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ABSTRACT Smartphone cameras can measure heart rate (HR) by detecting pulsatile photoplethysmo-
graphic (iPPG) signals from post-processing the video of a subject’s face. The iPPG signal is often derived
from variations in the intensity of the green channel as shown by Poh et. al. and Verkruysse et. al.. In this
pilot study, we have introduced a novel iPPG method where by measuring variations in color of reflected
light, i.e., Hue, and can therefore measure both HR and respiratory rate (RR) from the video of a subject’s
face. This paper was performed on 25 healthy individuals (Ages 20–30, 15 males and 10 females, and skin
color was Fitzpatrick scale 1–6). For each subject we took two 20 second video of the subject’s face with
minimal movement, one with flash ON and one with flash OFF. While recording the videos we simultaneously
measuring HR using a Biosync B-50DL Finger Heart Rate Monitor, and RR using self-reporting. This paper
shows that our proposed approach of measuring iPPG using Hue (range 0–0.1) gives more accurate readings
than the Green channel. HR/Hue (range 0–0.1) (r = 0.9201, p-value= 4.1617, and RMSE= 0.8887) is more
accurate compared with HR/Green (r = 0.4916, p-value= 11.60172, and RMSE= 0.9068). RR/Hue (range
0–0.1) (r = 0.6575, p-value = 0.2885, and RMSE = 3.8884) is more accurate compared with RR/Green
(r = 0.3352, p-value = 0.5608, and RMSE = 5.6885). We hope that this hardware agnostic approach
for detection of vital signals will have a huge potential impact in telemedicine, and can be used to tackle
challenges, such as continuous non-contact monitoring of neo-natal and elderly patients. An implementation
of the algorithm can be found at https://pulser.thinkbiosolution.com

INDEX TERMS Heart rate, respiratory rate, hue, photoplethysmography, smartphone, smartphone camera.

I. INTRODUCTION
In recent years, we have seen smartphones and their acces-
sories move from an extremely niche market, to occupying a
central role in the lives of a significant share of the global
population. What used to be an obscure toy for a handful
of tinkerers and executives is now our alarm clock, note-
book, camera, dictionary, encyclopedia, fitness and wellness
assistant, and window to the greater world. In this present
work we utilize the extensive gamut of imaging technologies
present in our smartphone camera, to measure and monitor
bio-signals, towards better management of physical wellness,
as well as towards taking precautionary and preventive action
for alleviating medical issues.

An upcoming and fast growing field in smartphone based
accessorization [1] is that of health and wellness. We now
have thermometers [2], pulse monitors [3]–[6], pedome-
ters [7], sleep trackers [8], calorie trackers [9], vein detec-
tors [10], blood sugar monitors [11] and a plethora of other

devices, either connected to or as part of smartphones. Some
of these devices [1], [9], at least in part, use the sensors built
inside the smartphones themselves to acquire and process the
data thus needed.

Heart rate/pulse (HR) is often measured using contact
based optical sensors that use PPG i.e. the variation of trans-
missivity and/or reflectivity of light through the finger tip as a
function of arterial pulsation [12]–[14], followed by different
signal post-processing approaches [12]–[16]. This approach
works due to the differential absorption of certain frequency
by hemoglobin in the blood, compared to the surrounding
tissue such as flesh and bone. The wavelength under con-
sideration varies from near-infrared (NIR) [12], to red [13]
and even high intensity white flashlight [17] for fingertip
based sensor systems. In other systems, sound reflectivity i.e.
Doppler effect [18] is utilized to obtain similar parameters.
Non-contact based optical sensors, have been used tomeasure
HR from a video of a human face [14], by looking at the
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variation of average pixel value of the green channel in the
subject’s forehead.

