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ABSTRACT

k-SLAM is a highly efficient algorithm for the charac-
terization of metagenomic data. Unlike other ultra-
fast metagenomic classifiers, full sequence align-
ment is performed allowing for gene identification
and variant calling in addition to accurate taxo-
nomic classification. A k-mer based method provides
greater taxonomic accuracy than other classifiers
and a three orders of magnitude speed increase over
alignment based approaches. The use of alignments
to find variants and genes along with their taxonomic
origins enables novel strains to be characterized. k-
SLAM’s speed allows a full taxonomic classification
and gene identification to be tractable on modern
large data sets. A pseudo-assembly method is used
to increase classification accuracy by up to 40% for
species which have high sequence homology within
their genus.

INTRODUCTION

Metagenomics, the study of DNA extracted directly from
microbial communities has been revolutionized by whole-
genome shotgun sequencing. The ability to sample billions
of short DNA reads from bacterial, viral and fungal species
allows a unique insight into the taxonomic composition
of diverse ecosystems as well as the processes taking place
within. Metagenomic techniques have found applications in
many areas, from ecological studies of acid mine drainage
systems (1), soils (2) and oceans (3) to medical research in-
volving communities of bacteria living within the human
body (4). Human microbiome metagenomics aims to char-
acterize the internal microbiota of healthy (5) and diseased
individuals (6) and has been used to study obesity (7) and
inflammatory bowel disease (8).

Currently, high-throughput sequencing technologies, e.g.
Illumina’s HiSeq or Life Technologies’ Ion Torrent are used
to generate a whole-genome shotgun data set consisting
of large numbers of short reads randomly sampled from
the genomes of the species present in the sample. Com-
putational methods are then used to assemble, assign tax-
onomies, or infer genes from the reads.

For taxonomic classification of reads, the speed of the
computational methods has always lagged behind the rate
of data generation and this has proved to be a large bar-
rier to the widespread adoption of whole-genome shot-
gun based metagenomics. There are currently three main
approaches to the taxonomic analysis of these data sets;
sequence homology, composition based inference through
machine learning and abundance estimation.

Homology based methods aim to find nucleotide se-
quences that are common to both the reads and a database
and use these to infer taxonomy. Homology methods gen-
erally use pairwise alignment, where reads are compared to
genomes to find sections where the sequences match. By
finding the genomes that each reads maps to, taxonomy can
be inferred. The alignment position along the genome can
be used to identify the gene from which the read most likely
originated as well as any variants between the read and the
reference sequence.

The oldest and most common method is BLAST (9),
which aligns sequences to a database of genomes and as-
signs taxonomy based on the best match. BLAST and other
alignment based methods have high accuracy when the sam-
pled species exists in the genome database but struggle to
infer taxonomy otherwise. The vast size of the data sets,
often more than 1 × 107 reads means that these methods
are incredibly slow as they have to align each read to thou-
sands of large genomes. A BLASTN based analysis of a
typical metagenomic data set can take weeks of compute
time. Newer homology based methods such as Kraken (10)
and CLARK (11) dispense with actual alignments, just us-
ing matching short k-mers to assign taxonomy. This allows
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greatly increased speed but does not produce actual align-
ments and therefore cannot identify genes, variants and
alignment positions.

Composition based methods use machine leaning tech-
niques such as Interpolated Markov Models (Phymm (12))
or Bayesian classifiers (NBC (13)) to extract sequence fea-
tures. These methods have the advantage of not relying on
a database (although one is needed to train the algorithm)
but are less accurate than alignment based methods. Some
methods, e.g. PhymmBL (12) and RITA (14), combine com-
position and homology based methods to improve accu-
racy.

Abundance based methods such as MetaPhlAn (15) use
alignment to a greatly reduced database of specific genes to
increase speed of analysis and produce a report of the rela-
tive abundances of species present in the sample. This how-
ever has the disadvantage of only aligning a subset of reads,
preventing it from being used for pre-assembly binning or
gene calling.

In this article we propose a novel metagenomic algo-
rithm, k-SLAM (k-mer Sorted List Alignment and Metage-
nomics) which aims to bring together the advantages of all
of the above methods whilst providing ultrafast run times.
k-SLAM uses a k-mer method to rapidly produce align-
ments of the reads against a database and can therefore
find genes and variants. A novel pseudo-assembly technique
chains neighboring alignments together to improve taxo-
nomic specificity. The main data structure is a sorted list
of k-mers which makes k-SLAM extremely fast and paral-
lelizable.

