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Abstract The advantages of phage Mu transposition-based
systems for the chromosomal editing of plasmid-less strains
are reviewed. The cis and trans requirements for Mu phage-
mediated transposition, which include the L/R ends of the
Mu DNA, the transposition factors MuA and MuB, and the
cis/trans functioning of the E element as an enhancer, are
presented. Mini-Mu(LR)/(LER) units are Mu derivatives that
lack most of the Mu genes but contain the L/R ends or a
properly arranged E element in cis to the L/R ends. The dual-
component system, which consists of an integrative plasmid
with a mini-Mu and an easily eliminated helper plasmid
encoding inducible transposition factors, is described in
detail as a tool for the integration/amplification of recombi-
nant DNAs. This chromosomal editing method is based on
replicative transposition through the formation of a cointe-
grate that can be resolved in a recombination-dependent
manner. (E-plus)- or (E-minus)-helpers that differ in the
presence of the trans-acting E element are used to achieve
the proper mini-Mu transposition intensity. The systems that
have been developed for the construction of stably main-
tained mini-Mu multi-integrant strains of Escherichia coli
and Methylophilus methylotrophus are described. A novel
integration/amplification/fixation strategy is proposed for
consecutive independent replicative transpositions of differ-
ent mini-Mu(LER) units with “excisable” E elements in
methylotrophic cells.
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Introduction

The relevance and practical significance of constructing
plasmid-less recombinant bacterial strains for use in applied
microbiology and biotechnology are increasing due to the
potential for genetic instability to reduce the number of
active recombinant alleles in plasmids (Friehs 2004) and
restrictions on the application of plasmids in large-scale
industries of the First World (European Council Directives
1990, 1998). In vivo chromosomal editing methods, which
are primarily based on homologous and/or site-specific
recombination of DNA as well as on transposition mecha-
nisms, have been used to engineer plasmid-less bacteria
(Balbas and Gosset 2001). The increase in genomic copy
number of native or previously modified target genes is an
important tool for chromosomal editing and the construction
of stably maintained bacterial genomes. The development of
new approaches for the integration (Minaeva et al. 2008;
Rivero-Miiller et al. 2007) and the increase in genomic copy
number (Tyo et al. 2009) of recombinant DNA fragments
remains relevant even for Escherichia coli and closely
related Gram-negative bacteria for which recombineering-
based technologies (Court et al. 2002; Sawitzke et al. 2007;
Sharan et al. 2009) have already been developed to finely
modulate the expression of chromosomal genes (De Mey et
al. 2010; Katashkina et al. 2005; Meynial-Salles et al. 2005)
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and sometimes conditionally increase (Doroshenko et al.
2010b) or silence (Krylov et al. 2010) the level of their
transcription. The methods of integration/amplification are
especially important for bacteria for which the genetic tools
for the chromosomal editing are not as comprehensive and
diversified as those available for E. coli.

The integration of target genes in a bacterial chromosome
followed by the increase in genomic copy number can be
efficiently achieved using a phage Mu-driven transposition
system originally developed for E. coli and initially charac-
terized more than 20 years ago (Castilho et al. 1984;
Chaconas et al. 1981a, b). Since the mid-1980s, several Mu
derivatives, mini-Mu(s), have been constructed and exten-
sively used for applications in classical in vivo transposition,
including insertional mutagenesis, gene fusion, and mapping
techniques, as well as for gene cloning and DNA sequencing
strategies (Groisman 1991; Groisman and Casadaban 1986,
1987). The highly efficient Mu-based technology of the in
vitro DNA transposition has been developed as a convenient
tool for the functional analysis of genes, genomes, and
proteins because of the accurate nature reaction and the low
stringency for the target preference (Haapa et al. 1999;
Haapa-Paananen et al. 2002; Savilahti et al. 1995; Savilahti
and Mizuuchi 1996; Turakainen et al. 2009). The construction
of recombinant plasmid-less L-threonine-overproducing E.
coli strains may have been the first application of mini-Mu as
a vector for the integration/amplification of target pathway
genes for metabolic engineering (Kurahashi et al. 1990;
Kurahashi and Takinami 1991).

Comprehensive investigations, primarily in vitro, of the
Mu-driven system have provided extensive insights into the
molecular aspects of the transposition mechanism. These
works have been recently summarized in excellent research
papers and overviews (Abdelhakim et al. 2008; Au et al.
2006; Chaconas and Harshey 2002; Choi and Harshey
2010; Gueguen et al. 2005; Harshey and Jayaram 2006;
Nakai et al. 2001; Rice and Baker 2001). However, in vivo
Mu-driven systems may be underutilized in applied
microbiology and biotechnology. The main aim of this
review is to highlight, especially for the new generation of
investigators, the potential application of Mu-driven sys-
tems as a powerful genetic tool for the integration/
amplification of target genes and the construction of
plasmid-less engineered bacterial strains.

