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Abstract

The gene expression of plus-strand RNA viruses with a polycistronic genome depends on translation and replication of the
genomic mRNA, as well as synthesis of subgenomic (sg) mRNAs. Arteriviruses and coronaviruses, distantly related members
of the nidovirus order, employ a unique mechanism of discontinuous minus-strand RNA synthesis to generate subgenome-
length templates for the synthesis of a nested set of sg mRNAs. Non-structural protein 1 (nsp1) of the arterivirus equine
arteritis virus (EAV), a multifunctional regulator of viral RNA synthesis and virion biogenesis, was previously implicated in
controlling the balance between genome replication and sg mRNA synthesis. Here, we employed reverse and forward
genetics to gain insight into the multiple regulatory roles of nsp1. Our analysis revealed that the relative abundance of viral
mRNAs is tightly controlled by an intricate network of interactions involving all nsp1 subdomains. Distinct nsp1 mutations
affected the quantitative balance among viral mRNA species, and our data implicate nsp1 in controlling the accumulation of
full-length and subgenome-length minus-strand templates for viral mRNA synthesis. The moderate differential changes in
viral mRNA abundance of nsp1 mutants resulted in similarly altered viral protein levels, but progeny virus yields were greatly
reduced. Pseudorevertant analysis provided compelling genetic evidence that balanced EAV mRNA accumulation is critical
for efficient virus production. This first report on protein-mediated, mRNA-specific control of nidovirus RNA synthesis reveals
the existence of an integral control mechanism to fine-tune replication, sg mRNA synthesis, and virus production, and
establishes a major role for nsp1 in coordinating the arterivirus replicative cycle.
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Introduction

Plus-strand RNA (+RNA) viruses are ubiquitous pathogens of

plants, animals, and humans. The translation of their messenger-

sense RNA genome yields the core viral enzymes that always

include an RNA-dependent RNA polymerase (RdRp) and

assemble into a cytoplasmic machinery for viral RNA synthesis.

Many +RNA virus groups employ polycistronic genomes and

different mechanisms to express genes located downstream of the

59-proximal open reading frame (ORF). One of these mechanisms

involves the synthesis of subgenomic (sg) mRNAs (referred to as

‘‘transcription’’ in this paper). Although the sg mRNAs of +RNA

viruses are invariably 39-coterminal with the viral genome, diverse

+RNA viruses have evolved different mechanisms for their

production [1].

The order Nidovirales comprises several clades of distantly related

enveloped +RNA viruses, including the arteri- and coronavirus

families, which infect a wide variety of hosts, ranging from

invertebrates to humans. Human coronaviruses are associated

with respiratory disease (including severe acute respiratory

syndrome (SARS), reviewed in [2]) and arteriviruses like porcine

reproductive and respiratory syndrome virus (PRRSV) are

important veterinary pathogens. Members of the nidovirus order

are characterized by their exceptional genetic complexity, and the

group includes the virus families with the largest RNA genomes

described to date (25–32 kb). Nidoviruses share important traits in

their genome organization and gene expression mechanisms, and

their key replicative enzymes are presumed to be evolutionarily

related (for a review, see [3]). Their polycistronic genomes are 59-

capped, 39-polyadenylated, and the two 59-most open reading

frames (ORFs) – ORF1a and ORF1b, encode the viral replicase

subunits segregated in two large replicase polyproteins, pp1a and

pp1ab, the expression of the latter controlled by a 21 ribosomal

frameshift (Fig. 1A). Autoproteolytic processing of these precursors

generates between 13 and 16 non-structural proteins (nsps) that

direct viral RNA synthesis. Besides genome replication, arteri- and

coronavirus RdRp-containing complexes also mediate the synthe-

sis of a distinctive nested set of sg mRNAs that are both 59- and 39-

coterminal with the viral genome and hence consist of sequences

that are noncontiguous in the genomic RNA (Fig. 1B).

Despite recent advances in the structural and functional

characterization of individual replicase subunits, the molecular

details of nidovirus replication and gene expression remain poorly

understood. Studies with nidovirus model systems such as equine

arteritis virus (EAV), the arterivirus prototype, have provided some

critical insights about viral replicase functions and the regulation of

RNA synthesis in infected cells. EAV replicase pp1a and pp1ab

are co- and post-translationally cleaved into 13 nsps by viral
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proteases residing in nsp1, nsp2, and nsp4. The seven viral

structural proteins, which are all dispensable for replication and

transcription [4], are encoded in a set of overlapping ORFs

located in the 39-proximal quarter of the genome (Fig. 1A). In the

six sg mRNAs used to express these ORFs, a common ‘‘leader’’

sequence representing the 59-proximal 206 nucleotides of the

genome is linked to different ‘‘body’’ segments that are co-linear

with the 39-proximal part of the genome (Fig. 1B).

According to the widely supported model proposed by Sawicki

and Sawicki [5] (Fig. 1C), the structure of the arterivirus and

coronavirus sg mRNAs derives from a discontinuous step during

minus-strand RNA synthesis, which is guided by specific RNA

signals and resembles copy-choice RNA recombination [6–8].

Conserved transcription-regulating sequences (TRS; core se-

quence 59 UCAACU 39 in EAV) precede each structural protein

ORF (body TRSs). The same sequence motif is also present at the

39-end of the genomic leader sequence (leader TRS). Minus-strand

RNA synthesis, initiated at the 39-end of the viral genome, is

presumably attenuated at one of the body TRS regions (Fig. 1C;

reviewed in [9,10]). Subsequently, the nascent minus strand,

carrying the body TRS complement at its 39end, is translocated to

the 59-proximal region of the genomic template. During this step,

the genomic leader TRS serves as a base-pairing target for the 39

end of the nascent minus strand, a role that is facilitated, in the

case of EAV, by its presence in the loop of an RNA hairpin [11].

When minus strand synthesis resumes, nascent strands are

extended with the complement of the genomic leader sequence,

yielding a nested set of subgenome-length minus-strand templates

that are used for the subsequent synthesis of the various sg

mRNAs. If attenuation does not occur, minus-strand RNA

synthesis proceeds to yield a full-length complement of the

genome, the intermediate required for its replication.

Clearly, the protein and RNA factors that determine whether a

nidovirus RdRp complex operates in continuous or discontinuous

mode, i.e. produces a full-length or a subgenome-length minus

strand, must be critical for the coordination of the nidovirus

replicative cycle. As in other nidoviruses, the EAV genomic RNA

(RNA1) and sg mRNAs (RNA2–RNA7) accumulate in specific

molar ratios (see Fig. 1B) that are essentially constant until the

peak of viral RNA synthesis is reached [12]. The relative

abundance of the transcripts is presumably dictated by the

‘‘attenuation rate’’ at each of the successive body TRSs en-

countered during minus-strand synthesis, which is primarily

determined by the base-pairing potential between the leader

TRS and the body TRS complement in the nascent minus strand.

Also the sequence context of body TRS motifs and their proximity

to the genomic 39end, which is reflected in the ‘‘gradient’’ of sg

RNA sizes, can influence the accumulation of viral RNA species.

The importance of TRS-driven RNA-RNA interactions and the

potential for a regulatory role of higher order RNA structures was

outlined above (reviewed in [9,10]). At the protein level, however,

only a single nidovirus protein specifically involved in transcription

was identified thus far: EAV nsp1 was found to be essential for sg

mRNA production, while being dispensable for genome replica-

tion [13,14]. Remarkably, nsp1 is also the first protein expressed

during infection: it is co-translationally released from the nascent

replicase polyproteins by a papain-like cysteine proteinase activity

(PCPb) in its C-terminal domain (Fig. 2). Comparative sequence

analysis identified two additional conserved domains: a second,

proteolytically silent PCP domain that is functional in other

arteriviruses (PCPa; [15]), and an N-terminal zinc finger (ZF)

domain [13,16] that is critical for transcription and efficient

production of infectious progeny [13,14]. Since the accumulation

of all sg mRNAs was blocked in the absence of nsp1, the protein

was proposed to control a switch between replication and

transcription [13].

We have now explored the key regulatory roles of nsp1 in the

EAV replicative cycle in unprecedented detail. Our results indicate

that in addition to the ZF region, both PCP subdomains of nsp1

are essential for transcription, and suggest an additional role of

PCPa in virus production. We also established that nsp1

modulates viral RNA accumulation in an mRNA-specific manner,

and thus maintains the balance among the seven viral mRNAs,

including the genome. Our data suggests that nsp1 does so by

controlling the levels of the full-length and subgenome-length

minus-strand templates required for viral mRNA synthesis. The

results we obtained from detailed characterization of nsp1 mutants

and pseudorevertants provided compelling evidence for a close

link between the regulation of individual nidovirus mRNA levels

and the efficient production of infectious progeny.

