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Background/Aims: The biological heterogeneity of hepatocellular carcinoma (HCC) makes prognosis difficult. 
Although many molecular tools have been developed to assist in stratification and prediction of patients by 
using microarray analysis, the classification and prediction are still improvable because the high-through 
microarray contains a large amount of information. Meanwhile, gene expression patterns and their prognostic 
value for HCC have not been systematically investigated. In order to explore new molecular diagnostic and 
prognostic biomarkers, the gene expression profiles between HCCs and adjacent nontumor tissues were 
systematically analyzed in the present study.
Materials and Methods: In this study, gene expression profiles were obtained by repurposing five Gene 
Expression Omnibus databases. Differentially expressed genes were identified by using robust rank 
aggregation method. Three datasets (GSE14520, GSE36376, and GSE54236) were used to validate the 
associations between cytochrome P450 (CYP) family genes and HCC. GSE14520 was used as the training 
set. GSE36376 and GSE54236 were considered as the testing sets.
Results: From the training set, a four-CYP gene signature was constructed to discriminate between HCC and 
nontumor tissues with an area under curve (AUC) of 0.991. Accuracy of this four-gene signature was validated 
in two testing sets (AUCs for them were 0.973 and 0.852, respectively). Moreover, this gene signature had a 
good performance to make a distinction between fast-growing HCC and slow-growing HCC (AUC = 0.898), 
especially for its high sensitivity of 95%. At last, CYP2C8 was identified as an independent risk factor of 
recurrence-free survival (hazard ratio [HR] =0.865, 95% confidence interval [CI], 0.754–0.992, P = 0.038) 
and overall survival (HR = 0.849; 95% CI, 0.716–0.995, P = 0.033).
Conclusions: In summary, our results confirmed for the first time that a four-CYP gene (CYP1A2, CYP2E1, 
CYP2A7, and PTGIS) signature is associated with fast-growing HCC, and CYP2C8 is associated with patient 
survival. Our findings could help to identify HCC patients at high risk of rapid growth and recurrence.
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INTRODUCTION

Liver cancer, predominantly hepatocellular carcinoma 
(HCC), is the fifth most common cancer in men and the 
ninth in women. It is the second most common cause 
of  death from cancer worldwide.[1] Although much is 
known about both the cellular changes that lead to HCC 
and the etiological agents responsible for the majority of  
HCC cases (hepatitis B virus, hepatitis C virus, alcohol), 
the molecular pathogenesis of  HCC is still not well 
understood.[2] Considerable efforts have been devoted 
to establish staging systems for HCC by using clinical 
information and pathological classification to provide 
information at diagnosis on both survival and treatment 
options.[3-6] However, none of  the proposed staging systems 
encompasses the biological and clinical heterogeneity 
exhibited by HCCs. One of  the important reasons is that 
these predictive algorithms consider HCCs to be static 
rather than dynamic entities. They account for the size and 
number of  neoplastic lesions at the time of  presentation, 
yet do not take into account their growth behavior during 
follow-up, such as tumor doubling time (DT).[7] It therefore 
appears axiomatic that improving the classification of  HCC 
patients into groups with homogeneous growth pattern 
will at least improve the application of  currently available 
treatment modalities and at best provide new treatment 
strategies.

Over the past 20 years, microarray technology has led to 
the identification of  several molecular signatures in HCC. 
For example, a 164-gene signature has been reported to 
predict the clinical behavior of  metastatic HCC patients.[8] 
Another study established a five-gene score to predict 
HCC survival after liver resection.[9] These signatures 
allow stratification of  HCC into several clinically relevant 
subgroups. Nevertheless, the classification and prediction 
are still improvable because the high-through microarray 
contains a large amount of  bio-information. Therefore, it 
is necessary to systematically analyze the expression profiles 
and explore new molecular signatures.

In order to explore new molecular diagnostic and 
prognostic biomarkers, we systematically analyzed the 
gene expression profiles between HCCs and adjacent 
nontumor tissues in the present study. We demonstrated 
that 15 cytochrome P450 (CYP) family members could 
make a distinction between HCCs and nontumor tissues. 
A four CYP-gene (CYP1A2, CYP2E1, CYP2A7, and 
PTGIS) signature is a useful tool to diagnose HCCs and 
fast-growing HCCs with high sensitivity and specificity. 
CYP2C8 is associated with patient survival in individuals 
at first diagnosis.

MATERIALS AND METHODS

Study design
Discovery stage: All the HCC Gene Expression Omnibus 
(GEO) datasets were collected. Then, a published robust 
rank aggregation (RRA) method was applied to identify 
the aberrant genes in HCC development.

Training stage: GSE14520 was used as the training set. The 
diagnostic and prognostic values of  aberrant genes were 
evaluated, and a diagnostic signature was constructed in 
the training set.

Testing stage: GSE36376 and GSE54236 were used as the 
testing sets. The diagnostic and prognostic values of  
aberrant genes were further validated in the testing sets.

