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Abstract: This paper develops a new statistical inference theory for the precision matrix of high-frequency
data in a high-dimensional setting. The focus is not only on point estimation but also on interval
estimation and hypothesis testing for entries of the precision matrix. To accomplish this purpose,
we establish an abstract asymptotic theory for the weighted graphical Lasso and its de-biased version
without specifying the form of the initial covariance estimator. We also extend the scope of the theory
to the case that a known factor structure is present in the data. The developed theory is applied to the
concrete situation where we can use the realized covariance matrix as the initial covariance estimator,
and we obtain a feasible asymptotic distribution theory to construct (simultaneous) confidence
intervals and (multiple) testing procedures for entries of the precision matrix.

Keywords: asymptotic mixed normality; factor model; high-dimensions; Malliavin calculus; precision
matrix; sparsity

1. Introduction

In high-frequency financial econometrics, covariance matrix estimation of asset returns has been
extensively studied in the past two decades. High-frequency financial data are commonly modeled as
a discretely observed semimartingale for which the quadratic covariation matrix plays the role of the
covariance matrix, so their treatments are often different from those in a standard i.i.d. setting. In recent
years, motivated by application to portfolio allocation and risk management in a large-scale asset
universe, the high-dimensionality problem has attracted much attention in this area. Since the 2000s,
great progress has been made in high-dimensional covariance estimation from i.i.d. data, so researchers
are naturally led to apply the techniques developed therein to the context of high-frequency data.
For example, Wang and Zou [1] have applied the entry-wise shrinkage methods considered in [2,3]
to estimating the covariance matrix of high-frequency data which are asynchronously observed with
noise. See also [4–7] for further developments in this approach. In the meantime, it is well-recognized
that the factor structure is an important ingredient both theoretically and empirically for financial data.
In the context of high-dimensional covariance estimation from high-frequency data, this perspective
was first taken into account by Fan et al. [8] and subsequently built up by, among others, [9–11].
Other common methods used in i.i.d. settings have also been investigated in the literature of
high-frequency financial econometrics. Hautsch et al. [12] and Morimoto and Nagata [13] formally
apply eigenvalue regularization methods based on random matrix theory to high-frequency data.
Lam et al. [14] accommodate the non-linear shrinkage estimator of [15] to a high-frequency data setting
with the help of the spectral distribution theory for the realized covariance matrix developed in [16].
Brownlees et al. [17] employ the `1-penalized Gaussian MLE, which is known as the graphical Lasso,
to estimate the precision matrix (the inverse of the covariance matrix) of high-frequency data. The last
approach is closely related to the methodology we will focus on. Despite the recent advances in this
topic as above, most studies in this area focus only on point estimation of covariance and precision
matrices, and there are little work about interval estimation and hypothesis testing for these objects. A few
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exceptions are [18–20]. The first two articles are concerned with continuous-time factor models: Kong
and Liu [18] propose a test for the constancy of the factor loading matrix, while Pelger [19] assumes
constant loadings and develops an asymptotic distribution theory to make inference for the factors and
loadings. Meanwhile, Koike [20] establishes a high-dimensional central limit theorem for the realized
covariance matrix which allows us to construct simultaneous confidence regions or carry out multiple
testing for entries of the high-dimensional covariance matrix of high-frequency data. The aim of this
study is to develop such a statistical inference theory for the precision matrix of high-frequency data.
This is naturally motivated by the fact that the precision matrix of asset returns plays an important
role in mean-variance analysis of portfolio allocation (see e.g., [21], Chapter 5). We accomplish
this purpose by imposing a sparsity assumption on the precision matrix. Such an assumption has
a clear interpretation in connection with Gaussian graphical models: For a Gaussian random vector
ξ = (ξ1, . . . , ξd)

> with covariance matrix Σ, ξi and ξ j are conditionally independent given the other
components if and only if the (i, j)-th entry of Σ−1 is equal to 0, so the sparsity of Σ−1 is interpreted as
the sparsity of the edge structure of the conditional independence graph associated with ξ. We refer to
Chapter 13 of [22] and references therein for more details on graphical models. This standpoint also
makes it interesting to estimate the precision matrix of financial data in view of the recent attention to
financial network analysis such as [23].