Results

Rationale for mutagenesis of EAV nsp1
Previous studies of the role of nsp1 in the EAV replicative cycle

focused on the conserved amino acids presumed to be essential

either for zinc binding by the ZF domain or for the catalytic

activity of the PCPb autoprotease [14]. Mutations that blocked the

release of nsp1 from the replicase polyproteins were lethal, likely

due to their interference with downstream polyprotein processing

steps that are essential for genome replication [17–19]. By

contrast, replacements of putative zinc-coordinating residues

either selectively abolished transcription of all viral sg mRNAs

or interfered with virus production without affecting viral mRNA

accumulation. In an attempt to expand our repertoire of viable

nsp1 mutants, we now used two approaches: i) alanine scanning

mutagenesis of non-conserved clusters of polar residues found

throughout the nsp1 sequence, and ii) a Cys«His interchange at

the positions of residues Cys-25 and His-27, which have both been

Author Summary

Plus-strand RNA viruses, a major group of plant and animal
pathogens, employ a variety of gene expression strategies.
In some groups, the genome is translated into a single
polyprotein precursor comprising all viral proteins, while
the expression of genomes containing multiple open
reading frames commonly depends on the production of
additional, subgenomic mRNAs. These serve to translate
the open reading frames that are inaccessible to host cell
ribosomes engaged in genome translation. Arteriviruses
and coronaviruses secure the expression of their structural
protein genes by generating an extensive nested set of
subgenomic mRNAs, which are copied from a set of
complementary minus-strand templates. The production
of these subgenome-length minus strands involves a
unique mechanism of discontinuous RNA synthesis that
essentially competes with the production of the full-length
minus strand, the template for genome replication. We
describe here that arterivirus non-structural protein 1
(nsp1) modulates the accumulation of minus-strand RNAs
to control the relative abundance of both genome-length
and subgenomic mRNAs, thereby ensuring efficient
production of new virus particles. We found that specific
nsp1 mutants with imbalanced mRNA levels and low virus
production rapidly acquire additional nsp1 mutations that
rescue these defects. Thus, a single arterivirus protein plays
a decisive role in the integral control of replication, sg
mRNA synthesis, and virus production.

Nsp1 Controls the Balance among Arterivirus mRNAs
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Figure 1. Organization and expression of the polycistronic EAV +RNA genome. (A) Top: EAV genome organization, showing the 59-
proximal replicase open reading frames (ORFs), as well as the downstream ORFs encoding the viral structural proteins envelope (E), membrane (M),
nucleocapsid (N), and glycoproteins (GP) 2–5 and the 39 poly(A) tail (An). Bottom: overview of the pp1a and pp1ab replicase polyproteins that result
from genome translation, which requires an ORF1a/1b ribosomal frameshift (RFS) to produce pp1ab. Arrowheads represent sites cleaved by the three
virus-encoded proteases (open for autoproteolytically processed ones, closed for sites processed by the main proteinase in nsp4). The resulting
nonstructural proteins (nsp) are numbered. The key viral enzymatic domains such as the nsp1 papain-like cysteine proteinase b (PCP), nsp2 cysteine
proteinase (CP), nsp4 serine proteinase (SP), nsp9 viral RNA-dependent RNA polymerase (RdRp), nsp10 helicase (Hel), and nsp11 endoribonuclease
(Ne) are indicated. (B) Overview of viral mRNA species produced in EAV-infected cells. The ORFs expressed from the respective mRNAs are shown in
gray, and the 59 leader sequence is depicted in dark red. The orange boxes indicate the positions of transcription-regulating sequences (TRS). The gel
hybridization image on the right is representative of the wild-type accumulation levels of the seven EAV mRNAs at the time point used for analysis in
the study (see text for details). The amount of each mRNA, determined by quantitative phosphorimager analysis, is indicated as percentage of the
total amount of viral mRNA. (C) Model for EAV replication and transcription. Continuous minus-strand RNA synthesis yields a genome-length minus
strand template for genome replication, a process for which nsp1 is dispensable. Discontinuous minus-strand RNA synthesis results in a nested set of
subgenome-length minus strands that serve as templates for sg mRNA synthesis (see text for details). Nsp1 is crucial for this process, which is also
guided by a base pairing interaction between the TRS complement [(2)TRS] at the 39 end of the nascent minus-strand and the genomic leader TRS,
present in a RNA hairpin structure (LTH).
doi:10.1371/journal.ppat.1000772.g001

Nsp1 Controls the Balance among Arterivirus mRNAs
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implicated in zinc coordination [13,16]. The first approach is less

likely to perturb the protein’s overall stability, since clusters of

charged residues are usually found on the protein surface, where

they may mediate interactions with other biomolecules via

electrostatic interactions or hydrogen bond formation [20–22].

We reasoned that the second approach might preserve zinc

coordination but could nevertheless have a subtle effect on zinc

binding that might be translated in a measurable effect on one or

more of nsp1’s functions. Moreover, if these substitutions would

compromise virus replication, isolation of revertant viruses

encoding compensatory second-site mutations might reveal

potential regulatory protein-protein or protein-RNA interactions.

Table 1 lists the nsp1 mutants characterized in this study. In all

three subdomains of nsp1, clusters of two or three charged amino

acids within a five- to seven-amino acid stretch were substituted

with Ala. Constructs with Ala replacements in the ZF domain

were designated Z (1 to 3), while those with replacements in the

PCPa and PCPb domains were designated A (1 to 4) and B (1 and

2), respectively (see Table 1 and Fig. 2). In addition, we swapped

the Cys-25 and His-27 residues to generate the ZCH mutant. Full-

length RNA transcribed from EAV cDNA clones encoding these

nsp1 mutations was transfected into BHK-21 cells. Analysis of

nsp1 mutant phenotypes was performed during the peak of viral

RNA synthesis and before the bulk of infectious progeny was

Figure 2. Domain organization of EAV nsp1. The partial sequence alignment shows key regions in the three subdomains previously identified in
the arterivirus nsp1 region. GenBank accession numbers for the full-length arterivirus genomes used for the alignment are as follows: EAV,
NC_002532; simian hemorrhagic fever virus (SHFV), NC_003092; lactate dehydrogenase-elevating virus (LDV-P and LDV-C), NC_001639 and
NC_002534; PRRSV-LV, M96262.2; PRRSV-VR, AY150564. Zinc-coordinating residues are indicated in bold font; the active-site Cys and His of PCPa and
PCPb are indicated with triangles (note the loss of the active-site Cys in EAV PCPa). The positions of amino acid clusters mutated in this study are
indicated with arrows. All substitutions were with Ala, with the exception of the ZCH construct, in which Cys-25 and His-27 were swapped. The
positions of mutations found in pseudorevertants are indicated with open circles.
doi:10.1371/journal.ppat.1000772.g002

Table 1. Overview of the genotype and first-cycle phenotype of EAV nsp1 mutants described in this study.

Construct Genotype Mutant codonsa Replicationb Transcriptionb

pEAV211 wt NAc +++ +++

Z1 R15A D16A 267-GCG GCC-272 +++++ 2

ZCH C25H H27C 297-CAU UGU-305 +++ ++++

Z2 E34A D36A 324-GCA GCC-332 ++++ 2

Z3 R46A E49A E52A 360-GCC GCA GCG-380 +++++ 2

A1 R80A K83A 462-GCA GCA -474 +++++ ++

A2 R103A D106A R108A 531-GCU GCA GCG-548 +++++ 2

A3 E112A E113A 558-GCC GCG-563 +++ +++

A4 K126A R127A 600-GCA GCU-605 ++++ +++

B1 D172A R173A R174A E175A 738-GCU GCA GCU GCG -749 2 2

B2 R186A E187 R189A 780-GCC GCA GCG-791 +++++ 2

aNucleotide substitutions are indicated in bold italics; numbers indicate the start and end coordinates of the mutated codons in the EAV genome.
bTransfected cells were analyzed by IFA and gel hybridization analysis at 11 h post-transfection. Wild-type levels of replication and transcription (based on accumulation

levels of genomic and sg mRNAs, respectively) are indicated with +++. A 2- to 4-fold increase in genomic RNA levels as compared to wild-type is denoted by ++++,
while an increase of .4-fold is shown as +++++. Likewise, a .2-fold increase or decrease in accumulation levels of at least two sg mRNA species is shown as ++++ and
++, respectively (see text for details).

cNA, not applicable.
doi:10.1371/journal.ppat.1000772.t001
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produced by the wild-type (wt) control (11 h post-transfection;

referred to as first-cycle analysis). Previous studies of intracellular

viral RNA levels had been hampered by the considerable

variability in transfection efficiencies of synthetic EAV full-length

RNAs. For comparison between mutants, these studies used the

genomic RNA as an internal standard for each sample to calculate

relative ratios of viral mRNA accumulation levels [6,14]. Using an

improved electroporation protocol (for details, see Materials and

Methods), we now achieved very consistent and relatively high

RNA transfection efficiencies (between 45% and 55% of positive

cells at 11 h post-transfection with replication-competent synthetic

EAV RNAs; data not shown). This allowed for the comparison of

the absolute levels of mRNA accumulation and the detailed first-

cycle analysis of EAV nsp1 mutants at a time point at which

differences in virus production or (pseudo)reversion would not

influence the assessment of their phenotype.