HCC patient datasets and patient samples
All the HCC datasets (generated from the Affymetrix 
Human Genome U133 Plus 2.0 Array) were collected 
from the publicly available GEO database (http://www.
ncbi.nlm.nih.gov/geo/). The selection criteria used in this 
study are as follows: (1) all specimens classified as tissues; 
cells, serum, or plasma are not included; (2) all the included 
datasets must contain paired HCC tumors and adjacent 
noncancerous tissues; (3) sample size should be greater 
than three pairs; and (4) if  there existed data overlapping, 
the largest sample size was selected. According to the above 
screening criteria, five datasets were finally included in this 
study (GSE62232, GSE55092, GSE17548, GSE33006, and 
GSE6764).[10-14]

To validate the result from the gene expression profiles 
above, three other datasets were included. They are 
Roessler’s study, Lim’s study, and Villa’s study (GEO 
accession: GSE14520, GSE36376, and GSE54236).[7,15,16] 
HCC patients and tumor features are detailed in Table 1. 
It is worth noting that, in Villa’s study, HCC patients were 
grouped into four quartiles according to increasing tumor 
DT: ≤53 days, 54–82 days, 83–110 days, and ≥111 days, 
respectively. The detailed procedure is as follows:[7] a new 
diagnosis of  HCC at ultrasound (US) surveillance was 
eligible if  they had a clinical condition that allowed a 
US-guided liver biopsy of  a focal lesion, with the largest 
lesion biopsied in case of  multifocality. To further confirm 
HCC diagnosis, a CT scan was performed. To measure 
the growth of  lesions, a second CT was performed 
6 weeks later. During the 6-week interval, patients did 
not undergo any specific treatment. This interval is much 
shorter than the average time to treatment after HCC 
diagnosis.[17,18] Therefore, no ethical issues were raised. 
After the second CT, patients were treated according to 
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international guidelines. Based on these CT values, tumor 
growth was classified as fast growth (first quartile) or slow 
growth (other quartiles).

Acquisition and analysis of gene expression profiles of 
HCC patients
The raw array data (.CEL files) of  five gene expression 
datasets were retrieved from the GEO database and 
were uniformly preprocessed using the Robust Multichip 
Average algorithm for background correction, quantile 
normalization, and log2-transformation. Then, the 
differentially expressed genes (DEGs) from each dataset 
were screened out on the basis of P ≤ 0.05 and fold 
change ≥2.

The interlab reproducibility of  the results is often 
problematic due to the small sample size and other 
factors (such as pathologic staging and surgical outcome) 
between the studies. To overcome these limitations, 
a published RRA method was applied to identify the 
aberrant genes in HCC development.[19,20] The new data 
frame results were constructed with the standard of  
adjusted P value < 0.05. The operation process can be 
performed by the Robust Rank Aggreg package in R 
software (version 3.3.3).

Then, the DEGs were classified into different functional 
gene groups by using the DAVID functional classification 
method.[21] The unsupervised hierarchical clustering of  
both HCC patients and aberrant genes was performed with 
R software by using the Euclidean distance and complete 
linkage method.

Statistical analysis
The continuous variables were analyzed by t-test or rank 
sum test as appropriate. The categorical variables were 
analyzed by Chi-square test. Binary logistic regression 
analysis was performed to identify variables independently 
associated with HCC. To construct a diagnostic model, 
the candidate genes were fitted in the multivariate logistic 
regression in the discovery dataset. Odds ratio (OR) and 

95% confidence intervals (CI) were estimated by logistic 
regression model. To visualize the capacity of  the risk 
signature to discriminate between HCC and non-HCC, we 
summarized the data in a receiver operating characteristic 
curve.[22]

The Cox proportional method was used to identify risk 
factors for recurrence-free survival (RFS) and overall 
survival (OS). The RFS was calculated from the date of  
tumor resection until the detection of  tumor recurrence, 
or last observation. The OS was defined as the length of  
time between the surgery and death or the last follow-up. 
Variables with a P value < 0.05 in univariate analysis were 
included in the final multivariate model. Then, these 
variables were applied to build a risk signature. Finally, HCC 
patients were assigned a risk score according to the risk 
signature and were divided into high- and low-risk groups 
using the median of  the risk score as the cutoff  value. 
The difference in RFS or OS between high- and low-risk 
groups was demonstrated by Kaplan–Meier method, 
and the statistical significance was assessed by two-sided 
log-rank test. Hazard ratio (HR) and 95% CI were 
estimated by Cox proportional hazards regression model. 
Statistical analyses were performed with SPSS version 22.0 
software (SPSS Inc., Chicago, IL, USA), GraphPad Prism 
7 (GraphPad Software, La Jolla, CA), and MedCalc software 
version 12.2.1 (MedCalc, Mariakerke, Belgium).

RESULTS

GEO datasets analysis and candidate gene selection
A total of  five datasets were included in our study 
for comprehensive analysis (GSE62232, GSE55092, 
GSE17548, GSE33006, and GSE6764). After data 
processing, 2179 DEGs were found in GSE62232; 2627, 
2533, 1993, and 1158 DEGs were found in GSE55092, 
GSE17548, GSE33006, and GSE6764. Then, the method 
of  RRA was used to integrally calculate the DEGs of  the 
five datasets. Finally, 273 genes were identified as the most 
significantly differential genes. Detailed information is 
listed in Supplementary Table S1. These 273 genes were 

Table 1: Clinical characteristics of patients enrolled in this study
Variables Roessler’s study 

GSE14520 (n=242)
Lim’s study 

GSE36376 (n=240)
Villa’s study 

GSE54236 (n=81)
P*

Male, n (%) 211 (87.2) 199 (82.9) 61 (75.3) 0.04
Median age (years) (range) 50 (22‑77) 53 (45‑61) 67 (44‑88) NA†