Statistical inference for high-dimensional sparse precision matrices has been actively studied
in the recent literature, and various methodologies have ever been proposed; see [24] for an
overview. Among others, this paper studies (a weighted version of) the de-biased (or de-sparsified)
graphical Lasso in the context of high-frequency data. The de-biased graphical Lasso was introduced
in Janková and van de Geer [25] and its theoretical property was investigated in the i.i.d. case. In this
paper, we consider its weighted version discussed in [24] because of its theoretically preferable
behavior due to its adaptive nature (see Remarks 1 and 2). Compared to the i.i.d. case, we need
to handle a new theoretical difficulty in the application to high-frequency data, which is caused by
the non-ergodic nature of the problem, i.e., the precision matrix of high-frequency data is generally
stochastic and not (stochastically) independent of the observation data. In our context, the precision
matrix appears in the coefficients of the linear approximation of the de-biased estimator (see Lemma 1),
so it spoils the martingale structure of the linear approximation which we usually have in the
i.i.d. case. In a low-dimensional setting, this issue is typically resolved by the concept of stable
convergence (see e.g., [26]), but the applicability of this approach is questionable in our setting due to
the high-dimensionality (see pages 1451–1452 of [20] for a discussion). Instead, we rely on the recent
high-dimensional central limit theory of [20] to establish the asymptotic distribution theory for the
de-biased estimator, where we settle the above difficulty with the help of Malliavin calculus.

The graphical Lasso is an example of penalized estimation methods. We shall mention that
penalized estimation has recently become an active research topic in the setting of asymptotic statistics
for stochastic processes. For example, penalized quasi-likelihood estimation for stochastic processes has
been developed in the fixed-dimensional setting by [27–30], while estimation for linearly parameterized
high-dimensional diffusion models has been studied in [31,32]. Compared to these articles, this paper
is novel in the respect that we develop an asymptotic distribution theory in a high-dimensional setting.

The rest of this paper is organized as follows. In Section 2 we develop an abstract asymptotic
theory for the weighted graphical Lasso based on a generic estimator for the quadratic covariation
matrix of a high-dimensional semimartingale. This allows us to flexibly apply the developed theory to
various settings arising in high-frequency financial econometrics. In Section 3 we extend the scope of
the theory to a situation where a known factor structure is present in data and a sparsity assumption
is imposed on the precision matrix of the residual process rather than that of the original process.
In Section 4, we apply the abstract theory developed in Section 3 to a concrete setting where we observe
the process at equidistant times without jumps and noise. Section 5 conducts a Monte Carlo study to
assess the finite sample performance of the asymptotic theory, while Section 6 performs a simple real
data analysis for illustration. All the technical proofs are collected in the Appendices A–D.
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Notation 1. Throughout the paper, we assume d ≥ 2. > stands for the transpose of a matrix. For a vector
x ∈ Rd, we write the i-th component of x as xi for i = 1, . . . , d. For two vectors x, y ∈ Rd, the statement
x ≤ y means xi ≤ yi for all i = 1, . . . , d. The identity matrix of size d is denoted by Ed. We write Rl×k for
the set of all l × k matrices. Sd denotes the set of all d× d symmetric matrices. S+d denotes the set of all d× d
positive semidefinite matrices. S++

d denotes the set of all d× d positive definite matrices. For a l × k matrix A,
the (i, j)-th entry of A is denoted by Aij. Also, Ai· and A·j denote the i-th row vector and the j-th column vector,
respectively (both are regarded as column vectors). We write vec(A) for the vectorization of A:

vec(A) := (A11, . . . , Al1, A12, . . . , Al2, . . . , A1k, . . . , Alk)> ∈ Rlk.

For every w ∈ [1, ∞], we set

‖A‖`w :=

{
{∑l

i=1 ∑k
j=1 |Aij|w}1/w if w < ∞,

max1≤i≤l max1≤j≤k |Aij| if w = ∞.

Also, we write |||A|||w for the `w-operator norm of A:

|||A|||w := sup{‖Ax‖`w : x ∈ Rk, ‖x‖`w = 1}.

It is well-known that |||A|||1 = max1≤j≤k ∑l
i=1 |Aij| and |||A|||∞ = max1≤i≤l ∑k

j=1 |Aij|. When l = k,
diag(A) denotes the diagonal matrix with the same diagonal entries as A, and we set A− := A−diag(A). If A
is symmetric, we denote by Λmax(A) and Λmin(A) the maximum and minimum eigenvalues of A, respectively.
For two matrices A and B, A⊗ B denotes their Kronecker product. When A and B has the same size, we write
A ◦ B for their Hadamard product.