Several techniques exist [19]–[21] to enhance accuracy and
reduce error rates for signals associated with HR both for the
contact based approaches. For example, to reduce movement
artefacts, one can look for aperiodic components at the lower
end of the spectrum [20], or consider correlation between
several signals across different channels [22]. In the case of
the non-contact based approach, continuous facial detection
(facial tracking) is used [23] to mitigate error introduced by
natural movement. Other common error sources in the face
based approach include the effects of ambient light, skin
color and real-time constraints. Camera-based methods (par-
ticularly in the case of cameraphones) [5], [18], [23], [24],
in addition to the above problems, have their own additional
set of challenge such as spectral response range of the camera
modules and ambient noise.

Contact based measurements of respiratory rate(RR) typ-
ically consists of electrophysiological measurements [25]
analogous to electrocardiography (ECG) and/or pressure sen-
sors [26], [27]. Non-contact measurement techniques usually
utilize ultrasound [28] or microwave [29] readings. While
there has been some work [12]–[14], [30], [31]–[33] in
the optical and near optical frequency ranges, non-contact
optical respiratory rate measurement still has potential for
improvement.

In this manuscript we present a novel Hue (HSV col-
orspace) based observable for reflection based iPPG. By
tracking time dependent changes of the average Hue, we can
measure arterial pulsations from the forehead region. In
what follows, in Section 2 we first discuss the Hue channel
based iPPG in detail, and compare that with the traditional
Green channel based iPPG approach. This is followed by
Section 3 and 4 where we discuss the various experimental
setup and validate the performance of Hue based iPPG with
standard approaches to measure heart rate and respiratory
rate, using videos of the user’s face procured using a com-
mercial smartphone (LG G2, LG Electronics Inc., Korea). In
Section 5 we summarize the new Hue based iPPG approach,
and address possible applications and limitations.

II. METHOD
A. iPPG OBTAINED USING THE GREEN VERSUS
THE HUE CHANNEL
iPPG is based on the principle that arterial pulsation is the
major differential component of blood flow. In a iPPG based
approach, we measure arterial pulsation using a photodiode
as a sensor and a LED as an illuminant with appropriate
illumination frequency [15], both in the case of transmis-
sion or reflectance mode. In the case of using a camera as
a sensor, a particular channel like the Green channel IG,
at which oxygenated hemoglobin absorbs light differentially
compared to the surrounding tissue is used. The optical sensor
when taking a video of the face measures the the signal I iPPGG
from the forehead (which is average fluctuation of the green

FIGURE 1. Schematic representation of extension co-efficient of
hemoglobin Hb (red) and oxygenated hemoglobin HbO2 (blue) as a
function of absorption wavelength. Overlaid are the h(λ, Ex, Ey, t) (green)
i.e. CIE color matching function for green channel, and ȟ(λ, Ex, Ey, t)
(black).

TABLE 1. Accuracy of measuring HR and RR using iPPG obtained from
video with flash on, (A) Hue within a range of 0-0.1 (B) Green.

channel of the video obtained using the smartphone camera
in our case). I iPPGG is obtained over frames 0 to t, where each
frame has−→x ×−→y pixels (Similar to ‘‘Raw Signal’’ in Fig.3),

I iPPGG =

∑
t

∑
λ

∑
−→x ,−→y

P(λ,−→x ,−→y , t)

×R(λ,−→x ,−→y , t)h(λ,−→x ,−→y , t) (1)

and P(λ) is the power of a given light source at the given
wavelength λ, R(λ) is the reflectance of the surface at a
wavelength λ, and h(λ) are the CIE (International Commis-
sion on Illumination) color-matching functions accounting
for the response of the optical sensor (eyes, camera, etc.) [34].
Since the incident light can be assumed to be time-invariant,
P(λ,−→x ,−→y , t) can be further decoupled as the intensity of
the incident light P̂(λ) and the frequency distribution of the
light normalized with respect to the total energy I (−→x ,−→y , t).