We report tests of k-SLAM against a variety of
metagenomes composed of real reads and of simulated
reads and compare the taxonomic accuracy and speed to
five of the most common metagenomic algorithms; Kraken,
CLARK, RITA, NBC and PhymmBL. k-SLAM is shown
to be more accurate than all other current methods as well
as being several orders of magnitude faster than both align-
ment based and composition based classifiers. We then val-
idate k-SLAM against a variety of microbiome and envi-
ronmental samples. Finally, we demonstrate a use case for
k-SLAM’s gene identification, a replication of the Rohde et
al. crowd-sourced analysis of the Shiga toxin producing Es-
cherichia coli O104:H4 (16). k-SLAM is shown to reproduce
all of the main findings of the study, including determining
various antibiotic resistance and toxin producing genes as
well as their taxonomic origins.

MATERIALS AND METHODS

Algorithm outline

k-SLAM is a metagenomic classifier that uses a sequence
alignment method to infer taxonomy and identify genes.
Reads and database genomes are split into short (k = 32)
k-mers which are added to a list and sorted so that identi-
cal k-mers are placed next to one another. Iteration through
the list allows k base overlaps between reads and genomes
to be found, along with alignment position. The overlaps
are then verified with a full Smith-Waterman pairwise se-
quence alignment. Neighboring alignments are chained to-
gether along each genome into a ‘pseudo-assembly’, this al-
lows reads that map to low complexity and conserved re-

gions to still be classified precisely as the chains often extend
into unique sequence. Low scoring alignments are screened
and taxonomy is inferred from the lowest common taxo-
nomic ancestor of the valid overlaps. Alignments are also
used to infer genes and variants.

The sorted-list method of finding k-mer overlaps allows
great speed and efficient parallelisation on modern hard-
ware.

k-mer based alignment

For the following analysis assume: k is an integer chosen at
compile time (default k = 32) and a k-mer is a sequence of
k nucleotides.

Each read is split up into overlapping k-mers (k − 1 base
overlap) and the k-mers are added to a list. Each genome
is split into non-overlapping k-mers (to save memory) and
the k-mers are added to the same list. The list is sorted
lexicographically, placing identical k-mers next to one an-
other. The list is iterated over, finding overlaps between
reads and genomes. For each of the overlaps found, a full
Smith-Waterman pairwise local sequence alignment (using
Mengyao Zhao’s SIMD Smith-Waterman implementation
(17)) is performed to ensure the overlap is valid and to find
any variants. Alignments with a score lower than a user-
chosen cutoff are screened (see Supplementary File 3: Sup-
plementary Note 1 for a graph of sensitivity and specificity
for various score cutoffs).

k-mers are stored along with their offsets from the start
of the sequence, the identifier of the sequence from which
they were extracted and a flag that is set if the k-mer has
been reverse-complemented.

In order to find overlaps on both strands, k-SLAM com-
pares each k-mer with its reverse complement and stores
only the lexicographically smallest to save memory.

A similar k-mer based method using lexicographic sort-
ing and spaced k-mer seeds, albeit for protein alignments,
was independently discovered and used in DIAMOND
(18).

Paired-end reads

As read length is very important for taxonomic specificity,
k-SLAM is designed to work with paired end reads of any
insert size. Paired reads are treated initially as two single
reads, which have their overlaps and alignments found us-
ing the above k-mer method. As bacterial sequence is of-
ten repetitive, it is highly likely that each end of the paired
read aligns to multiple places on the same genome, hence
a method is needed for detecting which pairings of these
alignments are valid.

For each read/genome pair, all of the alignments are
sorted by offset from the start of the genome. The algorithm
then makes alignment pairs from each R1’s nearest neigh-
bor R2s and vice-versa.

This allows only a small subset of pairs to be considered
instead of working with all possible pairs (avoiding N2 scal-
ing). The library insert size is then inferred using a statistical
method; insert sizes in the range of 0 ≤ I ≤ Q3 + 2(Q3 − Q1)
are used to calculate a mean and standard deviation and all
pairs with insert sizes I ≥ � + 6� are screened.