HBV infection, n (%) 231 (95.5) 183 (76.3) 10 (12.3) <0.0001
Tumor characteristics
Tumor size, median (range) (cm) 7.2 (1.3‑17.5) 3.7 (2.5‑6.2) 5.8 (3.1‑7.4) NA
Single nodular, n (%) 190 (78.5) 183 (76.3) 69 (85.2) 0.239
Vascular invasion, n (%) 88 (36.4) 133 (55.4) 9 (11.1) <0.0001
BCLC‡ stage, 0/A/B/C, n 20/152/24/29 0/139/91/10 0/56/14/10 <0.0001
Median follow‑up (months) 51.7 NA 25

*Chi‑square test, NA=Not available, BCLC=Barcelona Clinic Liver Cancer
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classified into different functional gene groups by using the 
DAVID functional classification method. Finally, 93 of  273 
genes were classified into 13 functional groups, of  which 
15 CYP family genes formed the largest cluster with the 
highest enrichment score of  8.47. Then, whether these 15 
CYP genes had the ability to classify HCC and predict the 
outcome of  HCC were validated. 

Identification of CYP family genes associated with 
HCC
Three datasets were used to validate the association 
between CYP family genes and HCC. They are Roessler’s 
study, Lim’s study, and Villa’s study (GEO accession: 
GSE14520, GSE36376, and GSE54236). A total of  
242 patients were enrolled in the Roessler’s study, which 
is the largest dataset in our study. So, we used this dataset 
to form a training set. The remaining two were considered 
as the testing sets. Patients in Villa’s study were mostly 
Caucasians, while patients in Roessler’s study and Lim’s 
study were mostly Asians. Table 1 summarized the clinical 
characteristics of  the patients in the training set and testing 
sets. There was heterogeneity among these three sets in 
some characteristics, such as sex distribution, hepatitis B 
virus infection, vascular invasion, and Barcelona Clinic 
Liver Cancer (BCLC) stage. Such heterogeneity may 
help to ensure that molecular signatures have real-world 
applicability across heterogeneous patient populations. 
Besides, in Villa’s study, HCC patients were grouped into fast 
growing group (n = 20) and slow growing group (n = 61), 
according to increasing tumor DT. Kaplan–Meier curve 
analysis of  survival showed a significantly lower survival 
rate for HCC cases in the fast growing group as compared 
with HCC cases in the slow growing group (P < 0.0001).[7]

The expressions of  15 CYP genes in HCC tissues were 
confirmed in the training set, and the results showed that 
all of  these 15 genes were significantly decreased in HCC 
tissues as compared to that in the matched nontumor 
tissues [Figure 1b]. Unsupervised hierarchical clustering of  
484 tissues according to the expression patterns of  these 
15 CYP genes showed two distant clusters, which were 
highly correlated with HCC (P = 6.53E - 9, Chi-square 
test; Figure 1a). Indeed, cluster I contained most of  the 
nontumor tissues (n = 236; 97.5%). Conversely, cluster II 
contained the majority of  tumor tissues (n = 241; 99.6%).

Construction of diagnostic signature from the training 
set and validating this signature in the testing sets
In univariate analysis, all of  15 genes were confirmed to 
be significantly differentially expressed between HCC 
tissues and nontumor tissues. In multivariate analysis, 4 of  
15 genes reached statistical significance and were used to 
construct the diagnostic model [Table 2]. The model was 

as follows: logit (P) = 47.896 − 0.721 × CYP1A2 − 1.132 
× CYP2E1 − 1.320 × CYP2A7 − 3.736 × PTGIS. The 
best cutoff  point of  this model is −0.6513. Possibility 
above −0.6513 suggested HCC. The area under curve 
(AUC) for the established four-gene expression signature 
was 0.991 (95% CI, 0.977–0.997; Figure 2a), higher than 
the diagnostic value of  any of  these four genes (the AUCs 
of  CYP1A2, CYP2E1, CYP2A7, and PTGIS were 0.973, 
0.877, 0.931, and 0.874, respectively).

To confirm our findings, the diagnostic ability of  the 
four-gene expression signature was validated in two testing 
sets. In Lim’s study, with the same cutoff  point, the AUC 
of  the four-gene signature was 0.973 (95% CI, 0.953–
0.986; Figure 2b). In Villa’s study, the four-gene signature 
could distinguish HCC with an AUC of  0.852 (95% CI, 
0.787–0.903; Figure 2c). Moreover, this gene signature 
had a good performance to make a distinction between 
fast-growing HCC and slow-growing HCC (AUC = 0.898; 
95% CI, 0.810–0.954; Figure 2d), especially for its high 
sensitivity and specificity (95% and 85.25%, respectively).

Performance of the CYP family genes in HCC outcomes
In the training set, univariate Cox proportional hazard 
regression was applied to analyze each of  the 15 genes. 
The results showed that 7 of  15 genes were significantly 
correlated with patient’s RFS [Table 3], and another 7 
of  15 genes were significantly correlated with patient’s 
OS [Supplementary Table S2]. In multivariate analysis, only 
CYP2C8 demonstrated significant correlation between 
patient’s RFS (HR = 0.809; 95% CI, 0.712–0.919) and 
OS (HR = 0.735; 95% CI, 0.634–0.853).