For a random variable ξ and p ∈ (0, ∞], ‖ξ‖p denotes the Lp-norm of ξ. For a l-dimensional
semimartingale X = (Xt)t∈[0,1] and a k-dimensional semimartingale Y = (Yt)t∈[0,1], we define ΣXY :=
[X, Y]1 := ([Xi, Y j]1)1≤i≤l,1≤j≤k. We write ΣX = ΣXX for short. If ΣX is a.s. invertible, we write ΘX := Σ−1

X .

2. Estimators and Abstract Results

Given a stochastic basis B = (Ω,F , (Ft)t∈[0,1], P), we consider a d-dimensional semimartingale
Y = (Yt)t∈[0,1] defined there. We assume ΣY = [Y, Y]1 is a.s. invertible. In this paper, we consider
the asymptotic theory such that the dimension d possibly depends on a parameter n ∈ N so that
d = dn → ∞ as n→ ∞. Consequently, both B and Y may also depend on n. However, following the
custom of the literature, we omit the indices n from these objects and many other ones appearing below.

Our aim is to estimate the precision matrix ΘY = Σ−1
Y when we have an estimator Σ̂n for ΣY; as a

corollary, we can also estimate ΣY itself. We assume that Σ̂n is an S+d -valued random variable all of
whose diagonal entries are a.s. positive, but we do not specify the form of Σ̂n because the asymptotic
theory developed in this section depends on the property of Σ̂n rather than their construction. This is
convenient because construction of the estimator depends heavily on observation schemes for Y (with
or without noise, synchronous or not, continuous or discontinuous and so on; see [33] for details).
In Section 4 we illustrate how we apply the abstract theory developed in this and the next sections to a
concrete situation.

We use the weighted graphical Lasso to estimate ΘY (cf. [24]). The weighted graphical Lasso
estimator Θ̂λ with penalty parameter λ > 0 based on Σ̂n is defined by

Θ̂λ := arg min
Θ∈S++

d

{
tr
(
ΘΣ̂n

)
− log det (Θ) + λ ∑

i 6=j
V̂ii

n V̂ jj
n

∣∣∣Θij
∣∣∣} , (1)

where V̂n := diag(Σ̂n)
1
2 . According to the proof of [34] (Lemma 1), the optimization problem in

Equation (1) has the unique solution when λ > 0 and Σ̂n is positive semidefinite and all the diagonal
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entries of Σ̂n are positive, so Θ̂λ is a.s. defined in our setting. In the following we allow λ to be a
random variable because we typically select λ in a data-driven way.

To analyze the theoretical property of Θ̂λ, it is convenient to consider the graphical Lasso estimator
K̂λ based on the correlation matrix estimator R̂n := V̂−1

n Σ̂nV̂−1
n as follows:

K̂λ := arg min
K∈S++

d

{
tr
(
KR̂n

)
− log det (K) + λ

∥∥K−
∥∥
`1

}
. (2)

We can easily check Θ̂λ = V̂−1
n K̂λV̂−1

n .

Remark 1. As pointed out in Rothman et al. [35] and Janková and van de Geer [24], the graphical Lasso based
on correlation matrices is theoretically preferable to that based on covariance matrices (so the weighted graphical
Lasso is also preferable). In particular, we do not need to impose the so-called irrepresentability condition on ΣY
to derive the theoretical properties of our estimators, which contrasts with Brownlees et al. [17] (see Assumption 2
in [17]). See also Remark 2 for an additional discussion.

We introduce some notation related to the sparsity assumptions we will impose on ΘY. Let A ∈ Sd.
For j = 1, . . . , d, we set Dj(A) := {i : Aij 6= 0, i 6= j} and dj(A) := #Dj(A). Then we define d(A) :=
max1≤j≤d dj(A). We also define S(A) :=

⋃d
j=1 Dj(A) = {(i, j) : Aij 6= 0, i 6= j} and s(A) := #S(A).

These quantities have a clear interpretation when the matrix A represents the edge structure of some
graph so that Aij 6= 0 is equivalent to the presence of an edge between vertices i and j for i 6= j; in this
case, dj(A) is the number of edges adjacent to vertex j (which is called the degree of vertex j) and s(A)

is the total number of edges contained in the graph.
To derive our asymptotic results, we will impose the following structural assumptions on ΣY.