Cis and trans requirements of Mu phage-mediated
transposition

Known as the most efficient transposon, Mu is a temperate
bacteriophage that is capable of growth on many enteric
bacteria, including E. coli K-12. The Mu phage undergoes
two alternative transposition pathways (Fig. 1) at different
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stages of its life cycle (Howe 1997; Paolozzi and Ghelardini
2006; Symonds et al. 1987). The Mu-driven “integrative”
(or “conservative” or “nonreplicative”) transposition, which
is also designated as a “simple insertion” (Akroyd and
Symonds 1983; Harshey 1984; Liebart et al. 1982), and the
“replicative” transposition (Chaconas et al. 1981b, 1996)
are temporally separated. During the Mu phage infection
step, various flanking sequences from the previous host are
lost during the integrative transposition of the linear Mu
DNA into a random site of the bacterial chromosome (Au et
al. 2006; Bukhari and Zipser 1972). Replicative transposi-
tion through the formation of a “cointegrate” structure is
obligatory for replication and for the production of
approximately 100 phages during lytic growth (Chaconas
et al. 1981b; Chaconas and Harshey 2002; Craigie and
Mizuuchi 1985). As a result of replicative transposition,
new copies of the Mu DNA occur at many sites in the
bacterial genome, frequently within several kilobase pairs
of one another. The most obvious factor that affects the
random integration of Mu DNA into bacterial genes is their
efficient transcription, which has a clearly negative impact
on transposition (Manna et al. 2004).

Both Mu-mediated transposition pathways are catalyzed
by a high-order protein-DNA complex called a trans-
pososome (reviewed in Gueguen et al. 2005; Harshey and
Jayaram 2006). The Mu DNA sites and proteins involved in
transpososome assembly and function are presented in
Figs. 2 and 3, respectively (for detailed references, see
Chaconas and Harshey 2002; Harshey and Jayaram 2006).
The core of the Mu transpososome is composed of two Mu
end DNA segments (L and R ends) that are synapsed by
stably bound multiple subunits of the transposase MuA,
which catalyzes the specific DNA cleavage and joining
required for transposition (Craigie et al. 1984; Kuo et al.
1991; Lavoie et al. 1991). The L/R ends each contain three
MuA-binding sites (L1-L3 and R1-R3, correspondingly)
with different spacings (Fig. 2a) (Craigie et al. 1984). MuA
binds as a monomer to each L/R site, introducing an 80° to
90° bend (Kuo et al. 1991). The function of the cis- or
trans-encoded MuA protein is essential for the transposition
in vivo of the mini-Mu that is presented on supercoiled
DNA and consists of the L/R sites (Patterson et al. 1986).
The six binding sites are not equally important for trans-
posome assembly. Indeed, genetic experiments show the
unimportance of the R3 site; a deletion of the L3 site results
only in a 10-fold reduction in transposition in vivo
(Groenen et al. 1985). It is shown in vitro that a MuA-
mediated stable synaptic complex with only three (L1, R1,
R2) sites could be formed in which the donor DNA strands
are nicked and fully competent in the subsequent strand-
transfer step of transposition (Kuo et al. 1991). The linear
mini-Mu DNA flanked by the (R1R2) sites in an inverted
orientation is efficiently used for in vitro MuA-mediated
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Fig. 1 The Mu phage life cycle. As a temperate phage, Mu can
undergo lysogenic or lytic growth. The life cycle begins with infection
in which the phage adsorbs and transfers its linear double-stranded
DNA [37 kb Mu genome flanked by short regions from the previous
host (Daniell et al. 1973; Bukhari and Taylor 1975)] to a bacterial cell.
The ends of the infecting DNA are bound by the MuN protein to form
a noncovalent circular structure (Gloor and Chaconas 1986; Harshey
and Bukhari 1983). In an integrative transposition that requires the
MuA protein, the flanking sequences are lost and the Mu DNA is

assemble the transpososome followed by integrative trans-
position in vitro (Haapa et al. 1999; Savilahti et al. 1995) or
in vivo in genomes of different organisms (Lamberg et al.
2002; Paatero et al. 2008; Pajunen et al. 2005).

In E. coli, Mu transpososome assembly is facilitated by
two host-encoded DNA bending proteins—HU and a
sequence-specific integration host factor (IHF) (Swinger
and Rice 2004). HU binds in vivo to the spacer between L1
and L2 (Lavoie et al. 1996), introducing a bend and
presumably drawing the bound MuA protomers together
(Gueguen et al. 2005). The binding site for IHF is in an E
element that is located approximately 1 kb from the L end
in the native Mu DNA.

The enhancer element, E [earlier named as the internal
activation sequence or IAS (Mizuuchi et al. 1995; Mizuuchi
and Mizuuchi 1989)], stimulates transposition more than
100-fold in vitro and in vivo (Castilho et al. 1984; Leung et
al. 1989; Surette et al. 1989). The E element partially

randomly inserted into the bacterial genome. After integration,
approximately 1-10% of the phages become lysogens (Howe and
Bade 1975). The majority of the phages immediately enter the lytic
cycle (which is also the ultimate fate of the induced lysogens) during
which MuA, assisted by the activities of several factors, catalyzes
multiple replicative transpositions that eventually produce a burst size
of approximately 100 new phages. Adapted from Choi and Harshey
(2010) and Sokolsky and Baker (2003)

overlaps with the O1-O3 region (Krause and Higgins
1986), which was initially identified as the operator to
which the Mu c-repressor binds to silence the transcription
of early phage functions from the P, promoter (Fig. 2a).
The E element is composed of two clusters of MuA-binding
sequences separated by a binding site for IHF (Mizuuchi
and Mizuuchi 1989; Surette et al. 1989). The site-specific
IHF-mediated bending of DNA at the E element is
presumed to assist MuA-mediated end-enhancer interac-
tions (Harshey and Jayaram 2006).