Each patient in the training set was classified into 
different prognostic groups (the high- and low-risk 

Table 2: Univariate and multivariate logistic regression 
analysis in the training set
Genes Univariate analysis Multivariate analysis

OR* 95% CI† P OR 95% CI P

CYP39A1 0.190 (0.140‑0.257) <0.001
CYP1A2 0.239 (0.181‑0.316) <0.001 0.486 (0.318‑0.744) 0.001
CYP2B6 0.115 (0.079‑0.168) <0.001
CYP2C8 0.004 (0.001‑0.012) <0.001
CYP2C9 0.036 (0.018‑0.069) <0.001
CYP2E1 0.183 (0.122‑0.276) <0.001 0.322 (0.161‑0.644) 0.001
CYP2C18 0.222 (0.164‑0.301) <0.001
CYP4A11 0.058 (0.033‑0.101) <0.001
CYP2A6 0.255 (0.196‑0.334) <0.001
CYP2A7 0.186 (0.139‑0.250) <0.001 0.267 (0.151‑0.472) <0.001
CYP26A1 0.174 (0.126‑0.240) <0.001
CYP3A4 0.130 (0.085‑0.197) <0.001
CYP2C19 0.153 (0.111‑0.212) <0.001
CYP4F2 0.124 (0.082‑0.186) <0.001
PTGIS 0.007 (0.003‑0.017) <0.001 0.024 (0.005‑0.111) <0.001

OR=Odds ratio, CI=confidence intervals
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groups) according to the median value of  CYP2C8 (6.39). 
Patients in high-risk group had mean and median RFS 
periods of  32.841 ± 2.468 and 23 months, respectively, 
whereas the mean and median RFS periods for patients 
in low-risk group were 44.960 ± 2.298 and 59.5 months, 
respectively. Correspondingly, the Kaplan–Meier analysis 
demonstrated a significant difference in RFS between these 
two groups (P = 0.0009; Figure 3a). Meanwhile, patients 
in high-risk group had significantly shorter OS period 
than those in low-risk group (mean 41.239 ± 2.461 vs. 

54.519 ± 1.947 months; median 51.6 vs. 64.7 months; 
P < 0.0001, log-rank test; Figure 3b). Besides, CYP2C8 
was downregulated in BCLC stage B–C when compared 
with BCLC stage 0–A (P = 0.023).

Cox regression analysis identified CYP2C8 (HR = 0.865; 
95% CI, 0.754–0.992; P = 0.038), Tumor Node 
Metastasis (TNM) stage (HR = 1.641; 95% CI, 1.195–2.254; 
P = 0.002), and BCLC stage (HR = 1.760; 95% CI, 1.312–
2.360; P < 0.0001) as independent risk factors for RFS. 

Figure 1: Deregulated cytochrome P450 (CYP) family genes in HCC tumor tissues in the training set. (a) The unsupervised hierarchical clustering 
heat map of 242 HCC samples and 242 matched adjacent nontumor livers; each row represents an individual tissue sample and each column 
represents the expression level of an individual CYP gene. (b) Relative expression of the 15 CYP genes in 242 HCC tumor tissues and 242 
adjacent nontumor tissues. T = Tumor tissues, N = nontumor tissues

ba
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CYP2C8 (HR = 0.849; 95% CI, 0.716–0.995; P = 0.033), 
TNM stage (HR = 1.723; 95% CI, 1.189–2.498; P = 0.004), 
and BCLC stage (HR = 1.582; 95% CI, 1.120–2.236; 
P = 0.009) were also independent risk factors for OS.

Moreover, Villa’s dataset was used to validate the prognostic 
efficiency of  CYP2C8. Patients were classified into 
high- and low-risk groups with the same cutoff  point. 
Patients in high-risk group had mean and median OS 
periods of  20.450 ± 2.553 and 19 months, respectively, 
whereas the mean and median OS periods for patients 
in low-risk group were 39.217 ± 2.440 and 47 months, 
respectively. Kaplan–Meier curve analysis of  survival 
showed a significantly lower survival rate for patients in 
high-risk group (P = 0.004, Figure 3c).

DISCUSSION

Progression of  HCC often leads to vascular invasion and 
intrahepatic metastasis, which correlate with recurrence 
after surgical treatment and poor prognosis. Surgical 
resection and liver transplantation are the only curative 
treatments for HCC, but eligibility is uncommon. Even 
if  patients underwent surgery, tumor recurrence occurs 
in more than 70% of  cases within 5 years, and the 5-year 
survival rate is 60–70%.[23,24] In the past years, great 
efforts have been made to improve our understanding 

Table 3: Cox regression analysis of recurrence‑free survival 
in the training set
Genes Univariate analysis Multivariate analysis

HR* 95% CI† P HR 95% CI P

CYP39A1 0.922 (0.823‑1.032) 0.158
CYP1A2 0.909 (0.815‑1.014) 0.087
CYP2B6 0.869 (0.724‑1.043) 0.132
CYP2C8 0.809 (0.712‑0.919) 0.001 0.809 (0.712‑0.919) 0.001
CYP2C9 0.945 (0.852‑10.48) 0.281
CYP2E1 0.974 (0.920‑1.031) 0.357
CYP2C18 0.990 (0.889‑1.103) 0.857
CYP4A11 0.869 (0.780‑0.967) 0.010
CYP2A6 0.899 (0.834‑0.970) 0.006
CYP2A7 0.864 (0.767‑0.973) 0.016
CYP26A1 0.744 (0.554‑1.000) 0.050
CYP3A4 0.868 (0.774‑0.973) 0.015
CYP2C19 1.023 (0.850‑1.231) 0.808
CYP4F2 0.873 (0.778‑0.980) 0.021
PTGIS 0.994 (0.608‑1.625) 0.981