All nsp1 subdomains are critical for transcription, while
the ZF and PCPa domains are also important for virus
production

The ZF domain of nsp1 is essential for sg mRNA production

[13,14], but the question of whether the PCPa and PCPb domains

also contribute to the protein’s function in transcription has not

been previously addressed, partly due to the nonviable phenotype

of PCPb mutants in which the nsp1/2 cleavage was impaired [14].

Consequently, we first analyzed the impact of clustered charged-

to-alanine replacements in nsp1 on viral mRNA accumulation.

Cells transfected with nsp1 mutants were harvested 11 h after

transfection, intracellular RNA was isolated and resolved in

denaturing gels, and viral mRNAs were detected by hybridization

to a probe complementary to the 39-end of the genome and thus

recognizing all viral mRNAs. Substitutions in the ZF domain

(mutant Z1), as well as in the region connecting the ZF and PCPa
domains (Z3), the PCPa domain itself (A2) and, notably, also the

PCPb domain (B2) rendered viral sg mRNAs undetectable. In

addition, all four mutants displayed a noticeable increase in

genomic RNA levels (Fig. 3A). By contrast, accumulation of all

viral mRNAs was blocked in the B1 mutant (Table 1 and data not

shown), possibly due to the proximity of the charged cluster to the

active site Cys of PCPb (Fig. 2). These results demonstrate that all

subdomains of nsp1, including PCPb, are important for transcrip-

tional control. This novel role of the PCPb domain seems to be

genetically separable from its autoproteolytic activity.

We previously reported that certain substitutions of proposed

nsp1 zinc-coordinating residues considerably reduced the yield of

infectious progeny without noticeably affecting viral RNA

accumulation [14]. This phenotype was also observed in this

study for mutants Z2 (ZF domain) and A3 (PCPa domain), in

which clusters of alanine substitutions were introduced. These had

no apparent effect on viral mRNA levels (Fig. 3B), while progeny

virus titers were reduced by 10- and 200-fold, respectively

(Fig. 3C), in supernatants harvested 24 h after transfection, well

beyond the time point of maximum virus production by the wt

control (data not shown). Accordingly, plaques of the Z2 mutant

were somewhat smaller than those of the wt virus, and those of the

A3 mutant were minute (Fig. 3C). Titers and plaque phenotypes

remained essentially unchanged at 48 h post-transfection, arguing

against a delay in virus production. Sequence analysis of the A3

progeny revealed reversion of the E113A mutation to the wt

sequence at later time points (data not shown). These observations

imply that both the ZF and the PCPa domains of EAV nsp1 are

involved in a step of the viral replicative cycle that is downstream

of transcription and is critical for the efficient production of

infectious virus particles.

Mutations in nsp1 can differentially affect accumulation
of viral mRNA species

Two mutant phenotypes were previously described upon

examination of the role of EAV nsp1 in transcription: one in

which sg mRNA accumulation was selectively abolished, and

another in which the levels of all sg mRNAs were uniformly

reduced relative to that of the genomic RNA [13,14]. In this study,

the ZCH, A1, and A4 mutants displayed a third phenotype,

demonstrating that replacements in nsp1 can affect EAV RNA

levels in an mRNA-specific manner. The swapping of two

proposed zinc-coordinating residues in the ZCH mutant resulted

in the upregulation of a subset of sg mRNAs. In comparison to the

wt control, the accumulation levels of RNA3, 4, 5, 6 and 7 were

increased, while those of the viral genome and RNA2 remained

largely unchanged (Fig. 4, A and B). The increase in mRNA levels

was not uniform, being more pronounced for RNA5 and RNA6

(4.5-fold and 3-fold, respectively) than for RNAs 3, 4, and 7 (,2-

fold). Also, the substitution of two positively charged residues in

the PCPa domain of the A1 mutant (see Fig. 2) resulted in reduced

accumulation levels of RNA5 and RNA6 (3- to 4-fold), and RNA7

(,30%), but not of RNAs 2 to 4 (Fig. 4, A and B). In contrast,

genomic RNA accumulation was dramatically enhanced in the A1

mutant (Fig. 4, A and B). This aspect of the mutant phenotype had

been previously described in mutants that did not produce any sg

mRNAs [14], in which it was attributed to the increased

availability of key factors for viral replication. This explanation

does not seem likely for the A1 mutant, however, in which

accumulation of only two of the six viral sg mRNAs was reduced

Figure 3. Importance of nsp1 subdomains for transcription and
virus production. (A, B). Analysis of EAV-specific mRNA accumulation
by gel hybridization. The domain organization of nsp1 is depicted as in
Fig. 2 and the positions of the clusters of amino acid mutations
analyzed are indicated with arrows. BHK-21 cells were transfected with
RNA transcribed from wt or selected mutant EAV full-length cDNA
clones. Total intracellular RNA was isolated at 11 h post-transfection
and resolved by denaturing formaldehyde electrophoresis. Equal
loading of samples was confirmed by ethidium bromide staining of
ribosomal RNA (data not shown). EAV-specific mRNAs were detected by
hybridization of the gel with a 32P-labelled probe complementary to the
39-end of the viral genome and subsequent phosphorimaging. The
positions of the EAV genome (RNA1) and the six sg mRNAs (RNA2 to
RNA7) are indicated. (C) Plaque phenotype and virus titers of the Z2 and
A3 mutants. Plaque assays were performed on BHK-21 using cell culture
supernatants harvested 24 h after transfection. Cells were incubated
under a semi-solid overlay at 39.5uC for 72 h, fixed and stained with
crystal violet. Virus titers represent an average of three independent
experiments. Pfu, plaque-forming units.
doi:10.1371/journal.ppat.1000772.g003

Nsp1 Controls the Balance among Arterivirus mRNAs
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(Fig. 4). Furthermore, another PCPa mutant - A4 (see Fig. 2),

displayed 4-fold higher levels of genome accumulation without any

significant decrease in sg mRNA production (Fig. 4, A and B).

Since EAV mRNAs accumulate to different levels in molar

ratios that are maintained through most of the replicative cycle

(see Fig. 1B), we will refer to these levels in the wt control as

‘‘balanced’’. By contrast, the ZCH, A1, and A4 mutants exerted

differential effects on viral mRNA abundance, resulting in

‘‘imbalanced’’ viral mRNA accumulation profiles. The unusual

phenotypes of these mutants implicated nsp1 in the mRNA-

specific modulation of viral RNA levels, and prompted us to

investigate their molecular basis in greater detail.

Accumulation of viral mRNAs and their corresponding
minus-strand RNA templates are similarly affected by
nsp1 mutations

According to the current consensus in the field, minus-strand

RNA synthesis in arteri- and coronaviruses can operate in either

continuous or discontinuous mode, generating genome- or

subgenome-length templates respectively [5,9,10]. The relative

abundance of the corresponding minus-strand template presum-

ably determines the level to which each of the viral mRNAs

accumulates [23,24].We therefore sought to determine whether

the differential effects of nsp1 mutations on the accumulation of

EAV mRNA species were accompanied by changes in the levels of

the corresponding minus-strand templates. To this end, we

developed an RNase protection assay for the detection and

quantification of EAV minus-strand RNA species. We employed a

two-step protocol in which total RNA extracted from cells

transfected with nsp1 mutants was first denatured and self-

annealed. Due to the large excess of plus strands present in RNA

samples extracted from EAV-infected cells [25], all minus strands

are expected to be present in duplexes after this annealing step,

facilitating their subsequent reliable quantification. The remaining

single-stranded RNA was then removed by RNase T1 digestion.

Following inactivation of the enzyme, we added an excess of
32P-labeled transcripts of positive polarity, which were derived

either from a region unique to the EAV genome, or from the

leader-body junction regions of RNA6 and RNA7. The samples

were then subjected to a second round of RNA denaturation,

hybridization, and digestion with RNase A and T1, after which

the protected fragments were analyzed by electrophoresis.

The minus-strand templates of the most abundant viral mRNAs

– RNA1, 6, and 7, were selected for quantitative analysis.