IHF is required in vitro for the efficient transposition of
the mini-Mu carrying the E element when the superhelical
density (o) of the donor DNA is low (Surette and Chaconas
1989), i.e., o decreases from —0.05 (a character value for
naked bacterial superhelical DNA) to a level of 0~—0.025
[this density is typical for the “restrained” protein-bound
DNA molecule in vivo (Dillon and Dorman 2010; Pettijohn
1996; Pettijohn and Pfenninger 1980)].
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Fig. 2 Cis and trans requirements for Mu transposition. a Relative
arrangement of subsites within the L/R ends and the E element on the
37-kb Mu genome (Morgan et al. 2002). The genes regulating
transposition (¢, 4, B) and the E. coli proteins HU and IHE which
bind to the L end and the E element, respectively, during transposition,
are indicated. The Mu transposase can interact with the high-affinity
L/R sites and weak-affinity E sites. b The structural organization of
the transposase MuA with the assigned functions of the various
domains and subdomains. Based on limited proteolysis, three domains
(I-III) have been assigned to MuA. Amino acid numbers
corresponding to the boundary of each major domain are shown
beneath the structure. The function of each domain is indicated at the

The in cis orientation of the E element in mini-Mu with
respect to the L/R ends is critical to its function, while its
distance from the ends does not seem to be significant. The
E element can stimulate transposition if it is present in trans
in an unlinked DNA molecule (Surette and Chaconas
1992). The presence of the E element is important for
correct transpososome assembly (Fig. 3) (Allison and
Chaconas 1992; Lavoie and Chaconas 1995; Watson and
Chaconas 1996), and it remains associated with this
complex throughout the transposition process (Pathania et
al. 2002, 2003; Yin et al. 2007).

MuA is a 663-aa residue protein that can be divided into
three domains by partial proteolysis; each domain can be
functionally or structurally divided into subdomains (Fig. 2b,
and reviewed in Rice and Baker 2001). The N-terminal
domain of the MuA protein contacts the sequences of the L/
R ends and the E element through separate regions
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top. The N-terminal domain I contacts the L/R end and E element
through separate regions. The central domain II of MuA is involved in
catalysis (DDE in the catalytic triad). The C-terminal domain III is
responsible for interaction with the MuB facilitating transposition
factor and the host ClpX unfoldase protein. Isolated domain III
displays, as well, the nonspecific DNA-binding and endonuclease
activities designated as BAN (Wu and Chaconas 1995). The minimal
region required for DNA binding, cleavage, and strand transfer in
vitro, including subdomains I3, Iy, the catalytic core (domain II), and
the N-terminal portion of domain III (Illx), is indicated according to
Krementsova et al. (1998). Adapted from Baker and Luo (1994), Choi
and Harshey (2010), and Haapa-Paananen (2002)

(Mizuuchi et al. 1995). The central domain is involved in
the catalysis of the transposition reactions. The C-terminal
domain is responsible for the interaction with the host
protein, ClpX (see below), and with the auxiliary transposi-
tion factor, the MuB protein. MuB not only modulates the
activity of MuA (Faelen et al. 1978) but also delivers the
target DNA to the transpososome (Chaconas and Harshey
2002; Roldan and Baker 2001) and protects the actively
replicating/transposing Mu from self-integration (Ge et al.
2010; Han and Mizuuchi 2010). Both the DNA binding and
activation of the MuA transposase functions of MuB are
required for productive phage Mu replicative transposition,
but only the activation of transposase is necessary for
efficient integrative transposition (Roldan and Baker 2001).
The MuB protein is not required for the integrative
transposition (O’Day et al. 1978); however, it enhances the
rate and extent of this pathway (Roldan and Baker 2001).
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Fig. 3 The simplified scheme of the Mu-driven transposition
pathway. The assembly of the Mu transpososome is initiated by the
interaction of the MuA subunits with the R end and the E element. HU
promotes capture of the L end by MuA/ER complex to form the MuA/
LER complex. MuA then acts in trans to first cleave and then join the
cleaved ends of the Mu DNA to the target DNA. MuB captures and
delivers the target DNA to the transpososome where the newly created

