxidizing lactate
in the mitochondrial intermembrane space, protons would be

released where they could contribute to the �pH component of
the mitochondrial proton motive force across the inner mem-
brane (Santo-Domingo and Demaurex, 2012), and/or be trans-
ported indirectly into the mitochondria by the MAS. As with the
transport of inorganic phosphate and some other substrates and
ions (Santo-Domingo and Demaurex, 2012), carrier-mediated
transport of pyruvate across the inner mitochondrial membrane
in rat liver mitochondria appears to be directly coupled to proton
symport (or OH− antiport) (Papa et al., 1971; Halestrap, 1975).
Oxidation of lactate near the outer surface of the inner mitochon-
drial membrane, which releases a proton, would contribute to the
�pH, and in turn, pyruvate transport into the matrix. Adjacent
to the mitochondrial inner membrane, the LDH mass action
ratio (i.e., concentrations of products/concentrations of reac-
tions) could be largely facilitated by the “bleeding off” of pyruvate
as it is continuously transported across the lactate-impermeable
mitochondrial inner membrane, as well as a generous regen-
eration of NAD+ by the extra-matrix malate dehydrogenase of
the MAS. In this model, the transport of pyruvate across in the
inner mitochondrial membrane would directly influence the rate
of lactate oxidation just outside the matrix. Lactate oxidation
at the mitochondria would therefore be expected to be regu-
lated indirectly at the PDH reaction in the matrix. This would
be advantageous because unlike LDH, PDH is highly regulated
via allostery and covalent modification. As mentioned, modeling
predicts high PDH activity to dictate neuronal lactate consump-
tion in vivo (Neves et al., 2012); and high PDH activity also
characterizes lactate-consuming neurons in culture (Halim et al.,
2010).

METHODOLOGICAL CONSIDERATIONS
If mitochondrial lactate oxidation is functionally linked to the
activity of the MAS, then it would be important to include com-
ponents of the MAS in in vitro analyses of mitochondrial lactate
oxidation, such as malate itself or oxaloacetate. Malate is the likely
choice, as it is routinely included to stimulate respiration in vitro,
where it is transported into the matrix and oxidized by mitochon-
drial malate dehydrogenase to oxaloacetate. This oxaloacetate can
then condense with acetyl coA formed, for example, when pyru-
vate is added. Including glutamate in addition to malate, allows
full operation of the MAS at the level of mitochondrial respira-
tion. An important, but sometimes overlooked aspect of appro-
priate mitochondrial lactate oxidation assessment is the inclusion
of NAD+ as the requisite cofactor for the LDH reaction, and ADP
as the phosphate acceptor to stimulate oxidative phosphorylation
(i.e., state 3 respiration). Also, the extra-matrix component of the
MAS involves the malate dehydrogenase reaction: oxaloacetate
+ NADH + H+ � malate + NAD+. Experimental protocols
examining respiratory oxygen consumption in isolated mito-
chondria from muscle using high malate concentrations (e.g.,
4 mM; Rasmussen et al., 2002), may favor the malate dehydro-
genase reaction in the reverse direction (i.e., malate oxidation
and NADH + H+ production) when added to the mitochon-
drial sample in combination with NAD+. Indeed, reversibility of
the MAS has been observed in isolated hepatocytes (Berry, 1971)
and mitochondria with reconstituted MAS (Kunz and Davis,
1991). The net effect of this MAS reversal on respiration would
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be to reduce malate from entering the mitochondria, forming
oxaloacetate. More importantly, the reversal would prevent lactate
oxidation to pyruvate, and subsequent transport and oxidation of
the pyruvate in the matrix. Solutions to these methodological bar-
riers to observing mitochondrial lactate oxidation in vitro involve
including at least one component of the MAS. If adding malate,
the appropriate concentration should be determined experimen-
tally. Including ADP and NAD+ or NADH (recall, the MAS will
generate NAD+ for the LDH reaction) is necessary also to observe
appreciable mitochondrial lactate oxidation.

SUMMARY
A lactate-MAS is the interaction between the lactate and
malate-aspartate shuttles to translocate reducing power to
the mitochondria, particularly within oxidative, metabolically
active cells.
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