Nucleic Acids Research, 2017, Vol. 45, No. 4 1651

Sequencing technologies

k-SLAM is designed to work with data from all of the most
used sequencing technologies. There are, however, some
constraints on the reads that affect accuracy. The reads need
to be longer than the length of the k-mer and have a suffi-
ciently low error rate such that there is at least one error
free k-mer in each read. This allows a k base overlap to be
found that can then be verified with a full Smith–Waterman
alignment. Longer reads will produce more alignments and
greater taxonomic specificity. Taxonomic specificity is also
improved by using paired-end reads. A lower error rate al-
lows a longer k-mer and hence a shorter compute time. k-
SLAM has been tested and found to be accurate on Illumina
HiSeq and MiSeq platforms as well as 454 and Ion Torrent
data.

Pseudo-assembly

Due to the similarity between the genomes of different bac-
terial species, there is a large probability that each read will
map to more than one genome, this makes inferring taxon-
omy difficult as reads often map to long sections of con-
served sequence.

k-SLAM attempts to solve this problem by grouping
reads that map to adjacent locations on the same genome
together into ‘pseudo-assemblies’. A new alignment score
is calculated for each chain, taking into account per base
similarity, chain length and depth of coverage. These long
chains of reads often extend beyond conserved sections and
into regions specific to one particular strain. This allows all
reads within the chain to be assigned to the lowest possible
taxonomic level. Following is a description of the k-SLAM
pseudo-assembly algorithm as applied to each genome:

1. For each genome, sort the alignments by start position.
2. Form chains of alignments that overlap by more than 20

bases.
3. For each chain, calculate the following parameters:

L = be − bs

where L is the chain length (in nucleotides), bs and be
are the positions of the first and final nucleotides, respec-
tively.

C = Nb/L

where C is the coverage and Nb is the sum of the number
of bases in each read.

μs = �s
Nb

where μs is mean score per nucleotide and s is the Smith–
Waterman score for each alignment.

S = Cμs L

where S is the chain’s score which is applied to all of the
alignments in the chain.

Inferring taxonomy

k-SLAM infers taxonomy using a lowest common ances-
tor technique similar to that in the Huson et al. program

MEGAN (19). For each read, a score cutoff is calculated
by multiplying the highest alignment score by a user chosen
constant and all alignments below this cutoff are screened
(see Supplementary File 3: Supplementary Note 2 for a
graph of sensitivity and specificity for various fractional
score cutoffs). Taxonomy is chosen based on the lowest
common ancestor in the taxonomy tree of the remaining
alignments. A matching gene is also inferred for each read
from the position of the alignment along the genome.

Inferring genes

Genes are inferred using the GenBank format annotations.
For each non-screened alignment, the gene with the most
overlapping bases is chosen. For the XML output, genes
with identical names, protein IDs or products that are as-
signed to the same taxonomy are combined into a single
entry with an associated count.

Synthetic metagenomes

In order to calculate the taxonomic classification accuracy,
a data set is required for which every read’s taxonomic
origin is known. This is impossible for real environmen-
tal metagenomes so the standard procedure is to produce
these data sets in silico (20, 21). The first testing data set
was entirely artificial, using paired-end 150 bp reads gen-
erated from 100 randomly selected NCBI genomes with an
error profile five times greater than would be expected from
Illumina reads (this error profile was taken from the Kraken
(10) paper). This data set, which has all species in equal pro-
portions, was designed so that it can be seen how the ac-
curacy of each classifier changes for different species. The
second data set was taken from Metabenchmark (22), an
effort to evaluate the accuracy and speed of metagenome
analysis tools. The data set used was >50 million reads and
designed to accurately mimic the complexity, size and char-
acteristics of real data. The researchers created the data sets
by sampling read pairs from sequenced genomes in well de-
fined proportions with error profiles added from real HiSeq
data.

RESULTS

Taxonomic classification accuracy

In order to compare the accuracy of k-SLAM’s taxonomic
assignment with other tools, each of the two test data
sets were analyzed using Kraken, CLARK, PhymmBL,
NBC and RITA (all using the RefSeq bacterial genomes
database) and the number of reads correctly assigned per-
species was calculated.

For the first data set, k-SLAM classified more reads
successfully than any other program. A total of 96% of
reads were assigned correctly at the species level versus 84%
for RITA, 91% for CLARK, 92% for Kraken, 94% for
PhymmBL and 94% for NBC.

In order to determine which species were classified best by
each program, a graph of per-species accuracy was plotted
(see Figures 1 and 2).
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Figure 1. Taxonomic classification accuracy comparison for an artificially generated data set consisting of 100 randomly selected species. k-SLAM classified
96% of reads successfully versus 84–94% for other programs. Pseudo-assembly increases accuracy from 92% to 96%. There are 17 species which are classified
poorly for all programs (see Figure 2).