HR=Hazard ratio, CI=confidence intervals

Figure 2: Receiver operating characteristic (ROC) curve analysis of the four‑gene (CYP1A2, CYP2E1, CYP2A7, and PTGIS) signature in the 
training and testing sets. In order to compare the predictive value of the four‑gene signature, we analyzed the ROC curve of the signature in 
different datasets. ROC plots for the four‑gene panel discriminating HCC in the (a) training set, (b) Lim’s dataset, (c) Villa’s study; (d) ROC plots 
for the four‑gene panel discriminating between fast‑growing HCC and slow‑growing HCC. AUC = Area under the curve
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ba



Liu, et al.: P450 are biomarkers of hepatocellular carcinoma

Saudi Journal of Gastroenterology | Volume 25 | Issue 3 | May-June 2019 173

of  the possible mechanism of  progression, metastasis, 
and recurrence at protein, mRNA, and noncoding RNA 
levels, which will enable them to benefit from adjuvant 
therapy.[25,26] More recently, many molecular tools have 
been developed to assist in patient stratification and 
prediction with microarray analysis.[8,9,15] Nevertheless, the 
classification and prediction are still improvable because 
the high-through microarray contains a large amount of  
information. Moreover, gene expression patterns and their 
prognostic value for HCC have not been systematically 
investigated.

In this study, we have demonstrated that 15 CYP family 
genes were significantly decreased in HCC tissues as 
compared to that in the matched nontumor tissues. 
A four-gene diagnostic signature was constructed for 
distinguishing between HCC and noncancerous liver, and 

the results were robust. Besides, CYP2C8 was identified 
as an independent risk factor of  survival.

Till now, there are several studies about integrated analysis 
of  gene expression profiles in HCC.[27-31] But the integration 
strategies are different. In a study by Shiraishi et al. the 
authors performed integrated and comparative analyses 
of  whole genomes and transcriptomes of  22 HBV-related 
HCCs and their matched controls. The results showed 
that various types of  genomic mutations triggered diverse 
transcriptional changes.[27] In another study, the Wang et al. 
repurposed 7 GEO datasets, which include a total of  267 
HCC samples and 67 control samples and then reanalyzed 
the different genes in these 2 groups.[28] Zheng et al. only 
used one GEO dataset[29] while Chen et al. used three 
GEO datasets and one miRNA dataset to obtain DEGs 
and miRNAs.[30] In the study by Zhou et al. the authors 
chose four datasets, because they thought these datasets 
represented different racial populations.[31] In our study, 
gene expression profiles have been obtained by repurposing 
five GEO datasets. Although each of  the five datasets used 
Affymetrix Human Genome U133 Plus 2.0 Array to analyze 
gene expression patterns, the interlab reproducibility of  
the results is often problematic due to the small sample 
size and other factors (such as pathologic staging and 
surgical outcome). To overcome these limitations, RRA 
approach was applied in this study. It has been specifically 
designed for comparison of  several ranked gene lists 
and identification of  commonly overlapping genes. This 
method assigns a P value to each element in the aggregated 
list indicating how much better it is ranked compared with 
a null model expecting random ordering. Finally, 273 genes 
were identified as the most significantly differential genes. 
This method has some strength. Most importantly, it is 
based on a statistical model that naturally allows evaluating 
the significance of  the results. In addition, RRA is easy to 
compute and robust, not restricting its use to certain subset 
of  problems or requiring all data to be of  top quality. This 
method can also handle variable gene content of  different 
microarray platforms. By defining the rank vector for each 
gene based only on the datasets where it is present, we do 
not have to omit the genes that are not present in every 
platform.[20]

In the four-gene signature, the observation of  low CYP1A2 
expression in HCC was also reported by other studies.[32,33] 
CYP1A2 metabolizes 17β-estradiol to generate the potent 
antitumor agent 2-methoxyestradiol in HCC. The reduction 
of  CYP1A2 significantly disrupts this metabolic pathway, 
contributing to the progression and growth of  HCC.[33] 
The results of  previous studies also suggest that functional 
relationship occurs among genes characterizing the 

Figure 3: Kaplan–Meier curve for recurrence‑free survival (RFS) 
and overall survival (OS) in patients with HCC with high‑ or low risk 
according to the median value of CYP2C8. (a, b) RFS and OS in the 
training set, and (c) OS in Villa’s set

c

b

a
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signature identified in this study. Fan et al. reported that 
CYP2E1 revealed low level of  expression in 70% of  the 
tumor tissues, when compared to the adjacent nontumor 
tissues, at both mRNA and protein levels. The low 
expression of  CYP2E1 was significantly correlated with the 
aggressive tumor phenotype, including poor differentiation 
status, absence of  tumor capsule, and younger age of  the 
patients.[34] Moreover, HBx inhibits human CYP2E1 gene 
expression via downregulating HNF4α, which contributes 
to promotion of  human hepatoma cell growth.[35] However,  
CYP2A7 and PTGIS are poorly studied in HCC, and 
further research may reveal a better understanding of  the 
interaction of  HCC and these genes.

Lastly, by using multivariate Cox proportional hazard 
regression analysis, our study demonstrated that only 
1 (CYP2C8) of  15 genes was significantly correlated 
with patient’s RFS and OS. Even so, the multivariate 
analysis with HRs indicated that CYP2C8 is a significant 
survival-related risk factor independent of  the well-known 
BCLC staging system. This implies that HCC prognosis 
could be improved by the combination of  CYP2C8 with 
the existed staging system. However, the mechanisms of  
CYP2C8 in HCC remain unclear.