P(λ,−→x ,−→y , t) = P̂(λ)I (−→x ,−→y , t) (2)

Also, the change in the reflectance of the pulsating tissue
R(λ,−→x ,−→y , t), can be further modeled as a sum of a static
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FIGURE 2. Schematic representation of mapping between an RGB to a Hue color space. The top image is a toy
model with 9 different colors with (PixelHue = 0, 0.11, 0.22, . . .) and the corresponding points PixelR,G,B (red
dots) in the xyY plot. The same transformation when applied to the pixels in the forehead region, shows that they
have a Hue in the range of 0 and 0.1.

non-pulsatile (DC) component and a pulsatile (AC) compo-
nent. Both of these are dependent on the volume v(−→x ,−→y , t)
and reflectivity bDC (λ, t) of the individual components.

R(λ,−→x , t) = vDC (
−→x ,−→y , t)bDC (λ, t)

+ vAC (
−→x ,−→y , t)bAC (λ, t) (3)

As a result the observable for iPPG can be written as a
function of pulsatile (AC) and non-pulsatile (DC) part,

I iPPGG

=

∑
t

I (−→x ,−→y , t)
∑
λ

∑
−→x ,−→y

P̂(λ)h(λ,−→x ,−→y , t)

× [vDC (
−→x ,−→y , t)bDC (λ, t)+vAC (

−→x ,−→y , t)bAC (λ, t)] (4)

The time dependent variance of pulsatile (AC) component
is strongly correlated to the ECG signal corresponding to
HR and the RR. In literature where an RGB color space
was directly used to measure the pulsatile (AC) component
we find the best results for the green instead of the red

channel [30], as an artefact of the parameterization of the
RGB color-space.

Unlike the standard iPPG which measures average fluc-
tuations of the the Green channel, in our proposed iPPG
approach we measures average fluctuations of Hue values.
To do this we first convert each RGB pixel in the image to the
corresponding HSV pixel, and then for each frame compute
the average Hue. The resulting iPPG signal I iPPG0<H<0.1 (‘‘Raw
Signal’’ in Fig.3) can hence be written as,

I iPPG0<H<0.1

=

∑
t

∑
λ

∑
−→x

P̂(λ)ȟ(λ,−→x ,−→y , t)

× [vDC (
−→x ,−→y , t)bDC (λ, t)+vAC (

−→x ,−→y , t)bAC (λ, t)] (5)

In addition by choosing the Hue range from 0 to 0.1, we can
measure fluctuations corresponding to the skin color and
avoid external noise in the measurements. The choice of
Hue range corresponds to a choice of a particular λ range
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TABLE 2. Table showing the HR of a subject obtained from pulse
oximeter, compared with HR computed from a iPPG obtained from the
forehead of the subject (with phone-flash). The iPPG was computed using
average values of (A) Hue within a range of 0-0.1 (B) Hue (C) Green and
(D) Saturation (for pixels with Hue within a range of 0-0.1).

(700nm ≥ λ ≥ 600), which can then be modelled as
ȟ(λ,−→x ,−→y , t) (shown as a square well in Fig.1). Since this
primarily depends on the AC component, we can further
approximate it as,

I iPPG0<H<0.1 ∼=
∑
t

∑
0<H<0.1

∑
−→x ,−→y

P̂(λ)[vAC (
−→x ,−→y , t)bAC (t)]

(6)

B. GETTING HUE FROM RGB PIXELS
As defined in the previous sub-section, we measure fluctu-
ations in pixels that fall within a given Hue range. To do
this we first transform each RGB pixel PixelR,G,B to a HSV
pixel PixelH ,S,V (which is equivalent to h(λ,−→x ,−→y , t) →
ȟ(λ,−→x ,−→y , t)) using [35]. Each Hue value corresponds to a
different color, for example 0 is red, green is 0.33, and blue
is 0.66 (As shown in Fig.2.Top Panel.) Hence by choosing
a range in the Hue values, one can effectively choose corre-
sponding absorption frequency.