Accumulation levels of genome-length [(2)RNA1] and subge-

nome-length minus strands corresponding to RNA6 and RNA7

[(2)RNA6 and (2)RNA7] were quantified in total intracellular

RNA extracted at 11 h post-transfection with the ZCH, A1, and

A4 mutants, and a wt control. Subgenomic minus- and plus-strand

levels were similarly affected by the nsp1 mutations in a sg RNA-

specific manner (Fig. 5). Genomic minus-strand accumulation was

increased in the A1 and A4 mutants, albeit to a somewhat lesser

extent as compared to the increase in genomic plus-strands (Fig. 4).

These results clearly implicate nsp1 in a regulatory step (or steps)

that controls minus-strand RNA accumulation, and ultimately

determines the levels to which both genome- and subgenome-

length mRNA species accumulate in EAV-infected cells.

Changes in the accumulation of viral mRNAs induced by
nsp1 mutations result in altered viral protein levels

The relative abundance of nidovirus mRNAs likely serves to

regulate the relative concentration of their respective translation

products during infection. It was therefore important to determine

whether viral protein levels indeed mirrored the specific changes in

viral mRNA levels caused by mutations in nsp1. To this end, we

examined the intracellular accumulation of the EAV replicase

subunit nsp3, and the structural proteins M and N, in cell lysates

harvested 11 h after transfection (Fig. 6A). When compared to the

wt control, nsp3 was more abundant in cells transfected with the

A1 and A4 mutants, in line with the increased genome levels

Figure 4. Multiple mutations in nsp1 exert species-specific effects on viral mRNA accumulation. (A, B) Gel hybridization analysis and
quantification of EAV-specific mRNA accumulation in cells transfected with the ZCH, A1, A4 mutant or a wt control. (A) Viral mRNA accumulation was
analyzed at 11 h post-transfection by gel hybridization as described in the legend to Fig. 3. (B) The accumulation levels of each viral mRNA in the
nsp1 mutants were quantified by phosphorimaging in the linear range of exposure and normalized to the level of accumulation of each
corresponding viral mRNA in the wt control, which was set at 1. Genomic RNA levels are represented as blue bars. The relative values correspond to
the means from three independent transfections and error bars denote standard deviation.
doi:10.1371/journal.ppat.1000772.g004

Nsp1 Controls the Balance among Arterivirus mRNAs
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Figure 5. Minus-strand RNA accumulation is also modulated by mutations in nsp1. (A–D) Analysis and quantification of EAV minus-strand
accumulation by a two-cycle RNase protection assay. (A) Schematic representation of the nested set of viral minus-strand RNA [(2)RNA] species
produced in EAV-infected cells. The anti-leader sequence is depicted in light green. The in vitro-transcribed plus-strand probes used for detection of
(2)RNA1 (pRNA1), (2)RNA6 (pRNA6) and (2) RNA7 (pRNA7) are shown. pRNA6 and pRNA7 target the leader-body junction sequences of (2)RNA6
and (2)RNA7, respectively. Note that hybridization with pRNA1 results in the protection of a single fragment, while the probes for (2)RNAs 6 and 7
each protect three fragments – one derived from the full-length sg minus strand, and two fragments derived in part from partial hybridization of
these probes to larger viral (2)RNAs in which the target sequences are noncontiguous (exemplified for pRNA6). For simplicity, non-EAV sequences
present near the termini of the three probes were omitted from the scheme. (B) Viral (2)RNA accumulation was analyzed at 11 h post-transfection for
the ZCH, A1 and A4 mutants, and a wt control. Protected fragments were resolved on denaturing 5% polyacrylamide/8M urea gels and visualized by
phosphorimaging. The constructs analyzed are labeled above the lanes (M, mock-transfected cells; (2), no-RNase control that shows a band
corresponding to 0.2 fmol of the full-length probe). Sizes (nt) of RNA markers have been indicated on the left. The single 327-nt protected fragment
resulting from hybridization with the positive-sense probe for RNA1(2) is indicated. The probes for subgenome-length minus strands protected
fragments derived from the full-length (2)RNA6 and (2)RNA7 (327 nt and 319 nt, respectively; denoted with LB), as well as from the (2)RNA6 and
(2)RNA7 body sequences (188 nt and 180 nt, respectively; denoted with B) and the anti-leader sequence (139 nt; denoted with L). The presence of
two bands in the size range of the anti-leader fragment has been described previously [55]. (C) The relative levels of minus-strand accumulation were
quantified by phosphorimaging. For (2)RNAs 6 and 7, only the bands resulting from protection of full-length sg minus strands (denoted with LB in
panel [B]) were quantified. The values correspond to the means from three independent transfections that were normalized to the level of
accumulation of each minus-strand RNA in the wt control, which was set at 1. Intracellular RNA from the same transfection samples for which plus-
strand accumulation was quantified (Fig. 4B) was used. Genomic minus-strand RNA levels are represented as dark blue bars. Error bars denote
standard deviation. (D) The ratio of plus-strand to minus-strand accumulation for RNAs 1, 6 and 7 was calculated using the mean relative values
obtained in Fig. 4B and Fig. 5C.
doi:10.1371/journal.ppat.1000772.g005
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observed for these mutants at the same time point (Fig. 4). The

intracellular levels of the M and N proteins were also in general

agreement with the abundance of their corresponding mRNA

templates (RNA6 and RNA7, respectively). Interestingly, even the

modest reduction in RNA7 levels detected for the A1 mutant

(,30%, Fig. 4B) was reflected in a decrease in N protein levels

(Fig. 6A). The close correlation between mRNA and correspond-

ing protein levels argues against the possibility that the engineered

nsp1 mutations might have caused a defect in viral mRNA

translation. Overall, these data establish that even modest changes

in viral mRNA accumulation are directly translated into altered

viral protein levels during EAV infection.

Production of infectious virus particles is severely
impaired in nsp1 mutants with imbalanced mRNA
accumulation

We next examined whether the production of infectious virus

particles was disturbed in the three nsp1 mutants with imbalanced

mRNA accumulation profiles. EAV assembly involves the

coordinated interplay of the N protein and six envelope proteins,

all of which are required for virus infectivity [4,26]. A critical step

in assembly is the heterodimerization of the major viral envelope

proteins, GP5 and M [27,28], and both the GP5 and M protein

levels, as well as the levels of their mRNA templates, RNA5 and

RNA6, were strongly affected in the ZCH and A1 mutants (Fig. 4B

and 6A). Furthermore, other documented interactions, such as the

oligomerization of the minor envelope proteins - GP2b, GP3 and

GP4 [29], could be readily affected by the altered relative

abundances of viral structural proteins. The decreased ratio of N

protein and genomic RNA in the A1 and A4 mutants (Fig. 4B and

Fig. 6A) could also adversely affect the assembly of infectious

virions. Analysis of the infectious progeny virus titers in culture

supernatants harvested 24 h after transfection with the ZCH, A1,

and A4 mutants indeed revealed a dramatic loss of infectivity

(Fig. 6B). In comparison to wt, the infectious progeny yield of the

ZCH and A4 mutants were reduced by approximately 4 logs and

that of the A1 mutant by ,5 logs.

We subsequently purified virions by sedimentation through a

sucrose cushion in order to quantify their genomic RNA content

by reverse transcription-quantitative PCR. Virions from medium

harvested at 24 h after transfection with the ZCH, A1, and A4

mutants were compared with the progeny produced by the wt

control. Consistent with the reduction in infectious progeny titers,

these results showed a decrease in the total number of genome-

containing virus particles secreted from cells transfected with each

of the three mutants (Table 2). Interestingly, when the relative

specific infectivity of each mutant virion preparation was assessed

by relating the genomic RNA content to the plaque-forming units

(pfu), a marked decrease in the pfu per unit of genomic RNA ratio

of the ZCH, A1, and A4 virion preparations was revealed

(Table 2). The ZCH, A1, and A4 mutations thus seem to affect

both the total number of secreted virions, as well as their specific

infectivity. Also, even at this relatively early time point post

transfection, the three mutants exhibited heterogeneous plaque

morphology, indicative of rapid reversion (Fig. 6B). These results,

together with the RNA and protein analyses outlined above

(Fig. 4B and 6A), demonstrate that even moderate changes in the

accumulation of EAV mRNAs and proteins can be associated with

a dramatic decrease in the yield of infectious progeny. Thus, a

previously unnoticed link seems to exist between the fine-tuning of

the relative abundance of EAV mRNAs (and, consequently, viral

protein levels) and the efficiency of virion biogenesis.

Second-site mutations in nsp1 can restore both the
quantitative balance among viral mRNA species and
efficient virus production

To gain more insight into the molecular basis of the nsp1

mutant phenotypes described above, we attempted to isolate

revertant viruses encoding compensatory second-site mutations.