[A1] Λmax(ΣY) + 1/Λmin(ΣY) = Op(1) as n→ ∞.
[A2] s(ΘY) = Op(sn) as n→ ∞ for some sequence sn ∈ [1, ∞), n = 1, 2, . . . .
[A3] d(ΘY) = Op(dn) as n→ ∞ for some sequence dn ∈ [1, ∞), n = 1, 2, . . . .

[A1] is standard in the literature; see e.g., Condition A1 in [24]. [A2] states that the sparsity of ΘY
is controlled by the deterministic sequence sn; we will require the growth rate of sn to be moderate.
[A3] is another sparsity assumption on ΘY. It is weaker than [A2] in the sense that it always holds true
with dn = sn under [A2]. However, we can generally take dn smaller than sn.

2.1. Consistency

Set VY := diag(ΣY)
1
2 , RY := V−1

Y ΣYV−1
Y and KY := R−1

Y .

Proposition 1. Assume [A1]–[A2]. Let (λn)∞
n=1 be a sequence of positive-valued random variables satisfying

the following conditions:

[B1] λ−1
n ‖Σ̂n − ΣY‖`∞ →p 0 as n→ ∞.

[B2] snλn →p 0 as n→ ∞.

Then we have

λ−1
n ‖K̂λn − KY‖`2 = Op(

√
sn), λ−1

n |||K̂λn − KY|||w = Op(sn) (3)

and
λ−1

n |||Θ̂λn −ΘY|||w = Op(sn), λ−1
n |||Θ̂−1

λn
− ΣY|||2 = Op(sn) (4)

as n→ ∞ for any w ∈ [1, ∞].

Proposition 1 is essentially a rephrasing of Theorem 14.1.3 in [24]. To get a better convergence rate
in Proposition 1, we should choose λn as small as possible, where a lower bound of λn is determined
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by the convergence rate of Σ̂n in the `∞-norm by [B1]. One typically derives this convergence
rate by establishing entry-wise concentration inequalities for Σ̂n. Such inequalities have already
been established for various covariance estimators used in high-frequency financial econometrics;
see Theorems 1–2 and Lemma 3 in [36], Theorem 1 in [4], Theorem 1 in [37], and Theorem 2 in [17] for
example. We however note that Σ̂n should be positive semidefinite to ensure that the graphical Lasso
has the unique solution. This property is not necessarily ensured by many covariance estimators used
in this area. In this regard, we mention that pre-averaging and realized kernel estimators have versions
to ensure this property, for which relevant bounds are available in [6] (Theorem 2) and [11] (Lemma 1).

Remark 2 (Comparison to Brownlees et al. [17]). Compared with [17] (Theorem 1), Proposition 1 has two
major theoretical improvements. First, Proposition 1 does not assume the so-called irrepresentability condition,
which is imposed in [17] (Theorem 1) as Assumption 2. In fact, under the assumptions of Proposition 1,
the unweighted graphical Lasso estimator adopted in [17] would have the convergence rate (sn + d)λn (rather than
snλn in our case) to estimate ΘY in the norm |||·|||w, in view of [24] (Theorem 14.1.2). This means that we need to
select λn so that dλn →p 0 as n→ ∞ to ensure the consistency, which is much stronger than the corresponding
assumption [B2] in our setting. Since λn typically converges to 0 no faster than 1/

√
n with n being the sample size

(cf. Section 4), the condition dλn →p 0 excludes high-dimensional settings such that d� n.
Second, Proposition 1 gives consistency in the `w-operator norm for all w ∈ [1, ∞], while [17] (Theorem

1) only shows consistency in the `∞-norm. We shall remark that consistency in matrix operator norms is
important in application. For example, the consistency of Θ̂λn in the `2-operator norm implies that eigenvalues
of Θ̂λn consistently estimate the corresponding eigenvalues of ΘY. Also, the consistency in the `∞-operator
norm ensures ‖Θ̂λn x −ΘYx‖`∞ →p 0 as n → ∞ for any x ∈ Rd such that ‖x‖`∞ = O(1). This result is
important for portfolio allocation because the weight vector for the global minimum variance portfolio is given by
ΘY1/1>ΘY1 when assets have covariance matrix ΣY, where 1 = (1, . . . , 1)> ∈ Rd; see e.g., [21] (Section 5.2).