We have further demonstrated that under normal ambient
light the Hue of the vast majority of forehead pixels is in

FIGURE 3. Figure showing the heart and respiratory rate obtained from a
video of captured from a face captured using phone-flash. (1) Image of a
face corresponding to the first frame, superimposed with detected face
(red box), detected eyes (blue box) and the detected forehead (green
box.). (2) Average Hue as a function of time for the forehead region and
it’s corresponding frequency spectrum. (3) Average post-processed Hue
(from 0 - 0.1) as a function of time for the forehead region using HR and
RR IIR bandpass filters (IiPPG

0<H<0.1)HR and (IiPPG
0<H<0.1)RR , and it’s

corresponding frequency spectrum (IiPPG
0<H<0.1)f (HR) and (IiPPG

0<H<0.1)f (RR).

the range of 0 to 0.1 which corresponds to the color of a
human skin, as shown in Fig.2.Bottom Panel. Detailed HSV
model of color based segmentation of human skin has been
implemented by [36]–[39].

C. FACIAL AND FOREHEAD DETECTION
In this work we have used a Haar cascade based detection
function to detect the face and eyes in each frame using
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TABLE 3. Table showing the RR of a subject obtained from self-reporting,
compared with RR computed from a iPPG obtained from the forehead of
the subject (with phone-flash). The iPPG was computed using average
values of (A) Hue within a range of 0-0.1 (B) Hue (C) Green and
(D) Saturation (for pixels with Hue within a range of 0-0.1).

OpenCV [40]. The function effectively returns a box rep-
resenting the face = [xface, yface, heightface,widthface] and
eye = [xeye, yeye, heighteye,widtheye] for each frame. Where
xface and xeye are the location of the x-pixels (column) on
the top-left corner of the box, and yface and yeye are the
location of the y-pixels (row) on the top-left corner of the box.
heightface, heighteye are the height of the boxes (i.e. lengths of
the column), andwidthface,widtheye are the width of the boxes
(i.e. lengths of the rows). In MATLAB the top left corner of
a frame t is (x,y) = (0,0), and bottom right corner is (x,y) =
(−→x ,−→y ). Object detection such as faces and eyes using Haar
like feature-based cascade is a machine learning approach,
where a cascade function is trained from a lot of positive and
negative images, which is subsequently used to detect objects
in other images [41], [42]. Using these face and eye boxes,
we then compute the forehead parameters from each frame
using, forehead = [xeye + (widtheye ∗ 0.25), yface,widtheye ∗
0.5, (yeye − yface) ∗ 0.6] (See Fig.3.). The parameters for
computing forehead are optimized using multiple videos, and
agrees with available literature such as Poh et al. [23] who
chose the center 60% of the bounding box width and the full
height.

FIGURE 4. Figure showing the heart and respiratory rate obtained from a
video of a human face captured using phone-flash(Fitzgerald scale 1-2).
(1) Image of a face corresponding to the first frame, superimposed with
detected face (red box), detected eyes (blue box) and the detected
forehead (green box.) (2) Average preprocessed Hue as a function of time
for the forehead region and it’s corresponding frequency spectrum.
(3-6) Average post-processed values as a function of time for the
forehead region, using HR and RR IIR bandpass filters and it’s
corresponding frequency spectrum (3) Hue, (4) Hue from 0 - 0.1,
(5) Green channel from RGB, and (6) Saturation using Hue from 0 - 0.1.

III. EXPERIMENTAL SETUP - VIDEO ACQUISITION OF THE
FACE, AND POST-PROCESSING OF THE iPPG SIGNAL
OBTAINED USING THE HUE CHANNEL (RANGE 0-0.1)
Two videos of each subject’s facewas acquired for 20 seconds
using the rear-camera and standard video capturing applica-
tion provided with a commercial smartphone (LG G2, LG
Electronics Inc., Korea), one with and one without the flash.
While the videos were shot, an external pulse oximeter was
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FIGURE 5. Figure showing the heart and respiratory rate obtained from a
video of a human face captured using phone-flash(Fitzgerald scale 5-6).
(1) Image of a face corresponding to the first frame, superimposed with
detected face (red box), detected eyes (blue box) and the detected
forehead (green box.) (2) Average preprocessed Hue as a function of time
for the forehead region and it’s corresponding frequency spectrum.
(3-6) Average post-processed values as a function of time for the
forehead region, using HR and RR IIR bandpass filters and it’s
corresponding frequency spectrum (3) Hue, (4) Hue from 0 - 0.1,
(5) Green channel from RGB, and (6) Saturation using Hue from 0 - 0.1.