The mutants in which sg mRNA accumulation was completely

blocked, however, proved to be extremely stable. We were

repeatedly unable to detect infectious particles in supernatants of

transfected cells, even after prolonged incubation (up to 70 h) at

39.5uC or at a reduced temperature of 35uC, or after using these

supernatants to infect fresh BHK-21 cells (data not shown). By

contrast, the rapid appearance of large plaque variants among the

prevailing small plaques produced by the ZCH, A1, and A4

mutants (see Fig. 6B) suggested genetic heterogeneity. Large

plaque clones of these three mutants were isolated and propagated

in fresh cells, and the EAV nsp1 gene was amplified by RT-PCR.

Figure 6. Analysis of viral protein accumulation and virus production by selected nsp1 mutants. (A) Western blot analysis of EAV-specific
protein accumulation. Cells transfected with wt or mutant viral genomes were harvested 11 h after transfection and equal amounts of total protein
were analyzed with EAV-specific sera detecting nsp3, M and N, which are translated from RNAs 1, 6 and 7, respectively. The relative levels of each
mRNA template (derived from Fig. 4B) are indicated below the gels. Beta-actin was used as a loading control. (B) Plaque phenotype and virus titers of
the ZCH, A1 and A4 mutants in comparison with wt. Plaque assays were performed on BHK-21 using cell culture supernatants harvested 24 h after
transfection. Virus titers represent an average of three independent experiments.
doi:10.1371/journal.ppat.1000772.g006
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Sequence analysis of the PCR products confirmed the presence of

the originally engineered mutant codons, and identified additional

mutations in the nsp1-coding sequence in the majority of the

plaques analyzed (data not shown). A pseudorevertant of ZCH

had acquired a substitution in the vicinity of the original mutations

(Ala-29 to Asp). Interestingly, Ala-29 was also mutated in five

independent A1 pseudorevertants, where it had been replaced

with Lys due to two nucleotide substitutions (Table 3). In addition,

four clones of the A4 offspring contained a Thr-196 to Lys

substitution, and Gly-47 to Ala and Glu-112 to Lys replacements

were found in one clone each.

To ascertain these second-site substitutions conferred a

replicative advantage, they were introduced into their respective

parental (mutant) full-length cDNA clones, yielding a set of viruses

collectively referred to as ‘‘nsp1 pseudorevertants’’. Cell culture

supernatants harvested 24 h after transfection with RNA from

nsp1 pseudorevertants indeed contained between 2 and ,4 logs

more infectious progeny than those of the original mutants

(Table 3), confirming the compensatory nature of the second-site

mutations. Both virus titer and plaque size of the three viruses

carrying a second-site mutation in the A4 mutant background

were similar to those of the wt control (Table 3; data not shown).

Replacement of Ala-29 with Asp or Lys in the ZCH and A4

backgrounds, respectively, increased virus titers by 2 to ,4 logs,

with plaque sizes being intermediate between those of the parental

mutant and the wt control (Table 3; data not shown). The relative

specific infectivities of virion preparations derived from all nsp1

pseudorevertants were also considerably higher in comparison to

those of the parental mutants (data not shown). Notably, the

pseudorevertants showed a partial or complete restoration of the

mRNA-specific defects that we had observed for the original

mutants (Fig. 7). Introduction of the Ala-29 to Asp substitution in

the ZCH mutant was accompanied by a considerable reduction of

the otherwise abnormally high accumulation of RNAs 3 to 7,

though RNA5 and RNA6 were still present at ,150% of the

normal level (Fig. 7B). Likewise, the Ala-29 to Lys replacement

moderated the effect of the A4 substitutions on the accumulation

levels of RNA1, RNA5, and RNA6; those of RNA1 and RNA2

were somewhat reduced relative to wt. Introduction of G47A,

E112K, or T196K in the A4 background in each case suppressed

the increased ratio of genomic to sg mRNA that was characteristic

for the parental mutant virus (Fig. 7D). Thus, both the pro-

nounced mRNA-specific accumulation defects, as well as the

associated drop in virus production observed for the ZCH, A1,

and A4 mutants (Fig. 4) were considerably alleviated by second-

site mutations in nsp1. The location of both the original and the

second-site mutations in nsp1 revealed multiple genetic interac-

tions between all nsp1 subdomains that are important for the

protein’s role in regulating the relative abundance of EAV

mRNAs. In addition, the increased virus production by the

Table 3. Overview of EAV nsp1 pseudorevertants described in this study.

Construct Second-site mutationa Wild-type codonb Mutant codon Titer (pfu/ml)c Plaque size

pEAV211 NAd NA NA 16108 wild-type

ZCH A29D (1) 309-GCCe GAC 56106 intermediate

A1 A29K (5) 309-GCG AAG 56106 intermediate

A4 G47A (1) 363-GGU GCU 56107 wild-type

E112K (1) 558-GAA AAA 56107 wild-type

T196K (4) 810-ACA AAA 56107 wild-type

aVirus clones were isolated from plaque assays of culture supernatants harvested between 20 h and 24 h post transfection. The number of clones containing each
mutation is indicated in brackets.

bNumbers indicate the start coordinate of the codon in the EAV genome.
cPseudorevertants were reconstructed in the wild-type EAV background, and infectious progeny titers were determined by plaque assays of culture supernatants
harvested at 24 h post-transfection. The average titers of three independent experiments are shown.

dNA, not applicable.
eA silent mutation changing the original alanine codon from GCG to GCC was introduced as a marker mutation upon construction of the ZCH mutant.
doi:10.1371/journal.ppat.1000772.t003

Table 2. Relative specific infectivities of virus particles from nsp1 mutants with imbalanced mRNA profiles.

Construct Relative infectivitya Relative genomic RNA contentb Relative specific infectivityc

Exp. 1d Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2

pEAV211 1 1 1 1 1 1

ZCH 461024 561024 2.761021 7.961021 1.961023 5.161024

A1 261025 561026 8.561024 6.461023 2.461022 7.961024

A4 461024 461024 1.861022 1.661021 2.261022 2.461023

aVirus titers were determined by plaque assays of culture supernatants harvested at 24 h post-transfection and normalized to the pfu/ml value of the wt control, which
was set at 1.

bEAV genomic RNA levels were quantified in virion preparations obtained from culture supernatants harvested at 24 h post-transfection by reverse transcription and
quantitative PCR. Values for mutant virions were obtained by comparing their threshold cycle (Ct) against the qPCR standard curve, and were normalized relative to the
genomic RNA level in the wt control, which was set at 1.

cRelative specific infectivity values were calculated by dividing the relative infectivity (mutant:wt pfu ratio) by the relative genomic RNA content for each construct.
dThe data shown are derived from two independent experiments.
doi:10.1371/journal.ppat.1000772.t002
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pseudorevertants was invariably correlated with a distinct shift

towards an mRNA accumulation profile that was (more) similar to

wt (Fig. 7, B and D). These observations provide compelling

evidence that efficient virus production depends on maintaining

‘‘balanced’’ viral mRNA levels in EAV-infected cells.

Discussion

In order to progress through their replicative cycle, +RNA

viruses need to orchestrate key macromolecular processes that

often overlap in time and possibly also in space. Multifunctional

viral proteins, which can regulate and interlink multiple of these

steps, may therefore have evolved in order to facilitate this spatio-

temporal coordination. EAV nsp1 was first identified as a general

transcription factor that is also critical for replicase polypro-

tein processing and efficient production of infectious progeny

[13,14]. By employing forward and reverse genetics, we have now

examined the significance of all nsp1 subdomains for these

multiple regulatory roles. Detailed quantitative analyses of viral

mRNA species and their corresponding minus-strand templates in

Figure 7. Second-site mutations in nsp1 moderate species-specific defects in mRNA accumulation. (A–D) Gel hybridization analysis and
quantification of EAV-specific mRNA accumulation. (A) BHK-21 cells were transfected with ZCH and A1 mutants, reconstructed pseudorevertants, and
wt controls. The positions of the originally mutated amino acid clusters are indicated with arrows; the open circle denotes the position of second-site
mutations. Viral mRNAs were analyzed 11 h post-transfection by gel hybridization as described above. (B) For ZCH+A29D and A1+A29K, the
accumulation levels of each viral mRNA were quantified by phosphorimaging and the values were normalized to the wt level of accumulation of each
corresponding viral mRNA from the same experiment, set at 1. Genomic RNA levels are shown as blue bars. The relative values correspond to the
means from three independent transfections and error bars denote the standard deviation. The relative accumulation levels of viral mRNAs at 11 h
post-transfection for the ZCH and A1 mutants are derived from Fig. 4B and are represented here to facilitate comparison between mutant and
pseudorevertant phenotypes. (C) BHK-21 cells were transfected with the A4 mutant, reconstructed pseudorevertants and a wt control. The positions
of the originally mutated amino acid cluster and the second-site mutations are indicated as in (A). Viral mRNAs were analyzed 11 h post-transfection.
(D) For A4+G47A, A4+E112K, and A4+T196K, quantification of relative viral mRNA accumulation levels was performed as described in (B). Similarly, the
relative accumulation levels of viral mRNAs at 11 h post-transfection for the A4 mutant derived from Fig. 4B are represented to facilitate comparison.
doi:10.1371/journal.ppat.1000772.g007
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nsp1 mutants allowed us to identify a previously unrecognized

function of the protein in the mRNA-specific regulation of viral

RNA abundance. Nsp1 seems to perform this function by

controlling the accumulation of the minus-strand templates for

viral mRNA synthesis. Together with its well-documented general

role in transcription, these results place nsp1 at the heart of the

unique process of discontinuous minus-strand RNA synthesis that

is employed by arteriviruses and other nidoviruses. Even the

modest changes in viral mRNA levels we observed in nsp1

mutants with differential deviations in viral mRNA abundance are

seemingly reflected in altered levels of their translation products.