A major strength of  our study is that the samples were 
derived from three large populations with different races, 
which ensured that molecular signatures have real-world 
applicability. Another advantage of  our study is that 
the rigorous data-processing methods and statistical 
analysis made our results reliable. Nonetheless, there are 
also limitations in our study. First, in order to measure 
the growth of  lesions, a second CT was performed 
6 weeks later. During the 6-week interval, patients did 
not undergo any specific treatment. This interval is much 
shorter than the average time to treatment after HCC 
diagnosis. Therefore, no ethical issues were raised. But 
this interval could not be compared with average waiting 
time for treatment as this usually varies due to unintended 
reasons.  Second, our work needs to be re-evaluated in a 
special cohort of  patients with a proper follow-up or in 
case-control studies. The signatures should be validated 
in qRT-PCR-based samples; we therefore need to develop  
the signatures in tissues with qRT-PCR method. Besides, 
we did not study the mechanisms of  the screened CYP 
family genes; whether these genes can affect the biological 
functions of  HCC cells remains to be studied.

CONCLUSION

A four-gene signature was identified as being able to 
discriminate between HCC and nontumor tissues as well 

as identify a subgroup of  patients with rapidly growing 
HCC. Moreover, CYP2C8 can be used as an independent 
prognostic risk factor. These results may not only help 
to identify HCC patients at high risk of  rapid growth 
and recurrence but could also provide insight into 
the mechanisms of  HCC progression, metastasis, and 
recurrence.
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Table S1: Significantly differentially expressed genes after integrated calculating through RRA method
Gene symbol Score Adjusted P Gene symbol Score Adjusted P

Upregulated Downregulated
SPINK1 5.76E‑19 3.15E‑14 FCN2 1.19E‑17 6.52E‑13
AKR1B10 2.75E‑17 1.50E‑12 CLEC1B 3.03E‑16 1.65E‑11
HMMR 1.52E‑15 8.30E‑11 SLC22A1 2.12E‑15 1.16E‑10
ASPM 5.14E‑15 2.80E‑10 CXCL14 5.14E‑15 2.80E‑10
NDC80 1.89E‑14 1.03E‑09 FCN3 8.58E‑15 4.69E‑10
ROBO1 2.09E‑14 1.14E‑09 GLS2 1.89E‑14 1.03E‑09
CAP2 7.35E‑14 4.01E‑09 CYP39A1 2.31E‑14 1.26E‑09
RACGAP1 1.64E‑13 8.97E‑09 CYP1A2 4.86E‑14 2.65E‑09
CCNB1 2.14E‑13 1.17E‑08 CYP2B6 5.76E‑14 3.14E‑09
TOP2A 2.89E‑13 1.58E‑08 CNDP1 7.35E‑14 4.01E‑09
GPC3 3.89E‑13 2.12E‑08 CLEC4M 1.53E‑13 8.38E‑09
PRC1 4.13E‑13 2.26E‑08 C9 2.43E‑13 1.32E‑08
RRM2 4.88E‑13 2.66E‑08 CXCL12 4.13E‑13 2.26E‑08
SPP1 1.19E‑12 6.51E‑08 APOF 7.04E‑13 3.84E‑08
DNAJC6 1.42E‑12 7.78E‑08 ESR1 7.78E‑13 4.25E‑08
KIF20A 1.55E‑12 8.48E‑08 CRHBP 1.19E‑12 6.51E‑08
IGF2BP3 1.62E‑12 8.84E‑08 TENM1 1.25E‑12 6.81E‑08
PRR11 2.17E‑12 1.18E‑07 GHR 1.42E‑12 7.78E‑08
MAP2 4.74E‑12 2.59E‑07 DNASE1L3 1.62E‑12 8.86E‑08
CDKN2C 7.05E‑12 3.85E‑07 ADRA1A 1.84E‑12 1.01E‑07
DLGAP5 8.25E‑12 4.50E‑07 LPA 1.92E‑12 1.05E‑07
NUSAP1 1.18E‑11 6.44E‑07 HGF 2.44E‑12 1.33E‑07
BIRC5 2.03E‑11 1.11E‑06 HAO2 3.08E‑12 1.68E‑07
KIF4A 2.74E‑11 1.50E‑06 IL1RAP 3.08E‑12 1.68E‑07
NCAPG 3.24E‑11 1.77E‑06 HAMP 4.62E‑12 2.52E‑07
CCNB2 3.81E‑11 2.08E‑06 IGF1 6.20E‑12 3.39E‑07
MAGEA1 4.26E‑11 2.33E‑06 LIFR 7.05E‑12 3.85E‑07
KIF11 5.41E‑11 2.95E‑06 CYP2C8 7.51E‑12 4.10E‑07
AURKA 6.52E‑11 3.56E‑06 NAT2 8.25E‑12 4.50E‑07
SULT1C2 7.39E‑11 4.03E‑06 FBP1 1.08E‑11 5.90E‑07
CCNA2 8.28E‑11 4.52E‑06 LCAT 1.18E‑11 6.44E‑07
CDK1 1.14E‑10 6.24E‑06 GBA3 1.64E‑11 8.98E‑07
E2F8 1.76E‑10 9.63E‑06 NNMT 1.69E‑11 9.23E‑07
CCNE2 2.01E‑10 1.10E‑05 MARCO 1.88E‑11 1.03E‑06
BUB1 2.04E‑10 1.12E‑05 SLCO1B3 1.89E‑11 1.03E‑06
LCN2 2.42E‑10 1.32E‑05 ALDOB 2.36E‑11 1.29E‑06
CENPA 2.80E‑10 1.53E‑05 RDH16 4.26E‑11 2.33E‑06
C1orf112 3.06E‑10 1.67E‑05 SPP2 4.65E‑11 2.54E‑06
CDKN3 3.45E‑10 1.88E‑05 CD5L 6.93E‑11 3.78E‑06
AKR1C3 3.87E‑10 2.11E‑05 MT1M 7.97E‑11 4.35E‑06
PBK 6.92E‑10 3.78E‑05 PLAC8 1.16E‑10 6.34E‑06
BUB1B 7.55E‑10 4.12E‑05 COLEC11 1.18E‑10 6.45E‑06
ECT2 9.69E‑10 5.29E‑05 CYP2C9 1.51E‑10 8.26E‑06
EDIL3 1.01E‑09 5.51E‑05 CYP2E1 1.65E‑10 9.00E‑06
CDKN2A 1.05E‑09 5.71E‑05 SRD5A2 1.68E‑10 9.15E‑06
DEPDC1 1.11E‑09 6.05E‑05 GLYAT 2.11E‑10 1.15E‑05
KIAA0101 1.21E‑09 6.63E‑05 HGFAC 2.11E‑10 1.15E‑05
TRIM16 1.53E‑09 8.36E‑05 C8orf4 2.18E‑10 1.19E‑05
PRKAA2 2.31E‑09 0.000126011 AFM 2.32E‑10 1.27E‑05
CDC20 2.54E‑09 0.00013875 ZG16 2.36E‑10 1.29E‑05
EZH2 2.69E‑09 0.00014687 IGFBP3 2.76E‑10 1.51E‑05
TTK 3.15E‑09 0.000172213 ATF5 3.02E‑10 1.65E‑05
LEF1 3.45E‑09 0.000188269 SOCS2 3.35E‑10 1.83E‑05
ACSL4 4.21E‑09 0.000230079 NPY1R 3.71E‑10 2.03E‑05
CENPF 5.10E‑09 0.00027849 KDM8 4.52E‑10 2.47E‑05
DTL 8.21E‑09 0.000448485 COLEC10 4.58E‑10 2.50E‑05
MELK 9.44E‑09 0.000515558 MRC1 5.11E‑10 2.79E‑05
CDKN2B 9.76E‑09 0.000532784 XDH 5.61E‑10 3.06E‑05
NEK2 1.10E‑08 0.000603006 STEAP4 6.15E‑10 3.36E‑05
FGF13 1.10E‑08 0.000603006 MT1F 6.62E‑10 3.62E‑05
COL15A1 1.26E‑08 0.000686421 MBL2 6.99E‑10 3.82E‑05
CLGN 1.27E‑08 0.000692295 SLC7A2 7.17E‑10 3.92E‑05
STXBP6 1.85E‑08 0.00100832 CYP2C18 7.64E‑10 4.17E‑05
ITGA6 2.15E‑08 0.001173191 DCN 8.22E‑10 4.49E‑05