attached to the subjects’ fingers to measure the HR (Biosync
B-50DL Finger Pulse Oximeter and Heart Rate Monitor,
Contec Medical Systems Co. Ltd, China). The Biosync
B-50DL Finger Pulse Oximeter has a measurement accuracy
of ±2 beats per minute (BPM) [43]. In addition the subjects
were asked to count their respiration rate (for the duration of
a minute). In order to ensure that the RRwere correct the sub-
jects were asked to practise estimating their RR 5-10 times,
and accuracy was corroborated by visual inspection of the
subjects’ chest rising. This is consistent with the method

FIGURE 6. Figure showing the heart and respiratory rate obtained from a
video of a human face captured using phone-flash(Fitzgerald scale 5-6).
(1) Image of a face corresponding to the first frame, superimposed with
detected face (red box), detected eyes (blue box) and the detected
forehead (green box.) (2) Average preprocessed Hue as a function of time
for the forehead region and it’s corresponding frequency spectrum.
(3-6) Average post-processed values as a function of time for the
forehead region, using HR and RR IIR bandpass filters and it’s
corresponding frequency spectrum (3) Hue, (4) Hue from 0 - 0.1,
(5) Green channel from RGB, and (6) Saturation using Hue from 0 - 0.1.

recommended by John Hopkins University and John Hopkins
Hospital [44]. The videos of the face was taken with minimal
movement to simulate the standardized best case scenario.
The distance between the subject’s face and the camera was
typically ∼0.5 meter (± 20%). and had little effect on the
accuracy of the final result.

The 25 subjects (ages ranging between 20-30) were chosen
to represent different skin types (Fitzpatrick scale 1-6) and
gender. 5 subgroups were established based on skin types
and gender - Group A is Caucasian male (Fitzpatrick scale
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FIGURE 7. Scatter plots comparing accuracy of HR and RR obtained from
a iPPG using a face video, with standard approaches for measuring HR
(Panel A and C) and RR (Panel B and D). Panel A shows results for HR
computed using two iPPGs obtained from a single video with flash on
(a) Hue (0-0.1) (Red Full) and (b) Green channel (Green Dashed),
compared with HR measured using pulse oximetry. Panel B shows results
for RR computed using two iPPG obtained from a single video with flash
on (a) Hue (0-0.1) (Blue Full) and (b) Green channel (Green Dashed),
compared with RR measured using self reporting. Panel C shows results
for HR computed using two iPPG obtained from two separate videos
(a) Hue (0-0.1) with flash on (Red Full) and (b) Hue (0-0.1) with flash off
(Grey Dashed), compared with HR measured using pulse oximetry. Panel
D shows results for RR computed using (a) Hue (0-0.1) with flash on (Blue
Full) and (b) Hue (0-0.1) with flash off (Grey Dashed), compared with RR
measured using self reporting. In each set of data their are 5 subgroups
based on skin types, Caucasian male (Triangle Up Fill), Caucasian female
(Triangle Up), African male (Triangle Down Fill), Africa female (Triangle
Down) and Indian Male (Empty Box).

1-3), Group B is Caucasian female (Fitzpatrick scale 1-3),
Group C is African male (Fitzpatrick scale 6), Group D is

FIGURE 8. Bland-Altman plots comparing accuracy of HR and RR obtained
from a iPPG using a face video, with standard approaches for measuring
HR (Panel A and B) and RR (Panel C and D). Panel A shows results for HR
computed using Hue (0-0.1), compared with HR measured using pulse
oximetry. Panel B shows results for HR computed using Green channel,
compared with HR measured using pulse oximetry. Panel C shows results
for RR computed using Hue (0-0.1), compared with RR measured using
self reporting. Panel D shows results for RR computed using Green
Channel, compared with RR measured using self reporting. In each set of
data their are 5 subgroups based on skin types, Caucasian male (Triangle
Up Fill), Caucasian female (Triangle Up), African male (Triangle Down Fill),
African female (Triangle Down) and Indian Male (Empty Box).