The dramatically reduced virus yields of these mutants revealed

that the critical fine-tuning of the ‘‘balance’’ of EAV mRNA

accumulation has major implications for the final stages of the

replicative cycle. The importance of this balance is greatly

emphasized by the rapid emergence of pseudorevertant viruses,

in which both the mRNA-specific accumulation defects and the

impaired virus production were significantly moderated. The

mapping of compensatory second-site mutations to the nsp1 gene

itself implies that multiple physical interactions among nsp1

subdomains are essential for the protein’s role in transcriptional

control. Our findings constitute the first evidence for the

involvement of a protein factor in regulating the relative

abundance of individual mRNA species during nidovirus infection.

The intricate interplay between nsp1’s subdomains
Previous reports have suggested that the multiple roles of nsp1

during EAV infection can (in part) be functionally separated, with

the ZF domain being essential for transcription and efficient virus

production, and the PCPb protease cleaving the nsp1/2 site,

irrespective of the ZF integrity [14]. This study extended and

refined the above concept showing, first, that the functional

repertoire of nsp1 also includes the differential control of mRNA

accumulation, and, second, that some functions may be based on

the interplay between two or even all three of the protein’s

subdomains. The phenotypes observed upon replacing charged

amino acid clusters with alanine established the importance of all

nsp1 subdomains for sg mRNA accumulation (Fig. 3A). The

involvement of PCPb in transcription is seemingly unrelated to its

autoproteolytic function, whose inactivation is detrimental to

genome replication [14]. The co-translational, cis-cleavage of the

nsp1/2 site in the nascent replicase polyproteins [30] is probably

the sole processing step mediated by PCPb, which becomes

rapidly available to exercise any trans-acting, non-proteolytic

activities it may have. Such secondary non-proteolytic functions

have previously been reported for several +RNA viral autoprotei-

nase domains, such as those of hepatitis C virus NS2 [31] and beet

yellow virus L-Pro [32].

The previously uncharacterized PCPa domain, a PCPb paralog

that has lost its proteolytic capacity in EAV [15], appears to

cooperate with the ZF in transcription and virion biogenesis

(Fig. 3). Likewise, it works in concert with both flanking nsp1

subdomains in controlling the relative abundance of viral mRNAs

(Fig. 4, Table 3, and Fig. 7). The Lys and Arg residues replaced

with alanine in the A1 and A4 mutants, and the Lys that had

evolved in their pseudorevertants are all basic residues. They are

found in different nsp1 subdomains, but could well be spatially

juxtaposed to provide a positively charged side chain to a

functional region that is involved in interactions essential for one

or more of the protein’s activities. The Gly-47 to Ala reversion,

which maps to the junction region between the ZF and PCPa,

might serve to reposition these subdomains relative to each other.

A similar readjustment of the protein’s tertiary structure might

account for the compensatory effect exerted by the Ala-29 to Asp

reversion on the ZCH mutant. Despite the fact that its orthologs in

other arteriviruses have retained their proteolytic activity, it is

tempting to speculate that the incorporation of the PCPá domain

in the arterivirus nsp1 region can be primarily attributed to the

non-proteolytic functions outlined above. On the whole, there

seems to be considerable cooperation between nsp1 subdomains.

This interplay appears crucial for coupling the different processes

that nsp1 controls and may be based on interactions that are

either intra- or intermolecular, in view of the protein’s ability to

form homo-oligomers [33]. Notably, a recent paper describing the

crystal structure of PRRSV nsp1a, an arterivirus ortholog of the

EAV ZF and PCPa domains, reported that the protein exists in

equilibrium between monomers and dimers in solution. Residues

from both subdomains also contribute both to nsp1a dimeri-

zation and the formation of a hydrophilic groove at the dimer

surface [16].

The quantitative balance among EAV mRNA species is
critical for efficient virus production

Characterization of the three nsp1 mutants with imbalanced

viral mRNA accumulation profiles showed that the disruption of

the balance was due to a reduction of the levels of certain viral

mRNA species only for the A1 mutant (see Fig. 4B). By contrast,

specific upregulation of most mRNAs was observed for both the

ZCH and A4 mutants and the associated dramatic defects in virus

production were surprising, also in view of the apparently

undisturbed translation of viral mRNAs (Fig. 6A). In an attempt

to quantify the relationship between virus yield and viral mRNA

accumulation, we used the data sets of Fig. 4B, 7B, and 7D to

calculate the mean relative mRNA accumulation for the ZCH,

A1, and A4 mutants, as well as their pseudorevertants. Plotting

these values versus the corresponding infectivity titers (derived

from Fig. 6B and Table 3) revealed efficient production of

infectious progeny for viruses with mRNA accumulation that was

close to that of the wt control or modestly decreased (Fig. 8A). In

contrast, severely reduced virus yields were observed when viral

mRNA accumulation was increased, as seen for the ZCH, A1, and

A4 mutants. This somewhat counterintuitive observation was

rationalized by assessing the importance of the quantitative

balance among EAV mRNA species for infectious virus produc-

tion. In order to establish this relationship, for each mRNA species

the absolute deviation of its relative accumulation from the mean

of the complete nested set of mRNAs (Fig. 8A) was calculated.

From these seven values, the mean (absolute) deviation was

calculated for each mutant or pseudorevertant, and these values

were also plotted against virus titers (Fig. 8B). By definition, the

mean deviation is equal to zero for the wt virus, whose mRNA

levels we refer to as ‘‘balanced’’. All nsp1 mutants and their

pseudorevertants have mean deviations larger than zero and these

values reflect the magnitude of imbalance of their mRNA

accumulation profiles. Remarkably, the plot revealed that the

data nicely fit (R2 = 0.95) a negative exponential regression

between infectious virus yield and mRNA imbalance, which is

depicted as a negative linear regression in the semi-logarithmic

plot of Fig. 8B. This strong relationship underlines that the

magnitude of imbalance between different mRNA species, rather

than the accumulation levels of mRNA species per se, is a chief

factor affecting progeny yield. It should be noted that several

factors may have affected our analysis of this relationship to a

certain extent. For example, only a relatively small variety of nsp1

mutants and pseudorevertants was analyzed and although some

pseudorevertants were recovered repeatedly, they were plotted

only once. Also, the rapid emergence of pseudorevertants likely

contributed to the virus titers measured for the ZCH, A1, and A4
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mutants a 24 h post transfection, which would thus be

overestimated in our analysis. Therefore, an extension of this

study with new mutants and pseudorevertants may further refine

the relationship illustrated by Fig. 8B. It would also be interesting

to evaluate how virus yields are affected by a general imbalance

between replication and transcription (A4 mutant) versus sg

mRNA-specific changes (ZCH mutant), although the latter seem

to have an added negative effect (A1 mutant).

The molecular basis of perturbed infectious particle production

in the mutants is probably complex, although it is likely related to

the altered relative abundances of viral structural proteins resulting

from the respective changes in the levels of their mRNA templates

(Fig. 4B and 6A). The observation that increased production of

infectious progeny by the nsp1 pseudorevertants invariably

correlated with restoration of balanced viral mRNA accumulation

(Table 3 and Fig. 7) lends further support to this hypothesis.