Figure 2. Enlargement of Figure 1 showing only the 15 worst classified species. k-SLAM is far more accurate on these species due to pseudo-assembled
contigs extending beyond conserved regions.

Although k-SLAM’s accuracy is consistently high across
the 100 species, it can be seen that it is particularly accu-
rate for the 20% of species that the other classifiers strug-
gled most with. These difficult species were examined and
it was found that there were 17 bacteria that appeared in
the bottom 25 species of all classifiers (excluding k-SLAM)
(see Supplementary File 1: Supplementary Table S1). These
species often have high genus accuracy (>95%) but low
species accuracy (often <50%), suggesting that they share
large regions of their genomes with other species in their
genus. Any read mapped within a conserved region can
therefore only be assigned at the genus level. k-SLAM cir-
cumvents this issue using pseudo-assembly, where overlap-
ping alignments can be chained together to give a con-
tig that extends beyond the conserved region into unique
sequence. The advantage of pseudo-assembly can be seen
from Figures 1 and 2; improving the classification accuracy

on difficult species above that of other methods (41% more
reads classified than Kraken) and increasing the total num-
ber of reads successfully classified from 92% to 96%.

In order to determine which classifier performs best on
a sample with a more realistic distribution of species, the
Metabenchmark data set was analyzed using the three
fastest classifiers (k-SLAM, Kraken and CLARK). A graph
of species and genus classification accuracy for each pro-
gram was plotted (see Figure 3). It can be seen that k-SLAM
has the greatest species level accuracy across the three classi-
fiers. Whilst k-SLAM obtained marginally fewer alignments
than Kraken, it assigned taxonomy more specifically, this
can be seen by the much smaller gap between genus and
species accuracy. As with the first data set, this increase in
specificity is due to pseudo-assembly.
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Figure 3. Comparison of species and genus classification accuracy for the bacterial/archaeal species from the Metabenchmark (22) data set. k-SLAM
classified 96% of reads successfully at species level versus 91–93% for other programs. The small difference between species and genus accuracy for k-
SLAM (compared to Kraken) is due to the increased specificity of taxonomic assignments given by k-SLAM’s pseudo-assembly.

Speed and computational requirements

With the size of metagenomic data sets rapidly increasing,
the speed of taxonomic assignment algorithms has become
more important. To compare classification speed, each of
the different programs were used to analyze the Human Mi-
crobiome Project SRS011061 data set (from the NCBI Se-
quence Read Archive). In order to better recreate modern
computational environments, the speed on eight CPU cores
(Xeon E7-8837 2.67GHz) was measured (see Figure 4) and
to ensure a consistent test, only single end reads were used
and the database read time was not counted.

When comparing speed, it is important to distinguish
between different types of classification algorithm. Pro-
grams such as PhymmBL and RITA that align all reads
to a database tend to be many orders of magnitude slower
than methods such as Kraken and CLARK (that use k-mer
based classifiers) or MetaPhlAn (that aligns only a frac-
tion of the reads to a small database). The alignment based
methods, however, have the advantage of knowing exactly
where each read mapped to a specific genome. This can be
used to extract other important information such as over-
lapping genes and sequence variants.

Compared to the other classifiers that use sequence align-
ment, k-SLAM’s speed of 81 000 reads per second was
2800x faster than RITA, 10 000x faster than NBC and 20
000x faster than PhymmBL. k-SLAM was slightly slower
than Kraken and 4x slower than CLARK, but in addition
to taxonomic classification, real alignments were generated.
This greatly increased speed (compared to other alignment
based methods) allows gene and variant calling to be com-
putationally viable for modern large metagenomic data sets.
The speed increase of k-SLAM is due to a k-mer based
alignment using a list-sort to find identical k-mers . This
is very fast and parallelizable on modern hardware. For a
fixed database size and N reads, the execution time scales
with Nlog N and the memory usage with N. The disadvan-
tage of this sorted list method, however, is large memory
usage due to all reads being analyzed simultaneously. It is

for this reason that data sets can be split by k-SLAM into
smaller subsets of 1–10 M reads before analysis, allowing
an upper limit of memory to be set. k-SLAM uses around
50 GB RAM when analyzing data in 10 million paired read
subsets.