During the multistep reaction, the MuA present in the
transpososome complex catalyzes the specific DNA single-
stranded cleavages at the terminal CA dinucleotides of the L1
and R1 sites, using water as the nucleophile in such a way that
3'-OH groups of the transposable element are exposed
(Mizuuchi 1984). These 3' ends serve as nucleophiles for
the subsequent joining or strand-transfer step, attacking
phosphodiester bonds spaced 5 bp apart on target DNA in a
one-step transesterification reaction (Mizuuchi and Adzuma
1991). The resulting ©-like DNA structure is a common
intermediate for both transposition pathways (Chaconas and
Harshey 2002; Harshey and Jayaram 2006). The host ClpX
unfoldase ultimately destabilizes the transpososome, which
facilitates the recruitment of the host-dependent DNA
replication/repair machinery to finalize the “nick—join—
replicative” or “nick—join—repair” transposition pathways
(Fig. 4) (Abdelhakim et al. 2008; Nakai et al. 2001). In
both cases, the strand transfer at staggered positions in target
DNA strands will cause a duplication of 5 bp of the target
DNA flanking the transposed Mu-based element. Probably,
ClpX participates, as well, in stimulating the nuclease
activity of the C-terminal domain of the transposase MuA
(Wu and Chaconas 1995) in a highly regulated reaction that
removes the attached host DNA after the incoming Mu
genome has inserted into a bacterial chromosome according
to the integrative transposition (Choi and Harshey 2010).

Mini-Mu as a genetic tool for E. coli chromosomal
editing

The structures of mini-Mus can differ significantly. Some
mini-Mus carry all of the genetic elements essential for
transposition, replication, and packaging. Other derivatives
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3'-OH groups now function in the joining or strand-transfer step
catalyzed by the complex and ClpX-mediated exchanges MuA with a
set of host proteins in preparation for repair or replication to finalize
the integrative or replicative transposition pathways, respectively. For
details, see Au et al. (2006), Choi and Harshey (2010), and Harshey
and Jayaram (2006)

possess only the Mu ends (later designated as mini-Mu(LR)
units) and can be complemented in trans to perform Mu-
specific functions in E. coli (Chaconas et al. 198la;
Harshey 1983; Patterson et al. 1986). Mini-Mu(cts)
chromosomal vectors, which lack the genes required for
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Fig. 4 The two outcomes of Mu-driven transposition. The common 6
intermediate can be resolved differently by the DNA repair/replication
host-dependent machinery through integrative or replicative transpo-
sition. Transposition of the mini-Mu(LR) unit from the integrative
plasmid (/) into the bacterial chromosome (BC) results in a “simple
insertion” in which BC gains a copy of the unit or a “cointegrate” in
which I and BC fuse and two copies of the mini-Mu unit border the
junction of the fused replicons as direct repeats. The cointegrate can
subsequently be resolved by homologous recombination between two
mini-Mu units. Adapted from Abalakina et al. (2008a) and Choi and
Harshey (2010)
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making phage particles, have been used for simultaneous
thermo-induced replicative transposition and heterologous
protein synthesis in E. coli (Weinberg et al. 1993).

However, the cis-encoded transposition factors in the
mini-Mu(cts) constructs can cause instability in engineered
strains even under noninduced conditions (Akhverdyan et
al. 2007). Stabilization has been achieved through the use
of dual-component systems in which the genes for the MuA
and MuB transposition factors are encoded in trans on an
unlinked/nontransposed DNA molecule and eliminated
after mini-Mu transposition.

Different variants of this system have been developed
(Akhverdyan et al. 2007; Castilho et al. 1984; Chaconas et
al. 1981a; Groenen et al. 1985; Patterson et al. 1986). One of
the most popular systems includes an “integrative” plasmid
that consists of a mini-Mu(LR) unit as the first component and
a compatible “helper” plasmid carrying the inducible MuA4
and MuB genes as the second component. Usually, the helper
plasmid possesses an unstable replicon and can be easily
eliminated from the cells. The transposed genes in a set of
mini-Mu(LR) units are flanked by Rho-independent transcrip-
tion terminators in a directly repeated orientation (Abalakina
et al. 2008a, b; Gulevich et al. 2009). The upstream terminator
prevents readthrough transcription of the randomly integrated
mini-Mu unit from the chromosomal promoter. In turn, the
downstream terminator interrupts internal readthrough tran-
scription of the mini-Mu that could interfere with trans-
pososome assembly in vivo (Patterson et al. 1986).

In the mini-Mu derivatives that could be assigned as mini-
Mu(LER) units, an E element properly arranged between the
L and R ends positively influences transposition (Leung et al.
1989). However, intense expression of the Mu4 and MuB
genes, even when located in trans, leads to host cell lethality
because of the overly efficient replicative transposition of the
mini-Mu(LER) units (Akhverdyan et al. 2007; Lee 2002).
Although artificial mini-Mu(LER) units are actively used in
fundamental investigations of transpososome assembly and
function in vitro and in vivo (Lee 2002), they have not been
widely applied in stably engineered E. coli strains.

In contrast, in trans E element has been successfully
used to significantly increase the transposition efficiency of
the mini-Mu(LR) unit. A comparison of the E-carrier ((E-
plus)-helper') and the helper that did not contain the E
element ((E-minus)-helper®) revealed a nearly two-order

' The pl15A-based plasmid pMH10 was used as a helper in this dual-
component system (Akhverdyan et al. 2007). pMHI10 carried the
fragment from pMud4041 (Symonds et al. 1987), which consisted of
the Mucts62 repressor gene and Mud, MuB with the native cts-
controlled regulatory region including P, promoter, and (E; O1-03).
2Mud and MuB genes controlled by the AP /O regulatory region
were located in the nontransposing part of the single plasmid that
carried the transposed mini-Mu(LR) unit as well (Patterson et al.
1986).
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magnitude of increase in the transposition efficiency of the
mini-Mu(LR) units when the (E-plus)-helper was used.