Differential changes in structural protein levels might adversely

affect their ability to form complexes that drive particle assembly,

or alter the stoichiometry of these complexes when incorporated in

virions. The latter option is consistent with the observed decrease

in relative specific infectivity of virion preparations from the ZCH,

A1, and A4 mutants (Table 2). Detailed information on the

architecture of EAV virions and the molecular interactions among

EAV structural proteins that drive virus assembly is unfortunately

lacking. Nevertheless, our data clearly establish a previously

unknown link between balanced EAV mRNA accumulation and

efficient virus production. We thus conclude that nsp1 critically

promotes virion biogenesis by modulating viral mRNA accumu-

lation, as well as acting at an additional, currently unknown step of

the EAV replicative cycle, downstream of viral RNA synthesis

(Fig. 3; [14])

Nsp1 modulates a broad spectrum of successive stages
in the nidovirus replicative cycle

The onset of +RNA gene expression is marked by translation of

the viral genome. In subsequent stages of infection, this molecule is

utilized also as the template for replication and, in some cases,

transcription, as well as packaging into progeny virus particles.

Virtually nothing is known about the temporal coordination of

these distinct processes in the nidovirus replicative cycle. Non-

structural protein expression is extensively regulated at the

translational and post-translational level, by ribosomal frame-

shifting and concerted autoproteolytic processing of replicase

polyproteins, which together control the production of the core

viral replicative enzymes [18,19,34,35]. By contrast, regulation of

structural protein expression is presumed to occur mainly at the

transcriptional level, although the exact significance and control of

the relative abundance of the various viral mRNAs in infected cells

had not been examined for any nidovirus. Prior studies [13,14],

together with our present findings, clearly implicate EAV nsp1 in

controlling the balance between replication and transcription

(Fig. 3 and 4). Mutations in nsp1 were previously shown to

selectively block or equally reduce the accumulation of all sg

mRNA species. The pronounced upregulation of genomic RNA

levels in nsp1 mutants with a complete block in sg mRNA

production was also described before [14] and suggested to result

from redirecting a limited pool of RNA-synthesizing complexes,

normally engaged in both replication and transcription, to the

exclusive amplification of the viral genome.

Some of the mutant phenotypes in this report, however, are

poorly compatible with the above scenario. Genome RNA levels

were increased 4–6 fold in the A1 and A4 mutants, for which

sg mRNAs synthesis was clearly detectable and even enhanced

Figure 8. Relationship between viral mRNA accumulation profiles and infectious virus yield. The data obtained on the accumulation of
genome and sg mRNAs were used for a quantitative assessment of nsp1 mutant phenotypes in terms of (A) changes in mRNA accumulation
compared to wt and (B) the extent to which the balance between viral transcripts was disturbed (B). (A) For each mutant and pseudorevertant, a
value for the accumulation of each of its 7 mRNAs at 11 h post-transfection had been assigned as compared to that of the wt control (see Fig. 4B, 7B
and 7D). The mean of these seven values (‘‘mean relative mRNA accumulation’’) was plotted against the corresponding progeny virus titer in culture
supernatants at 24 h post-transfection (Fig. 6B and table 2). Wild-type is depicted in orange. The engineered nsp1 mutants and nsp1
pseudorevertants are shown in blue and purple, respectively. The three pseudorevertants of mutant A4, displaying very similar phenotypes, are
indicated as A4+PSR. (B) For each mRNA species, the deviation of its relative accumulation from the mean of the complete nested set of mRNAs (see
panel A) was calculated. From these seven values, the mean (absolute) deviation was calculated for each mutant and plotted against virus titers as in
(A). For wt, the mean deviation is 0. Engineered nsp1 mutants and their pseudorevertants are indicated as in (A). The data fit a negative exponential
regression calculated using Microsoft Excel and depicted as a gray line (y = 66106+7e28.4306x, R2 = 0.95). The inset shows an expanded view of the
upper left quadrant of the graph (shaded in gray).
doi:10.1371/journal.ppat.1000772.g008
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(Fig. 4). In addition, the ZCH and A1 mutations differentially

modulated the accumulation levels of a specific subset of sg mRNAs

and their subgenome-length minus-strand templates (Fig. 4 and 5).

This effect was accompanied by unchanged genome RNA levels in

the ZCH mutant. Taken together, these data imply that nsp1 does

not only allow the viral RdRp complex to engage in discontinuous

minus-strand synthesis, but also enables it to differentiate between

the various body TRS motifs it encounters while traversing the

genomic template. This occurs by a currently unknown mechanism

that is different from the previously described ‘‘polar attenuation’’

caused by the relative position of body TRSs in the array of

successive attenuation signals that need to be ‘‘overcome’’ by the

minus-strand RNA-synthesizing complex [36]. The changes in viral

RNA accumulation observed for the A1 and A4 mutants could

result from partial loss of recruitment of nsp1 to the RdRp complex,

or its compromised ability to recognize RNA signals that direct

discontinuous RNA synthesis. Viral RNA synthesis would then be

shifted towards replication, but the increased availability of template

and/or viral enzymes that this causes (Fig. 4B and 6A) might

account for the relatively high levels of sg mRNA accumulation in

these two mutants. This, in turn, would imply that the availability of

nsp1 is important for its function in transcription. Indeed, the

intracellular distribution of nsp1 is distinct from that of the other

EAV nsps – a large fraction of the protein is present in the host cell

nucleus [33], while only ,25% of the cytoplasmic nsp1 fraction co-

sediments with the membrane-bound viral RNA-synthesizing

complexes upon their isolation from infected cells [37]. Immuno-

fluorescence analysis did not reveal a significant change in

intracellular nsp1 distribution for any of the mutants we described

here (data not shown), but more rigorous biochemical studies are

needed to ascertain the recruitment of nsp1 to RdRp complexes is

completely unchanged. Nsp1 mutations clearly influenced minus-

strand RNA accumulation (Fig. 5), although we cannot formally

exclude that the protein controls minus-strand RNA stability rather

than synthesis. Unfortunately, analysis of the kinetics of minus-

strand accumulation in the ZCH and A1 mutants was hampered by

the rapid emergence of pseudorevertants (Fig. 6B; Table 3) and the

low abundance of these molecules at earlier time points post-

transfection, which precluded their accurate quantitation (data not

shown). Resolving this issue thus remains a formidable technical

challenge. The recently described protocols for isolation of active

viral RNA-synthesizing complexes from EAV-infected cells [37], as

well as in vitro activity assays using a recombinant form of the EAV

RdRp [38] might provide better platforms for future research on the

mechanistic aspects of nsp1 function.

Nsp1 remains the only known arterivirus protein specifically

implicated in the regulation of transcription [13,39] and, to date, a

functional counterpart has not been identified in coronaviruses or

other nidoviruses. Species-specific changes in viral mRNA

abundance were observed upon inactivation of the nsp14

exoribonuclease of human coronavirus 229E [40]. However, the

major effect of this mutation was a reduction of the accumulation

of all viral mRNAs by more than 100-fold. In view of the (indirect)

dependence of transcription on genome replication and transla-

tion, the phenotype of the nsp14 mutants should be interpreted

with caution. Nevertheless, a potential specific role of the

coronavirus exonuclease in sg mRNA transcription deserves

further investigation, although its analysis may be complicated

by the multifunctionality of this protein, which was implicated in

improving the fidelity of viral RNA synthesis [41,42] and also

includes an N7-methyltransferase domain [43]. Elegant studies of

the tombusvirus replicase have shown that genome replication and

sg mRNA synthesis can be effectively uncoupled by mutations in

the C-terminus of the viral RdRp, which could only be achieved

after separation of the protein-coding sequence from overlapping

regulatory RNA sequences [44]. This example once again

underlines the theoretical and technical challenges encountered

while dissecting the complex mechanisms coordinating +RNA

virus replication and transcription.

Materials and Methods

Cell lines
Baby hamster kidney cells (BHK-21; ATCC CCL10) were used

for all experiments. The cells were maintained at 37uC in BHK-21

medium (Glasgow MEM; Invitrogen) supplemented with 5% fetal

calf serum (FCS), 10% tryptose phosphate broth, 100 U/ml of

penicillin, 100 mg/ml of streptomycin and 10 mM HEPES,

pH = 7.4. Upon transfection or infection with wt or mutant

EAV, BHK-21 cells were incubated at 39.5uC, since this elevated

temperature shortens the replication time of the virus substantially

without any adverse side effects [45].

EAV reverse genetics
The substitutions in the nsp1-coding sequence listed in Table 1

and Table 3 were engineered using appropriate shuttle vectors and

standard site-directed mutagenesis PCR [46]. Sequence analysis of

the cloned fragments was used to verify the introduction of the

appropriate nucleotide substitutions and exclude the presence of

undesired mutations. The mutations in the nsp1-coding sequence

were then transferred to pEAV211 or pEAN551, both derivatives

of EAV full-length cDNA clone pEAV030 [45] containing some

engineered restriction sites. Viruses derived from either pEAV211

or pEAN551 were previously shown to display a wt phenotype

[17,47]. The virus derived from the pEAV211 construct was used

as a wt control in all experiments.