African female (Fitzpatrick scale 6) and Group E is Indian
male (Fitzpatrick scale 4-5). The detailed results for some
of these subjects are shown in Figs.4, 5 and 6. The authors
have used human subjects to acquire readings and data in the
form of videos of their face under various lighting conditions.
The subjects were informed in detail about the nature and
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TABLE 4. Table showing the HR of a subject obtained from the pulse
oximeter, compared with HR computed from a iPPG obtained from the
forehead of the subject (with phone-flash off). The iPPG was computed
using average values of (A) Hue within a range of 0-0.1 (B) Hue (C) Green
and (D) Saturation (for pixels with Hue within a range of 0-0.1).

scope of the work, and provided their informed consent to
be included in the investigation. The subject’s facial images
have been anonymized for privacy reasons (singular excep-
tion has provided permission for image use, and was de-
anonymized for representative purposes). The subject data
was acquired and handled based on the general principles of
the Declaration of Helsinki 2013 [45], specifically in regard
to informed consent, scientific requirements and research
protocols, privacy and confidentiality.

Once the 50 videos were obtained they were post processed
using a MATLAB R2016a script, and the resulting plots are
shown in Figs.4, 5 and 6. In order to measure the HR and the
RR from a iPPG signal, from the video of a subject’s face,
the MATLAB script first capture a 20 seconds video at 30fps.
These videos were then post processed at 10fps, by using
one in every three consecutive frames and rejecting the rest.
We have further checked that the down-sampling does not
affect the final results by processing each of these videos at
15 and 30fps and computing HR and RR values. The video
length needs to be a minimum of 20 seconds long to gather
statistically significant data since RR can be as low as 6 per
minute, or 0.1 Hz. To ensure that at least 2 complete breaths

TABLE 5. Table showing the RR of a subject obtained from self-reporting,
compared with RR computed from a iPPG obtained from the forehead of
the subject (with phone-flash off). The iPPG was computed using average
values of (A) Hue within a range of 0-0.1 (B) Hue (C) Green and
(D) Saturation (for pixels with Hue within a range of 0-0.1).

are acquired within the sample, sampling period needs to be
≥ 20 seconds.

The MATLAB script then detect faces and eyes using the
approach mentioned in section Sec.II-C. For each processed
frame, the script then computes the average Hue for the
forehead region for the 200 frames, which then gives us the
raw iPPG signal I iPPG0<H<0.1. This is followed by conversion of
the time series data to its frequency spectrum, (I iPPG0<H<0.1)f .
This is followed by application of IIR bandpass filters corre-
sponding to the frequency ranges of interest, typically asso-
ciated with HR (3dB cutoffs: 0.8 to 2.2 Hz) and RR (3dB
cutoffs: 0.18 to 0.5 Hz). The order for the HR filter used
was 20, and the order for the RR filter used was 8. The
peaks of the filtered frequency spectra (I iPPG0<H<0.1)f (HR) and
(I iPPG0<H<0.1)f (RR),correspond to the HR and RR respectively
as shown in Fig.3.3). To visualize the effect of the filter
on the raw iPPG signal we replot it as (I iPPG0<H<0.1)(HR) and
(I iPPG0<H<0.1)(RR).

In addition the MATLAB script computes HR and RR,
using iPPG obtained from the average value of the pix-
els in the forehead region, using Hue (without any range
specifications), Green channel (Similar to the approach of
Poh et al. [23]), and Saturation (HSV colorspace), for pixels
with Hue within a range of 0-0.1.
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FIGURE 9. Schematic representation of the process to compute iPPG
using average Hue from 0 - 0.1.