On the other hand, unlike [17] (Theorem 1), we do not show selection consistency (i.e., P(S(Θ̂λn) =

S(ΘY))→ 1 as n→ ∞) under our assumptions. Indeed, in the linear regression setting, it is known that an
irrepresentability type condition is necessary for the selection consistency of the Lasso; see [22] (Section 7.5.3)
for more details. This suggests that our estimator would not have oracle property in the sense of [38] in general.
However, we shall remark that the asymptotic mixed normality of the de-biased estimator stated below can be
used to construct an estimator with selection consistency via thresholding as in e.g., [39] (Section 3.1) and [40]
(Section 4.2). See Corollary 2 and the subsequent discussion for details.

2.2. Asymptotic Mixed Normality

The following lemma states that Θ̂λn −ΘY is asymptotically linear in Σ̂n−ΣY after bias correction
when ΘY is sufficiently sparse.

Lemma 1. Suppose that the assumptions of Proposition 1 and [A3] are satisfied. Then we have

λ−2
n ‖Θ̂λn −ΘY − Γn + ΘY(Σ̂n − ΣY)ΘY‖`∞ = Op(sn

√
dn)

as n→ ∞, where Γn := −(Θ̂λn − Θ̂λn Σ̂nΘ̂λn).

Lemma 1 is an almost straightforward consequence of Equation (4) and the Karush–Kuhn–Tucker
(KKT) conditions for the optimization problem in Equation (1). As a consequence of this lemma,
we obtain the following result, which states that the “de-biased” weighted graphical Lasso estimator
Θ̂λn −ΘY − Γn inherits the asymptotic mixed normality of Σ̂n.
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Proposition 2. Suppose that the assumptions of Lemma 1 are satisfied. For every n ∈ N, let an > 0, Cn be a
d2 × d2 positive semidefinite random matrix and Jn be an m× d2 random matrix, where m = mn may depend
on n. Assume an|||Jn|||∞λ2

nsn
√

dn log(m + 1)→p 0 as n→ ∞. Assume also that

lim
n→∞

sup
y∈Rm

∣∣∣P (an J̃n vec
(
Σ̂n − ΣY

)
≤ y

)
− P

(
J̃nC

1/2
n ζn ≤ y

)∣∣∣ = 0 (5)

and
lim
b↓0

lim sup
n→∞

P(min diag( J̃nCn J̃>n ) < b) = 0 (6)

as n→ ∞, where J̃n := −Jn(ΘY ⊗ΘY) and ζn is a d2-dimensional standard Gaussian vector independent of
F , which is defined on an extension of the probability space (Ω,F , P) if necessary. Then,

lim
n→∞

sup
y∈Rm

∣∣∣P (an Jn vec
(
Θ̂λn − Γn −ΘY

)
≤ y

)
− P

(
J̃nC

1/2
n ζn ≤ y

)∣∣∣ = 0.

In a standard i.i.d. setting such that ΘY is non-random, we can usually verify Equation (5)
by classical Lindeberg’s central limit theorem when m = 1 and Jn is non-random because
an J̃n vec

(
Σ̂n − ΣY

)
can be written as a sum of independent random variables; see the proof of [25]

(Theorem 1) for example. By contrast, ΘY is generally random and not independent of Σ̂n − ΣY
in our setting, so an J̃n vec

(
Σ̂n − ΣY

)
may not be a martingale even if vec

(
Σ̂n − ΣY

)
is a martingale.

In the case that d is fixed, we typically resolve this issue by proving stable convergence in law of
vec

(
Σ̂n − ΣY

)
; see e.g., [26] for details. However, extension of this approach to the case that d→ ∞ as

n→ ∞ is far from trivial as discussed at the beginning of [20] (Section 3). For this reason, [20] gives a
result to directly establish Equation (5) type convergence in a high-dimensional setting. This result
will be used in Section 4 to apply our abstract theory to a more concrete setting.

Remark 3. Proposition 2 also allows m to diverge as n → ∞, which is necessary when we need to derive an
asymptotic approximation of the joint distribution of vec

(
Θ̂λn − Γn −ΘY

)
. Such an approximation can be

used to make simultaneous inference for entries of ΘY; see [40] for example.