Contd...



Table S1: Contd...
Gene symbol Score Adjusted P Gene symbol Score Adjusted P

Upregulated Downregulated
RRAGD 2.20E‑08 0.001199474 STAB2 8.22E‑10 4.49E‑05
FAM169A 2.44E‑08 0.001333329 CIDEB 8.43E‑10 4.60E‑05
MAGEA6 2.44E‑08 0.001333329 CYP4A11 9.28E‑10 5.07E‑05
PEG10 2.72E‑08 0.001483161 CYP2A6 9.30E‑10 5.08E‑05
KIF14 2.76E‑08 0.001509308 RCAN1 1.30E‑09 7.09E‑05
SLC7A11 2.81E‑08 0.0015358 SRPX 1.32E‑09 7.22E‑05
MAD2L1 3.01E‑08 0.001645264 ZGPAT 1.42E‑09 7.75E‑05
ENAH 3.44E‑08 0.001878771 LY6E 1.45E‑09 7.92E‑05
TKT 3.62E‑08 0.001976497 VNN1 1.48E‑09 8.06E‑05
MAGEA3 4.38E‑08 0.002392275 MASP1 1.55E‑09 8.46E‑05
PTTG1 4.66E‑08 0.002544424 CA2 1.69E‑09 9.21E‑05
ZWINT 5.33E‑08 0.002913182 KCNN2 1.76E‑09 9.63E‑05
CENPU 6.08E‑08 0.003320583 CXCL2 2.01E‑09 0.000110033
APOBEC3B 1.17E‑07 0.006411243 KBTBD11 2.25E‑09 0.000123013
DLG5 1.80E‑07 0.009808666 KAZN 2.34E‑09 0.000128026
TXNRD1 1.94E‑07 0.010578678 CETP 3.07E‑09 0.000167869
EFCAB2 4.75E‑07 0.025921521 GYS2 3.15E‑09 0.000172213
CKAP2 4.79E‑07 0.02614349 MT1G 3.25E‑09 0.000177446
SLC38A6 5.30E‑07 0.028919541 MT1H 3.35E‑09 0.000182797
NRCAM 5.90E‑07 0.032238372 GPM6A 3.60E‑09 0.000196524
DHRS2 6.29E‑07 0.034360482 THBS1 5.29E‑09 0.000289149
TPX2 6.33E‑07 0.034574782 AKR1D1 5.81E‑09 0.000317473
FAT1 6.85E‑07 0.037402125 MT1E 6.12E‑09 0.000334159
SMPX 8.02E‑07 0.043778089 MT1X 6.28E‑09 0.000342744
HOXA3 8.40E‑07 0.045901344 HABP2 6.83E‑09 0.000373189