IV. RESULTS AND DISCUSSION
A. QUALITATIVE COMPARISON OF HR AND RR OBTAINED
FROM THE iPPG SIGNAL USING THE HUE CHANNEL,
WITH OTHER ALGORITHMIC APPROACHES
To compare the accuracy of the different iPPG approaches,
we have simultaneously measured HR and RR of 25 subjects
using standard instruments like pulse oximeters (HR) and
self-reporting (RR). These results are further tabulated in
details in Table.2 and Table.3 (Flash on), and Table.4 and
Table.5 (Flash Off).

The face video based approaches in literature show that
observables designed to measure HR and RR using the Green
channel outperform Red or Blue channel [23]. Table.2 and
Table.3, show that the Hue channel and particularly the Hue
channel within a range of 0-0.1 show excellent correspon-
dence with the experimentally measured data as compared
to the other observables including the Green channel. Also,
the average Saturation as a function of time (for pixels with
Hue within a range of 0-0.1), shows the least correlation with
the experimental data.

B. QUANTITATIVE COMPARISON OF ACCURACY OF
MEASUREMENT OF HR AND RR OBTAINED FROM THE
iPPG SIGNAL USING THE HUE CHANNEL VERSUS WITH
GREEN CHANNEL
We can further use inferential statistics such as linear fit-
ting, to plot different sets of computed HR/RR with their
corresponding measured values. The closer the slope of the
fitted line (r2 Linear) is to 1, higher is the correlation. In
the case of HR as shown in Fig.7.A. the r2 Linear using
Hue (0-0.1) (Red line) is 0.9885, and using Green channel
(Green line) is 0.5576. In the case of RR as shown in Fig.7.B.
the r2 Linear using Hue (0-0.1) (Blue line) is 1.0386, and
using Green channel (Green line) is 0.8545. This shows
that HR and RR measured using iPPG obtained from Hue
(0-0.1) is quantitatively better than the Green channel. In
Fig. 7.C. and D. we have used the r2 Linear to compare
the accuracy of HR and RR measured in the presence and
absence of a flash illuminating the subject’s face. In the case
of HR using Hue (0-0.1) as shown in Fig.7.C. the r2 Linear
obtained using flash (Red line) is 0.9885, and in the absence
of flash (Grey line) is 0.4118. This is evenmore distinct, in the
case of RR using Hue (0-0.1) as shown in Fig.7.B. where
the r2 Linear obtained using flash (Blue line) is 1.0386,
and in the absence of flash (Gray line) is −0.0388. This
shows that additional illumination can substantially increase
the accuracy of measuring the HR and RR.

This could be further illustrated using the Pearson Cor-
relation test, where r equals to 1 (or −1) corresponds to
a linear correlation, r equals to 0 corresponds to no linear
correlation. In the case of HR the Pearson’s r using Hue
(0-0.1) is 0.9201, and using Green channel is 0.4916. In the
case of RR the Pearson’s r using Hue (0-0.1) is 0.6575, and
using Green channel is 0.3352. Like the scatter plots the
Pearson Correlation tests show, that HR and RR measured
using iPPG obtained from Hue (0-0.1) is quantitatively bet-
ter than the Green channel. In the case of HR using Hue
(0-0.1) the Pearson’s r obtained using flash is 0.9201, and
in the absence of flash is 0.3373. In the case of RR using Hue
(0-0.1) the Pearson’s r obtained using flash is 0.6575, and in
the absence of flash is −0.07707. The Pearson Correlation
tests also show that additional illumination can substantially
increase the accuracy of measuring the HR and RR.

Once we have established, that the face videos illumi-
nated with flash works better, we further analyse those
results using the Bland-Altman plots as show in Fig.8.
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The corresponding mean of difference and standard deviation
of difference (drawn as lines in Fig.8) are tabulated in Table.1.
In the case of HR the standard deviation of the difference,
using Hue (0-0.1) is 4.16 (as shown in Fig.8.A.), and using
Green channel is 0.28 (as shown in Fig.8.B.). In the case of
RR standard deviation of the difference using Hue (0-0.1) is
5.64 (as shown in Fig.8.A.), and using Green channel is 0.28
(as shown in Fig.8.B.). This further illustrates that the Hue
(0-0.1) approach works better than Green for both HR and
RR.