To facilitate the selection of the transposed mini-Mu, an
antibiotic resistance marker (Ant®) can be included.’ Markers
that are flanked by the sequences essential for site-specific
recombination, Aa#tL/R (Peredelchuk and Bennett 1997),
loxP (Arakawa et al. 2001), or FRT (Datsenko and Wanner
2000), are usually used. These markers can be excised in
vivo from the mini-Mu units by the corresponding recombi-
nase to obtain the marker-less recombinant strain (Abalakina
et al. 2008a; Gulevich et al. 2009; Wei et al. 2010).

Several protocols have been developed for mini-Mu(LR)
unit transposition into the E. coli chromosome with the help
of the dual-component Mu-driven system. The best results
have been obtained when an (E-plus)-helper plasmid is first
transferred into the recipient strain and is stably maintained
under noninducing conditions. Then, an integrative plasmid
is transferred into the helper—carrier strain; the efficacy of
this step mainly determines the total efficiency of the
detected mini-Mu(LR) unit transposition. Therefore, differ-
ent strategies that are based on the presence of a selective
marker in the mini-Mu(LR) unit are employed. For a
marker—carrier mini-Mu, replication of the integrative
plasmid is not necessary in the recipient cell. So, the
transposase can be induced during plasmid entry followed
by direct selection of the clones—integrants. Usually,
transposition occurs in the majority of cells that receive
the integrative plasmid (Zimenkov et al. 2004).

If the marker-less mini-Mu(LR) unit is used, the
integrative plasmid has to be selectively transformed into
the helper—carrier recipient. The transposase is then
expressed in the cells that contain both autonomously
replicating components of the Mu-driven system. Finally,
the obtained clones—integrants are cured of the unstable
plasmid(s). Usually, the transposition of the mini-Mu(LR)
units can be detected in at least 10% of the induced cells
(Savrasova et al. 2007).

Both strategies can lead to high-efficiency formation of
clones possessing one or more (up to five to ten) copies of
the mini-Mu(LR) unit in the chromosome (Akhverdyan et
al. 2007). The copy number of the integrated mini-Mu can
be increased further by reintroducing and expressing the (E-
plus)-helper plasmid in the corresponding plasmid-less
strain—integrant. The (E-minus)-helper plasmid has a
significantly decreased but still detectable ability to
facilitate intrachromosomal replicative transposition of
mini-Mu(LR) units in E. coli (Gak et al., in preparation).

3 However, the efficiency of the developed dual-component Mu-
driven system in E. coli is frequently so high that integrants of interest
can easily be selected by total screening without using special Ant®
markers in the mini-Mu unit (Akhverdyan et al. 2007; Savrasova et al.
2007).
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A dual-component Mu-driven system has been fre-
quently used for E. coli chromosome editing and for
constructing different bacterial strains for basic research
and metabolically engineered amino acid production
(Table 1). In most cases, the expression level of the Mu-
integrated genes increased proportionally as the copy
number in the chromosome increased. As a rule, the
amplification of a biosynthetic operon leads to the
increased accumulation of the corresponding amino acid.
The amino acid production levels of the plasmid-less
strains obtained were comparable to those of their

plasmid-carrier recombinant analogs, and the former were
significantly more stable during nonselective cultivation
(Akhverdyan et al. 2007; Savrasova et al. 2007).

The transposition of the mini-Mu(LR) unit into the
bacterial chromosome mainly occurs through a “nick—join—
replicative” mechanism with the formation of a cointegrate
in which the integrative plasmid and the chromosome fuse
and two copies of the mini-Mu unit border the junction of
the fused replicons as direct repeats (Fig. 4) (Abalakina et
al. 2008a; Patterson et al. 1986; Tokmakova 2010). The
cointegrate is subsequently resolved by a reciprocal

Table 1 The list of several native and artificial genes/operons inserted into bacterial genomes using the dual-component Mu-driven integration/