In vitro RNA transcription from XhoI-linearized wt or mutant

EAV full-length cDNA clones was performed using the mMES-

SAGE mMACHINE T7 Kit (Ambion). Seven mg of in vitro-

synthesized EAV RNA were electroporated into 3.56106 BHK-21

cells using the Amaxa Cell Line Nucleofector Kit T and the

program T-020 of the Amaxa Nucleofector (Lonza) according to

the manufacturer’s instructions. Cells were resuspended in BHK-

21 medium and subsequently seeded on coverslips for immuno-

fluorescence analysis or in 6-well clusters for analysis of

intracellular protein and RNA levels, as well as virus production.

EAV infection and plaque assays
For EAV infection, subconfluent monolayers of BHK-21 cells

were inoculated with transfected cell culture supernatant diluted in

PBS-DEAE/2% FCS. Following incubation at 39.5uC for 1 h, the

inoculum was removed, DMEM/2% FCS was added, and the

cells were incubated at 39.5uC for 16–18 h. For virus titration,

BHK-21 cells seeded in 6-well clusters were infected with serial

10-fold dilutions of supernatants harvested from transfected cells

and then incubated under semi-solid overlays consisting of

DMEM supplemented with 50 mM HEPES, pH = 7.4, 2% FCS

and 1.2% Avicel (FMC BioPolymer) at 39.5uC for 72 h. The

overlays were aspirated, cells were fixed with 8% formaldehyde in

PBS, and stained with crystal violet. For plaque purification, a

solid overlay of DMEM containing 50 mM HEPES, pH = 7.4, 2%

FCS and 1% agarose was used.

Immunofluorescence analysis
Immunofluorescence analysis of EAV-transfected cells was per-

formed as described previously [48]. Briefly, cells were analyzed at

11 hour post-transfection by dual labeling with a rabbit antiserum

recognizing EAV nsp3 [49] and an anti-N mouse monoclonal
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antibody (3E2; [50]). These proteins are expressed from RNA1 and

RNA7, respectively. Nuclei were visualized for cell counting by

staining with 1 mg/ml Hoechst 33258 (Sigma-Aldrich). Transfec-

tion efficiencies were determined at 11 h post-transfection by

counting cells with the Scion Image software (Scion Corporation)

and calculating the percentage of cells positive for EAV nsp3.

RNA isolation and detection of EAV mRNAs by gel
hybridization

Analysis of viral RNA accumulation was carried out before

completion of the first replication cycle. Cells transfected with wt or

mutant EAV derivatives were lysed at 11 h post-transfection, and

total intracellular RNA was isolated by acid phenol extraction as

previously described [25]. Viral mRNAs were detected by resolving

total RNA in denaturing agarose-formaldehyde gels, and equal

sample loading was confirmed by ethidium bromide staining of

ribosomal RNA. The gels were subsequently dried and hybridized

to a 32P-labeled probe (E154, 59-TTGGTTCCTGGGTGGCT-

AATAACTACTT-39) complementary to the 39 end of the genome

that recognizes both genome and all sg mRNAs [25]. The gels were

exposed to phosphorimager screens, which were subsequently

scanned using a Typhoon Variable Mode Imager (GE Healthcare).

Image analysis and quantification of band intensities were

performed with the ImageQuant TL software (GE Healthcare).

Detection of EAV minus-strand RNAs by ribonuclease
protection assays

A two-cycle ribonuclease (RNase) protection assay, adapted from

[51] and [24], was used for the detection of EAV minus-strand

RNAs. Total intracellular RNA isolated at 11 h post-transfection

was dissolved in 10 ml of Hybridization Buffer III (RPA III Kit;

Ambion), denatured for 3 min at 95uC and incubated for 16 h at

55uC. Samples were then digested with 5 U of RNase T1 (Ambion)

per mg total RNA in 10 mM Tris pH = 7.5, 300 mM NaCl, 5 mM

EDTA for 60 min at ambient temperature. Following proteinase K

treatment and phenol:chlorophorm extraction, 0.5 mg of yeast RNA

per mg total RNA was added as a carrier. After ethanol

precipitation, equal amounts of a radiolabelled probe (see below)

were added to each sample and, following sample denaturation at

85uC for 5 min, hybridization was carried out at 55uC for 16 h.

RNase digestion of unhybridized RNA was performed using the

RPA III Kit according to the manufacturer’s protocol. Protected

fragments were resolved in 5% polyacrylamide/8M urea gels,

which were dried and exposed to phosphorimager screens. Image

analysis and quantification were performed as described above.

To generate probes for minus-strand detection, cDNA frag-

ments derived from the EAV genome (nucleotides (nt) 3687–

4013), RNA6 (nt 68–206 from the leader sequence and nt 11870–

12057 from the body sequence) and RNA7 (nt 68–206 and nt

12252–12429) were inserted downstream of the T7 promoter in

pcDNA3.1 using standard cloning procedures. Radiolabelled

RNA transcripts were generated by in vitro transcription in the

presence of [a-32P]CTP (Perkin Elmer) using MAXIscript T7 Kit

(Ambion) and purified from 5% polyacrylamide/8M urea gels by

elution for 3h at 37uC in 0.5 M NH4OAc, 0.2% SDS, 1mM

EDTA. The transcript generated for detection of genomic minus

strands –pRNA1, was 356 nt long and contained 327 nt of

(2)RNA1-specific sequence. The transcript and EAV-specific

sequence length were 382 nt and 327 nt, respectively, for the

probe detecting (2)RNA6 (pRNA6), and 372 nt and 319 nt for

the probe specific for (2)RNA7 (pRNA7). Detection of RNA1(2)

was performed using sample RNA corresponding to approximate-

ly 1.256104 cells and 20 fmol of radiolabelled probe. Levels of

(2)RNA6 and (2)RNA7 were determined in samples correspond-

ing to 46104 and 2.56104 cells, respectively, using 5 fmol

radiolabelled probe. These conditions ensured that the values

obtained were in the linear range of the assays (data not shown).

Protein analysis
Cells transfected with wt or mutant EAV derivatives were lysed at

11 h post-transfection as described previously [52]. The protein

concentration in the lysates was determined using the Bio-Rad

protein assay reagent. Equal amounts of total protein were subjected

to SDS-PAGE and transferred to Hybond-P PVDF membrane (GE

Healthcare) by semidry blotting. After blocking with 5% non-fat

milk in PBS containing 0.5% Tween-20, the membranes were

incubated with the following antibodies: anti-EAV nsp3 (see above),

rabbit anti-M [52], anti-N (see above), or an anti-b-actin mouse

monoclonal antibody (AC-74, Sigma), all diluted in PBS containing

5% non-fat milk, 0.5% bovine serum albumin and 0.5% Tween-20.

HRP-conjugated secondary antibodies (DAKO) and an ECL-Plus

kit (GE Healthcare) were used for detection.

Reverse transcription and quantitative PCR
In order to determine relative specific infectivity, supernatants

from BHK-21 cells transfected with wt or mutant EAV derivatives

were harvested 24 h after transfection and clarified by low-speed

centrifugation. Virions from 1 ml of clarified supernatant were

purified by pelleting through a 0.4 ml cushion of 20% sucrose in

20 mM Tris pH = 7.5, 100 mM NaCl, 1 mM EDTA at

55,000 rpm for 45 min at 4uC using a TLS-55 rotor in a

Beckman tabletop ultracentrifuge. Virion RNA was isolated from

pellet fractions by acid phenol extraction as described above.

Complementary DNAs were synthesized with Thermoscript

Reverse Transcriptase (Invitrogen) using a primer complementary

to a region in ORF1a of the EAV genome (EAV418as, 59-

AGCCGCACCTTCACATTG-39). Quantitative PCR (qPCR)

was performed essentially as previously described [53,54]. Briefly,

a cDNA aliquot was amplified with EAV-specific oligonucleotides

EAV418as and EAV417s (59 CATCTCTTGCTTTGCTCCT-

TAG-39) using HotStar Taq Polymerase (Qiagen) and SYBR

Green I (Molecular Probes) in an iCycler machine (Bio-Rad). The

data obtained were analyzed with iCycler software, and the

specificity of the reaction was confirmed by the melting curve of

the amplified products. To generate a standard curve, serial ten-

fold dilutions of the virion RNA sample derived from cells

transfected with the wt EAV construct were reverse-transcribed

and amplified by qPCR in parallel. The resulting standard curve

had an R2 = 0.99 and a 6-log linear range for the EAV ORF1a

amplicon (data not shown). The relative genomic RNA contents of

virions produced by EAV mutants were calculated by comparing

their threshold cycle (Ct) values against the standard curve and the

resulting values were normalized to the wt genomic RNA content,

which was set at 1. The relative specific infectivity of each EAV

mutant was then determined by dividing the respective mutant:wt

pfu ratio by the mutant:wt relative genomic RNA content.
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