3. Factor Structure

In financial applications, it is often important to take account of the factor structure of asset prices.
In fact, many empirical studies have documented the existence of common factors in financial markets
(e.g., [41] (Section 6.5)). Also, factor models play a dominant role in asset pricing theory (cf. [21]
(Chapter 9)). When common factors are present across asset returns, the precision matrix cannot be
sparse because all pairs of the assets are partially correlated given other assets through the common
factors. Therefore, in such a situation, it is common practice to impose a sparsity assumption on the
precision matrix of the residual process which is obtained after removing the co-movements induced
by the factors (see e.g., [17] (Section 4.2) and [42] (Section 4.2)). In this section, we accommodate the
theory developed in Section 2 to such an application.

Specifically, suppose that we have an r-dimensional known factor process X, and consider the
following continuous-time factor model:

Y = βX + Z. (7)

Here, β is a non-random d× r matrix and Z is a d-dimensional semimartingale such that [Z, X]1 =

0. β and Z represent the factor loading matrix and residual process of the model, respectively.
This model is widely used in high-frequency financial econometrics; see [8,9,11] in the context of
high-dimensional covariance matrix estimation. One restriction of the model Equation (7) is that the
factor loading β is assumed to be constant, but there is empirical evidence that β may be regarded as
constant in short time intervals (one week or less); see [18,43] for instance.
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Remark 4. The number of factors r possibly depends on n and (slowly) diverges as n→ ∞. Also, β may depend
on n.

We are interested in estimating ΣY based on observation data for X and Y while taking account
of the factor structure given by Equation (7). Suppose that we have generic estimators Σ̂Y,n, Σ̂X,n and
Σ̂YX,n for ΣY, ΣX and ΣYX, respectively. Σ̂Y,n, Σ̂X,n and Σ̂YX,n are assumed to be random variables
taking values in Sd,S+r and Rd×r, respectively. Now, by assumption we have

ΣY = βΣX β> + ΣZ. (8)

Assume ΣX is a.s. invertible. Then β can be written as β = ΣYXΣ−1
X . Therefore, we can

naturally estimate β by β̂n := Σ̂YX,nΣ̂−1
X,n, provided that Σ̂X,n is invertible. In practical applications,

the invertibility of Σ̂X,n is usually not problematic because the number of factors r is sufficiently small
compared to the sample size. However, it is theoretically convenient to (formally) define β̂n in the
case that Σ̂X,n is singular. For this reason, we take an S++

d -valued random variable Σ̂†
X,n such that

Σ̂†
X,n = Σ̂−1

X,n on the event where Σ̂X,n is invertible, and redefine β̂n as β̂n := Σ̂YX,nΣ̂†
X,n. This does not

affect the asymptotic properties of our estimators because Σ̂X,n is asymptotically invertible under our
assumptions we will impose. Now, from Equation (8), ΣZ is estimated by

Σ̂Z,n := Σ̂Y,n − β̂nΣ̂X,n β̂>n . (9)

Since Σ̂Z,n might be a poor estimator for ΣZ because d can be extremely large in our setting,
we apply the weighted graphical Lasso to Σ̂Z,n in order to estimate ΣZ. Specifically, we construct the
weighted graphical Lasso estimator Θ̂Z,λ based on Σ̂Z,n as follows:

Θ̂Z,λ = arg min
Θ∈S++

d

{
tr
(
ΘΣ̂Z,n

)
− log det (Θ) + λ ∑

i 6=j

√
Σ̂ii

Z,nΣ̂jj
Z,n

∣∣∣Θij
∣∣∣} . (10)

Then ΣZ is estimated by the inverse of Θ̂Z,λ. Hence our final estimator for ΣY is constructed as

Σ̂Y,λ := β̂nΣ̂X,n β̂>n + Θ̂−1
Z,λ. (11)

Remark 5. Although we will impose the assumptions which guarantee that the optimization problem in
Equation (10) asymptotically has the unique solution with probability 1, it may have no solution for a fixed n.
Thus, we formally define Θ̂Z,λ as an S++

d -valued random variable such that Θ̂Z,λ is defined by Equation (10)
on the event where the optimization problem in Equation (10) has the unique solution.

Remark 6 (Positive definiteness of Σ̂Y,λ). Since Θ̂−1
Z,λ is positive definite by construction, Σ̂Y,λ is positive

definite (note that we assume Σ̂X,n is positive semidefinite).