Validation using real metagenomes

In order to validate the algorithm, we re-analyzed the data
from the Qin 2014 (23) study that compared gut micro-
biomes in healthy individuals and those with liver cirrho-
sis. The study found large differences in the gut flora be-
tween the two groups which suggested an invasion of the
gut with oral commensals in those with cirrhosis. We used
k-SLAM to analyze all 181 data sets against the NCBI bac-
terial genomes database (see Figure 5) and found several no-
table differences in gut microbial composition that confirm
the results of the original study. Taxons that were enriched
in healthy individuals include Lachnospiraceae (11% versus
6% of reads) and Ruminococcaceae (13% versus 11%) that
provide gut protective effects. Taxons enriched in individu-
als with cirrhosis include Veillonellaceae (4% versus 2%) and
Streptococcus (4% versus 0.5%) that contain species of oral
origin known to cause opportunistic infections. In addition
to the results from the study, we also found greatly increased
amounts of E. coli (5% versus 2%) and K. pneumoniae (3%
versus 0.5%) in patients with cirrhosis. In addition to the
gut microbiome, an environmental sample (of inhalable mi-
croorganisms in air pollution) was analyzed (see Additional
file 3: Additional note 3).

Genomic analysis of Shiga toxin producing E. coli

In May and June, 2011, there was an outbreak of a food-
borne strain of E. coli in Germany that infected over 3000
people and caused 40 deaths. In order to discover why this
strain was so virulent, Rohde et al. sequenced an isolate of
the pathogen using high-throughput bench top machines
and made the data openly available online (16). Within a
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Figure 4. Speed comparison of classifiers. k-SLAM is at least 2800x times faster than other alignment based classifiers and comparable in speed to non-
alignment based Kraken and CLARK. An improvement of several orders of magnitude allows gene and variant calling to be computationally tractable
for large metagenomic data sets.

Figure 5. Analysis of liver cirrhosis data. Taxonomic distribution of gut microbiome reads. (A) Healthy individuals (B) Patients with liver cirrhosis. Around
30–40% of reads were assigned taxonomy.

week, a large scale crowd-sourced analysis had revealed that
the E. coli strain (O104:H4 str. TY-2482) had acquired genes
for Shiga toxin 2 (via a prophage) and for resistance to sev-
eral antibiotics.

At first glance it may appear that a metagenomic analy-
sis of a single isolate would not provide any insight, how-
ever, the strain in question was novel and appeared to have
acquired genes from bacterial and viral strains. If the sam-

ple was analyzed using one of the current purely taxonomic
classifiers the results would show a mixture of false positive
strains and could not reveal any of the genes shared with
known species. k-SLAM on the other hand uses real align-
ments and can identify individual genes present in a sample
(as long as they are in the genome database) along with their
taxonomic origin and so could be useful in determining the
genetic makeup of an unknown strain. This would allow the
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Table 1. Some of the genes found by k-SLAM in the outbreak E. coli strain, including genes for Shiga toxin and for antibiotic and antibacterial resistance.
All relevant genes (Shiga toxin, tetracycline resistance, streptomycin resistance and tellurite resistance) from the study were found along with their taxonomy.
Genes for resistance to chloramphenicol, copper and polymyxin were found

Genetic feature Predicted taxonomic origin

Shiga toxin 2 subunit A Escherichia phage P13374
Shiga toxin 2 subunit B Escherichia phage P13374
Tetracycline resistance protein tetA Escherichia coli
Tellurite resistance Escherichia coli 55989
Copper resistance Escherichia coli 55989
Chloramphenicol resistance Escherichia coli 55989
Streptomycin phosphotransferase Escherichia coli O111:H- str. 11128
Polymyxin resistance protein B pmrD Escherichia coli
Multidrug resistance mdtN, marC, emrD, mdtQ Escherichia coli 55989
Multidrug resistance norM, mdtH, ebrB, mdtK Escherichia coli

toxin producing genes to be identified, along with any an-
tibiotic resistance genes, aiding treatment.