GREM2 7.28E‑09 0.000397764
PLG 7.64E‑09 0.000417031
GSTZ1 7.76E‑09 0.000423617
AGXT 9.12E‑09 0.000497916
MYO10 9.19E‑09 0.000501698
ACSM3 9.33E‑09 0.00050933
MOGAT2 9.47E‑09 0.000517054
ECM1 9.61E‑09 0.000524872
GNMT 9.88E‑09 0.000539501
ADH1A 1.05E‑08 0.000573787
ADAMTS13 1.18E‑08 0.000644603
ANXA10 1.45E‑08 0.000794344
TMEM45A 1.58E‑08 0.000861452
PDGFRA 1.67E‑08 0.000914505
TDO2 1.74E‑08 0.000951209
ASS1 1.77E‑08 0.000968444
FOS 1.78E‑08 0.000969969
SLC10A1 1.85E‑08 0.00100832
BBOX1 1.99E‑08 0.001088418
AZGP1 2.02E‑08 0.00110373
FGFR2 2.15E‑08 0.001173191
EPB41L4B 2.32E‑08 0.001269561
SH3YL1 2.49E‑08 0.001357476
KMO 2.91E‑08 0.001589826
C7 3.17E‑08 0.00173112
ANGPTL6 3.23E‑08 0.001761951
ADH1C 3.58E‑08 0.001956276
PRG4 3.62E‑08 0.001976497
CD1D 3.73E‑08 0.002036314
SLCO4C1 3.99E‑08 0.002176958
HBB 4.05E‑08 0.002211793
FETUB 4.18E‑08 0.002282715
MT1HL1 4.45E‑08 0.002429655
MCC 4.80E‑08 0.002623161
SHBG 4.87E‑08 0.002658396
MT2A 5.49E‑08 0.003000286
IGFALS 5.68E‑08 0.00310222
RBMS3 6.37E‑08 0.003476853
SLC22A7 6.37E‑08 0.003476853

Contd...



Table S1: Contd...
Gene symbol Score Adjusted P Gene symbol Score Adjusted P

Upregulated Downregulated
PCK1 6.71E‑08 0.00366583
CHST4 6.84E‑08 0.003733479
HAO1 7.67E‑08 0.004187743
OLFML3 9.02E‑08 0.004927537
CFP 1.14E‑07 0.006235826
FAM134B 1.16E‑07 0.006333836
C6 1.20E‑07 0.00656818
GRAMD1C 1.47E‑07 0.008021078
TFPI2 1.64E‑07 0.008980903
TAT 1.70E‑07 0.009284924
TRPM8 1.74E‑07 0.009491841
CPEB3 1.76E‑07 0.009596585
BHMT 1.86E‑07 0.010133342
CYP2A7 1.98E‑07 0.010806761
CYP26A1 2.06E‑07 0.011273951
NDRG2 2.17E‑07 0.011875047
SLC1A1 2.36E‑07 0.012897255
KCND3 2.41E‑07 0.01316171
ADH6 2.58E‑07 0.014062978
HAL 2.66E‑07 0.014545375
ASPA 3.05E‑07 0.016661935
ANK3 3.05E‑07 0.016661935
F9 3.08E‑07 0.016821456
CYP3A4 3.17E‑07 0.017306885
ADH1B 3.58E‑07 0.019532585
CYP2C19 3.61E‑07 0.019712234
G6PC 3.81E‑07 0.020816234
FOSB 3.99E‑07 0.021771039
OAT 4.02E‑07 0.021965865
ASPN 4.39E‑07 0.023986679
ART4 4.47E‑07 0.024406973
CYP4F2 4.63E‑07 0.025264069
MASP2 4.71E‑07 0.025700965
FOLH1B 5.08E‑07 0.027737347
ACADL 5.12E‑07 0.027970839
NAMPT 5.38E‑07 0.029402819
GADD45B 5.56E‑07 0.030387478
MFAP3L 5.70E‑07 0.031142006
ITGA9 5.94E‑07 0.032430592
SLC19A3 6.28E‑07 0.03430112
ABCA8 6.80E‑07 0.037111871
FAM13A 7.23E‑07 0.039481728
PTGIS 8.10E‑07 0.044228221
EPB41L4A 8.22E‑07 0.044891898
SERPINA4 8.78E‑07 0.047971072
KLKB1 8.85E‑07 0.048322697
BCHE 9.04E‑07 0.049389145



Table S2: Cox regression analysis of overall survival in the 
training set
Genes Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

CYP39A1 0.944 (0.826‑1.080) 0.403
CYP1A2 0.906 (0.792‑1.035) 0.146
CYP2B6 0.890 (0.714‑1.108) 0.295
CYP2C8 0.735 (0.634‑0.853) 0.000 0.735 (0.634‑0.853) 0.000
CYP2C9 0.868 (0.770‑0.979) 0.021
CYP2E1 0.948 (0.888‑1.013) 0.116
CYP2C18 0.943 (0.829‑1.072) 0.370
CYP4A11 0.776 (0.683‑0.882) 0.000
CYP2A6 0.854 (0.778‑0.938) 0.001
CYP2A7 0.800 (0.690‑0.926) 0.003
CYP26A1 0.779 (0.553‑1.096) 0.152
CYP3A4 0.797 (0.692‑0.918) 0.002
CYP2C19 1.004 (0.796‑1.267) 0.970
CYP4F2 0.832 (0.724‑0.956) 0.010
PTGIS 1.087 (0.605‑1.952) 0.780