amplification system

Integrated gene(s) Copy Purpose of the Reference
number  recombinant strain
Integration into Pju—lacl 1 Investigation of an artificial Skorokhodova et al. 2004
E. coli genome autoregulated system
Prac-lacl-ilvA™3* 1 Investigation of L-threonine catabolism Sycheva et al. 2003
Km® carrier mini-Mu(LR) units 1 Investigation of integration points Zimenkov et al. 2004
determination
thrA*BC-Cm® 1-10 Basic research Akhverdyan et al. 2007
Pr-thrA*BC-Cm® 1-10 L-threonine production ibid.
Pg-leud*BCD-Cm® 1-10 L-leucine production ibid.
yddG 1 Investigation of aromatic amino acid Doroshenko et al. 2007
export
Popp-yeaS >1 Investigation of branched-chain amino Kutukova et al. 2005
acids export
Pr-leud*BCD 1-5 Amino acid production Savrasova et al. 2007
Pr-pgi-pfkA4 >1 Metabolic engineering ibid.
Pr-glk >1 Metabolic engineering ibid.
Pg-eno >1 Metabolic engineering ibid.
Pr-ppc(ppc*) >1 Metabolic engineering ibid.
Piac-aroG4-serd5 1 L-tryptophan production Gulevich et al. 2009
Pr-ilvGMED 4 Amino acid production; recipient Eremina et al. 2010; Savrasova
for basic research et al. 2006
Pr-prs (prs*) >1 L-histidine production Klyachko et al. 2008
aroG4-pheA®-aroL 1 L-phenylalanine production Doroshenko et al. 2010a, b
Pr-ilvGMED 1 Isobutanol production via the L-valine Savrasova et al. 2011
biosynthetic pathway
scrKYABR >1 To improve the sucrose uptake Livshits et al. 2005
Pr-ilvGMEDA*YC >1 L-isoleucine production Savrasova et al. 2007
Integration into FRTEKmR-FRT 1 Basic research Abalakina et al. 2008a
M. methylotrophus Km®-xylEp putida 1 Basic research ibid.
genome amyg. amyk,,l-ql,e/m-m.—KmR 1 Basic research ibid.
amy + xylE 1+1 Basic research ibid.
Sm® (in mini-Mu(LR) units) 1-2 Basic research ibid.
aroPg . 1 Enhancement of aromatic amino acid Yomantas et al. 2010;
transport into the cell Tokmakova et al. 2010
Z3Green zoanihus sp.» Sm® (in mini- 1-2 Basic research Tokmakova 2010
Mu(LR) units)
ZsGreen, Sm® (in mini-Mu(LER) 1-6 Basic research ibid.

units)
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recombination event between the two mini-Mu units. The
chromosomal structure of the final strain that contains one
copy of the mini-Mu unit is the same as if integrative
transposition of this unit had occurred. The sites of mini-
Mu insertion in the E. coli chromosome could be precisely
determined (Wei et al. 2010; Zimenkov et al. 2004) by
inverse polymerase chain reaction (Ochman et al. 1988).

Several copies of the mini-Mu(LR) units can be easily
detected in the bacterial genome after using the dual-
component Mu-driven system. It could not be excluded that
these multiple copies are due to independent transpositions
from several copies of the nonreplicated integrative plasmid
that were initially transformed into one cell or from several
copies of autonomously replicated integrative plasmid.
However, especially when the nonreplicating integrative
plasmid was used, it seems more likely that the amplifica-
tion is achieved due to the mini-Mu intrachromosomal
replicative transposition. Certainly, the genome of the final
stable plasmid-less multi-integrant strain may contain
transposition-mediated chromosomal rearrangements, includ-
ing inversions and/or deletions of bacterial DNA fragments
(Watson et al. 2004).

Adaptation of the Mu-driven system for Methylophilus
methylotrophus AS1

Interest in the use of methylotrophic bacteria for applied
microbiology and biotechnology has increased in recent
years (Schrader et al. 2009). Several genomes of methyl-
otrophs have been sequenced (Chistoserdova et al. 2007;
Vuilleumier et al. 2009). Significant progress has been
made in elucidating the metabolism of these bacteria
(Chistoserdova et al. 2009), and the number of tools
available for genetic and metabolic engineering has
expanded greatly (Bélanger et al. 2004; Choi et al. 2006;
Marx and Lidstrom 2001, 2004). Strategies to produce fine
and bulk chemicals using methylotrophs have been
described previously (Bourque et al. 1995; Fitzgerald
and Lidstrom 2003; Motoyama et al. 1993, 2001). In
particular, the obligate methylotroph Methylophilus meth-
ylotrophus AS1, which was extensively studied with
respect to the industrial-scale production of single cell
protein from methanol in the 1970s (Anthony 1982; Vasey
and Powell 1984), was recently metabolically engineered
for the biosynthesis of L-lysine (Gunji and Yasueda 2006;
Tsujimoto et al. 2006) and L-phenylalanine (Tokmakova et
al. 2010) and for the efficient secretion of recombinant
proteins (Itaya et al. 2008).

The adaptation of mini-Mu transposition for chromo-
somal editing in M. methylotrophus AS1 (Abalakina et al.
2008a, b) was a significant development. Mu-driven
integration of the E. coli transporter gene into the
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methylotrophic genome was the basis for the development
of an efficient method of constructing auxotrophic mutants
(Yomantas et al. 2010) with the following exploiting the
developed system for metabolic engineering of L-phenylal-
anine overproduction (Ilomantas and Abalakina 2002;
Tokmakova et al. 2008, 2010).