A database was constructed from all complete E. coli
genomes that were available at the time of the original arti-
cle, plus all NCBI bacterial and viral genomes (with E. coli
removed). k-SLAM was used to identify the genes present
in the outbreak strain genome, along with the inferred tax-
onomic origin for each gene (see Table 1).

k-SLAM found alignments for 98.5% of the reads, with
2.42% of these alignments being viral strains and the rest
bacterial. The predominant E. coli match was strain 55 989
with 47% of reads mapping unambiguously to it. Other con-
tributing strains were E24377A with 7.3% and SE11 with
6.9%. This matches the results of the original paper that
found a 99.84% nucleotide identity between the outbreak
strain and 55 989.

k-SLAM identified all of the important genes from the
study (Shiga toxin, tetracycline resistance, streptomycin re-
sistance and tellurite resistance) along with their taxonomic
origins. Additionally, genes for resistance to chlorampheni-
col, copper and polymyxin were found (see Table 1). Anal-
ysis took less than 10 min on 8 Xeon E7-8837 2.67 GHz
cores, far less than the week taken for the original study.

DISCUSSION

We have presented a metagenomic classifier that is several
orders of magnitude faster than other alignment based al-
gorithms and more accurate than any current classifier. The
greatly increased speed, whilst still producing real align-
ments for every read against a database of genomes, allows
gene and variant calling to be computationally viable with
modern metagenomic data sets.

Across a variety of species, k-SLAM was shown to be be-
tween 12% and 2% more accurate than other classification
methods. This increase in accuracy is particularly notice-
able for species that have large sections of their genomes
conserved within their genus. For these difficult species that
comprised 20% of the first testing data set, k-SLAM can
provide a significant (around 40%) increase in the num-
ber of reads assigned correctly. This increased accuracy was
shown to be as a result of chaining adjacent alignments
into a pseudo-assembly, extending beyond conserved sec-
tions of genomes. k-SLAM was shown to be 2800x faster
than other alignment based classifiers and comparable in
speed (within the same order of magnitude) to Kraken and

CLARK, which do not produce alignments or gene identi-
fication.

k-SLAM’s ability to identify genes in a sample of a novel
isolate was demonstrated in the replication of the crowd
sourced analysis of the Shiga toxin producing E. coli strain.
All antibiotic resistance and toxin producing genes from the
study, as well as their predicated taxonomic origins, were
found.

Alignment based methods produce greater accuracy than
composition based methods and also allow genes to be iden-
tified. They also assign taxonomy to all reads unlike abun-
dance estimation methods. The disadvantage had always
been that they were far slower. k-SLAM has been demon-
strated to solve this problem, providing a speed improve-
ment of several orders of magnitude over older alignment
based algorithms. This makes alignment based metage-
nomics faster than abundance estimation, comparable in
speed to pure taxonomic classifiers and more accurate than
all existing methods.

The primary limitation of k-SLAM (and all other homol-
ogy based classifiers) is that taxonomy cannot be predicted
if a similar species does not already exist in the database.
This problem is being mitigated by the recent rapid increase
in size of genome databases, including strains assembled
from mixed metagenomic samples. Another limitation is
large memory usage, k-SLAM requires around 50 GB of
RAM for an average metagenomic data set.

The analysis of the Shiga toxin producing E. coli sample
showed that k-SLAM can be used to identify genes present
in a novel strain as well as their taxonomic origin. This
could be used as a rapid diagnostic procedure to detect an-
tibiotic resistance and toxin producing genes to aid med-
ical treatment. This can only be done with an alignment
based classifier and k-SLAM makes this computationally
tractable.

Finding individual alignment positions instead of purely
taxonomic classification can aid with revealing false positive
species as they will often only have reads mapping to a small
subset of genes.

The taxonomic classification of a mixed data set indicates
that k-SLAM could be used for binning prior to metage-
nomic assembly or to screen for contaminants in an isolate
data set. A possible use case would be in a quality con-
trol step to identify contaminants in a single strain data
set in order to find their origin and remove from further
sequencing experiments. Another application would be to
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screen bacterial sequence from human saliva samples prior
to mapping to the human genome. In human microbiome
metagenomics, k-SLAM could be used to identify gut par-
asites (protozoa, nematodes and helminths) and also to de-
tect plant sequence that can indicate dietary components.
k-SLAM’s increased speed makes this analysis feasible. The
increased accuracy due to pseudo-assembly allows bacteria
that have large sections of sequence conserved within their
genus (as is the case with common intestinal flora) to still be
classified accurately, aiding with pre-assembly binning. This
type of analysis cannot be done with abundance estimation
methods as they do not align all reads.

AVAILABILITY

k-SLAM is available at github.com/aindj/k-SLAM and a
web-server is provided at sbg.bio.ic.ac.uk/slam/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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