The efficacy of the Hue (0-0.1) approach over the Green
channel, is further illustrated using the paired student’s t-test
(as tabulated in Table.1). Where the in the case of HR the p-
value, using Hue (0-0.1) is 0.8887, and using Green is 0.9068.
Similarly in the case of RR the p-value, using Hue (0-0.1) is
0.2885, and using Green is 0.5608.

The standard for HR monitors as set by Advancement
of Medical Instrumentation EC-13 states that, the accu-
racy requirements are root mean square error (RMSE) ≤
5 BPM or ≤ 10%, whichever is greater. The RMSE values
for HR using Hue (0-0.1) is 0.8887 BPM, and using Green is
0.9068 BPM. The RMSE values for RR using Hue (0-0.1) is
3.8884 BPM, and using Green is 5.6885 BPM. This clearly
illustrates that the Hue (0-0.1) approach gives better results
than traditional Green channel.

V. CONCLUSION
In this study, we have introduced a novel noninvasive
approach to measure pulse and respiratory rate from a
short video of the subject’s face. Unlike traditional iPPG
approaches that measures the fluctuation of a particular RGB
color space, we have measured the fluctuation in the Hue
channel in the HSV color space. Since this observable primar-
ily depends on the AC component of the pulsatile blood, this
observable is a more accurate and robust approach to measure
vital signs using a video. In this study, we have further shown
that (1) HR and RR derived from iPPG obtained using the
Hue channel (range 0-0.1) gives the most co-related results
with standard instruments. (2) The HR and RR derived from
iPPG in obtained from videos shot with an additional flash
based illumination, is qualitatively better than those obtained
without the flash light. This is further demonstrated since the
Pearson’s r and RMSE values obtained using Hue (0-0.1)
at rest in our current work is 0.9201 and 4.1617, compared
to 0.89 and 6 obtained using green channel (before post-
processing) as reported by Poh et al. [23].
We have summarized our approach in the form of an

flowchart as shown in Fig.9.
However our proposed algorithms will not work in a num-

ber of real world scenarios. For example, if the forehead is
partially / fully covered with hair (hairstyles such as dev-
ilock, bob cut, bettie page and beehive) or a head-gear (hat,
cap, turban), or in the presence of scar tissue on forehead,
and instances in which the facial detection algorithm does
not detect a face due to non-traditional facial features such
as presence of a heavy beard. Further studies are required

to understand effects of external lighting, skin color and
movement on the accuracy of the final results. In addition
more accurate facial mapping technology to find the forehead
region can be implemented to improve the accuracy of the
face based pulse and respiratory rate detection method.

These current findings could be easily translated to a
smartphone camera application to measure HR using a cam-
era flash as an illumination source, more accurately than
the current market alternatives. Smartphone applications (or
APIs) coupled with such technology, will have further appli-
cations as a Software As A Medical Device (SAAMD) in
the video based telemedicine market allowing an average
user to monitor their HR and RR without buying additional
equipment. The telemedicine market includes tele-hospital
care (where the consultant doctor can dial in for monitoring
patients), and tele-home care (where remote healthcare con-
nection (initiated by the patient) with a network of clinicians
is usually available 24/7 for non emergency care). The clinical
relevance of telemedicine been accelerated by the advent of
tele-home care platforms such as Babylon Health, MDLive,
Doctor On Demand, Teladoc, and LiveHealth Online.

In addition HR measured in clinical settings using elec-
trocardiogram (ECG), requires patients to wear chest straps
with adhesive gel patches that can be both uncomfortable and
abrasive for the user. HR monitored using pulse oximetry at
the finger-tip or the earlobe can also be inconvenient for long-
term wear. A video based software solution will be critical
towards avoiding such inconveniences. This is of particular
interest to neo-natal and elderly care, where contact based
approaches can cause additional irritation to the subjects’
fragile skin.

In summary, we hope this will lead to development of easy
to access smartphone camera based technology, for continu-
ous monitoring of vital signs both for fitness applications as
well as predicting the overall health of the user.
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