The adaptation of the Mu-driven system to M. methyl-
otrophus AS1 included several stages (Abalakina et al.
2008a). Initially, a DNA fragment containing the genes
from E. coli plasmid, pMH10 (Akhverdyan et al. 2007), for
the thermo-induced transposition factors was cloned into
vectors containing the broad host range replicons of the
IncQ (Chistoserdov and Tsygankov 1986) or IncPo groups
(Ditta et al. 1985; Pansegrau et al. 1994). These new (E-
plus)-helpers (Fig. 5a) were transformed into methylotro-
phic cells (by mobilization or electroporation) and main-
tained under strictly selective conditions without expressing
the Mu transposition factors. All of the helpers could be
easily eliminated from M. methylotrophus AS1 by aerobi-
cally culturing the cells in liquid medium without anti-
biotics (Abalakina et al. 2008a).

The constructed integrative plasmids could not autono-
mously replicate in methylotrophic cells. Because it was
unclear if it was possible for Mu-driven transposition to
occur, the Mobgp, " element (Simon et al. 1983, 1984) was
included in the initial integrative plasmids to ensure their
highly efficient transfer into M. methylotrophus by mobili-
zation (Abalakina et al. 2008a). The next generation of
integrative plasmids (Fig. 5b, see experimental details in
Tokmakova 2010) did not carry the Mob" element and
could be autonomously maintained only in the pir" E. coli
strain used to propagate y-replicon originating from R6K
(Bowers et al. 2007). These integrative plasmids were
introduced into the methylotrophic recipient cells by
electroporation. The Km® gene, flanked by FRT sites, was
used as the “excisable” selective marker in the constructed
mini-Mu(LR) units (Abalakina et al. 2008a).

The mini-Mu(LR) unit can be detected in the M.
methylotrophus AS1 chromosome after the transfer of the
integrative plasmid into the helper—carrier cells in the
presence of the partially induced (37°C) transposition
factors. Curing the selected integrants of the helper plasmid
and Flp-mediated elimination of the marker results in a
plasmid-less marker-less recombinant strain that is ready
for the next round of mini-Mu transposition (Abalakina et
al. 2008a).

The efficiencies (10 °~10"2) of plasmid mobilization and
Mu-driven integration are correlated. This means that,
under the developed conditions, a mini-Mu(LR) unit is
transposed into the bacterial chromosome of each cell of the
recipient strain that received the integrative plasmid. As in
E. coli, the transposition of the mini-Mu(LR) unit into the
M. methylotrophus AS1 chromosome occurs through
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Fig. 5 Schematic linear representation of the set of helper (a) and
integrative (b, ¢) plasmids used in the dual-component Mu-driven
system for integration/amplification of genes in the M. methylotrophus
AS1 genome. These mini-Mu units carry excisable Km® marker
bracketed by FRT sites, Sm" marker used for selective amplification,
and a gene of ZsGreen fluorescent protein (Matz et al. 1999) as a
reporter. The internal parts of all mini-Mu units are bracketed by Rho-
independent transcription terminators (fer). a The helpers are based on
the mobilizable (oriT) replicon (oriV) of the IncPa group plasmid
pRK310 (Ditta et al. 1985). The (E-plus)-helper, pTP310 (Abalakina

“nick—join—replicative” formation of the cointegrate, fol-
lowed by its recombination-mediated resolution (Abalakina
et al. 2008a). These factors suggested that the mini-Mu(LR)
units might be amplified in M. methylotrophus with the
assistance of the same set of host proteins (Au et al. 2006;
Gueguen et al. 2005; North and Nakai 2005). However, the
MuA- and MuB-mediated intrachromosomal duplication of
the mini-Mu(LR) unit was detected only with a low (10™%)
frequency (Abalakina et al. 2008a).

The efficiency of the Mu-driven increase in genomic
copy number in M. methylotrophus AS1 was increased 100-
fold by exploiting the mini-Mu(LER) unit (Fig. 5b). When
transferred as part of the integrative plasmid into M.
methylotrophus, these units, like earlier used mini-Mu
(LR), could be integrated into the bacterial chromosome
with the formation of a cointegrate; the transposition
efficiency of this process was equally high whether the
helper was (E-plus) or (E-minus). On the contrary, the
increase in genomic copy number efficacy of the mini-Mu
(LER) or mini-Mu(LR) units was significantly dependent
on the type of helper used (Table 2). The detected capacities
for increase in genomic copy number for the mini-Mu
(LER) and mini-Mu(LR) units differed by approximately
four orders of magnitude in the presence of the expressed
(E-minus)-helper.

These results served as the basis for a novel integration/
amplification/fixation strategy that was developed for the
M. methylotrophus AS1 Mu-driven system. The E element
in the mini-Mu(LER) unit was substituted with its excisable
analog, which was bracketed by loxP-like sites [lox66 and
lox71 (Albert et al. 1995)] that could serve as the target for

et al. 2008b), carries the Mucts62 and Mud and MuB genes under the
native Mu DNA early regulatory region, including the P, promoter
and (E; O1-0O3) (Krause and Higgins 1986). In the (E-minus)-helper,
p17TP310, Mu4 and MuB are under the transcriptional control of the
M. methylotrophus constitutive P17 promoter (Abalakina et al. 2008a).
b The integrative plasmids containing the mini-Mu(LR) or (LER)
units are based on the conditionally replicated pir"-dependent (oriRy)
plasmid pAH162 (Haldimann and Wanner 2001). ¢ One of the new
integrative plasmids with a mini-Mu(L[<E]R) unit in which the E
element is flanked by lox66/71 sites

irreversible excision by phage P1 Cre recombinase (Abremski
and Hoess 1984). Thus, the mini-Mu(L[xE]R) unit (Fig. 5¢c)
could be integrated and amplified in the M. methylotrophus
AS1 genome according to the standard procedure (using (E-
plus)- or (E-minus)-helpers), followed by Cre-mediated
excision of the E element. The “residual” copies of the
mini-Mu(LR) units in the chromosome could not be further
efficiently amplified in the presence of the (E-minus)-helper
plasmid. This allows the integration and independent
amplification of another mini-Mu(L[E]R) unit into the M.
methylotrophus AS1 genome without changing the number
and location of the previously integrated genes (Fig. 6)
(Tokmakova 2010).

There are still many fundamental questions concerning
the differences in the efficiencies of the Mu-driven increase
in genomic copy number in E. coli and M. methylotrophus.
The answers likely depend on the precise nature of the
respective transpososome assembly processes. These pro-

Table 2 Efficiency of the mini-Mu units amplification in the M.
methylotrophus AS1 chromosome in dependence on the helpers’
structure

Mini-Mu unit \ Helper (E-plus) (E-minus)
(LR) ~107 ~107°
(LER) ~1072 ~1072

The increase in genomic copy number efficiency was evaluated as the
part of multi-integrants obtained after induced transposition factors
expression in the single-integrant cells selected on the media with
increased concentrations of streptomycin (2 mg/ml of Sm) used as a
selective marker according to Abalakina et al. (2008a)
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Fig. 6 Application of the integration/amplification/fixation strategy.
Initially, a mini-Mu(L[xE]JR) unit is integrated and amplified in the
chromosome of M. methylotrophus AS1 according to the replicative
transposition in the presence of the expressed (E-minus)-helper plasmid.
Then, the E element is excised by Cre-mediated site-specific recombi-

cesses could depend, in particular, on the intracellular
concentrations of the expressed transposition factors and
the DNA-bending host proteins that facilitate transposition
at the “restrained” host DNAs.

Concluding remarks

We have reviewed the adaptation of the dual-component
Mu-driven system for chromosomal editing and the
construction of plasmid-less marker-less strains of several
Gram-negative bacteria due to the integration/amplification
of target genes by the “nick—join—replicative” pathway in
vivo. Certainly, other methods could be used for the
chromosomal amplification of the target genes as well.
The same purposes could be achieved through the single
insertion of a DNA cassette with multiple copies of the
target gene (Choi et al. 2006). The marker-containing single
insertions in different specific (Haldimann and Wanner
2001; Minaeva et al. 2008) or random (De Lorenzo and
Timmis 1994; Peredelchuk and Bennett 1997; Wei et al.
2010) sites could be combined in one strain by general P1-
mediated transduction, followed by marker curing. These
alternative methods, each of which possesses its own
specific advantages, are significantly inferior to the Mu-
driven amplification approach with respect to ease-of-use
and the speed with which a target can be achieved,
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nation. The “truncated” mini-Mu(LR) units could be further amplified
with very low frequency by (E-minus)-helper, i.e., their positions in the
chromosome could be considered as fixated. So, the obtained multi-
integrant could be served as the recipient for integration and
independent amplification of new Mu(L[<EJR) units

especially if selection for the best variants of the multi-
integrant is possible.

Up today, in vitro-assembled Mu transpososome com-
plexes have been efficiently applied for the in vivo random
insertion of recombinant DNAs into different bacterial
genomes by the “nick—join—repair” pathway (Haapa et al.
1999; Laasik et al. 2005; Lamberg et al. 2002; Lanckriet et
al. 2009; Pajunen et al. 2005; Savilahti et al. 1995; Savilahti
and Mizuuchi 1996; Tu Quoc et al. 2007; Wei et al. 2010;
Wu et al. 2009). Moreover, efficient Mu transpososome-
based integration has been verified even in yeast, mouse,
and human genomes (Paatero et al. 2008; Turakainen et al.
2009). Many more host proteins likely participate in the
process of Mu-driven replicative transposition than in the
simple insertion of mini-Mu into the host chromosome (Au
et al. 2006; North and Nakai 2005). It is possible that only
integrative, but not replicative, transposition occurs in this
broad range of host organisms, even when efficient
intracellular expression of Mu transposition factors is
provided. However, to broaden the range of hosts in which
the Mu-driven system can be used for the integration/
amplification of target genes, its adaptation should be
attempted, especially by using mini-Mu(LR)/(LER) units
in combination with different (E-plus)/(E-minus)-helpers
expressed in different genetic backgrounds.

The combined Mu-driven system could be proposed
when the in vitro-assembled MuA-mediated transpososome
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results single-copy integrants due to the integrative trans-
position, followed by the increase in genomic copy number
of the integrated mini-Mu in vivo by the replicative
transposition in the presence of the helper plasmid
expressing MuA and MuB factors.
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