We will impose the following structural assumptions on the model:

[C1] ‖ΣY‖`∞ = Op(1) and ‖β‖`∞ = O(1) as n→ ∞.
[C2] Λmax(ΣZ) + 1/Λmin(ΣZ) = Op(1) as n→ ∞.
[C3] ‖ΣX‖`∞ + 1/Λmin(ΣX) = Op(1) as n→ ∞.
[C4] s(ΘZ) = Op(sn) as n→ ∞ for some sequence sn ∈ [1, ∞), n = 1, 2, . . . .
[C5] d(ΘZ) = Op(dn) as n→ ∞ for some sequence dn ∈ [1, ∞), n = 1, 2, . . . .
[C6] There is a positive definite d× d matrix B such that |||d−1β>β− B|||2 → 0 and Λmin(B)−1 = O(1)

as n→ ∞.

[C1]–[C3] are natural structural assumptions on the model and standard in the literature;
see e.g., Assumptions 2.1 and 3.3 in [44]. [C4]–[C5] are sparsity assumptions on the precision matrix of
the residual process and necessary for our application of the (weighted) graphical Lasso. [C6] requires the
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factors to have non-negligible impact on almost all assets and is also standard in the context of covariance
matrix estimation based on a factor model; see e.g., Assumption 3.5 in [44] and Assumption 6 in [8].

The following result establishes the consistency of the residual precision matrix estimator Θ̂Z,λ.

Proposition 3. Assume [C1]–[C4]. Let (λn)∞
n=1 be a sequence of positive-valued random variables satisfying

the following conditions:

[D1] λ−1
n ‖Σ̂X,n − ΣX‖`∞ →p 0, λ−1

n ‖Σ̂YX,n − βΣ̂X,n‖`∞ →p 0 and λ−1
n ‖Σ̆Z,n − ΣZ‖`∞ →p 0 as n → ∞,

where Σ̆Z,n := Σ̂Y,n − Σ̂YX,nβ> − βΣ̂>YX,n + βΣ̂X,nβ>.
[D2] (sn + r)λn →p 0 as n→ ∞.
[D3] P(Σn ∈ S+d )→ 1 as n→ ∞, where

Σn :=

(
Σ̂X,n Σ̂>YX,n

Σ̂YX,n Σ̂Y,n

)
.

Then λ−1
n |||Θ̂Z,λn −ΘZ|||w = Op(sn) and λ−1

n |||Θ̂−1
Z,λn
− ΣZ|||2 = Op(sn) as n→ ∞ for any w ∈ [1, ∞].

Remark 7. (a) Since ΣZX = ΣYX − βΣX and ΣZ = ΣY − ΣYX β> − βΣXY + βΣX β>, Σ̂YX,n and Σ̆Z,n
are seen as natural estimators for ΣZX(= 0) and ΣZ respectively if β were known. In this sense, [D1] is
a natural extension of [B1]. In particular, if r = O(1) as n → ∞, [D1] follows from the convergences
λ−1

n ‖Σ̂X,n−ΣX‖`∞ →p 0, λ−1
n ‖Σ̂YX,n−ΣYX‖`∞ →p 0 and λ−1

n ‖Σ̂Y,n−ΣY‖`∞ →p 0 under [C1], which are
typically derived from entry-wise concentration inequalities for Σ̂X,n, Σ̂YX,n and Σ̂Y,n.

(b) [D3] ensures that Σ̂Z,n is asymptotically positive semidefinite. This is necessary for guaranteeing that
the optimization problem in Equation (10) asymptotically has the unique solution with probability 1.

From Proposition 3 we can also derive the convergence rates for the estimators Σ̂Z,λn and Σ̂−1
Z,λn

in
appropriate norms, which may be seen as counterparts of Theorems 1–2 in [8].

Proposition 4. Under the assumptions of Proposition 3, λ−1
n ‖Σ̂Z,λn − ΣZ‖`∞ = Op(sn + r2) as n→ ∞

Proposition 5. Under the assumptions of Proposition 3, we additionally assume [C5]–[C6]. Then, λ−1
n |||Σ̂−1

Y,λn
−

Σ−1
Y |||2 = Op(sn + r) and λ−1

n |||Σ̂−1
Y,λn
− Σ−1

Y |||∞ = Op(r3/2dn(sn + r)) as n→ ∞.

Next we present the high-dimensional asymptotic mixed normality of the de-biased version of Θ̂Z,λ.

Proposition 6. Suppose that the assumptions of Proposition 3 and [C5] are satisfied. For every n ∈ N,
let an > 0, Cn be a d2 × d2 positive semidefinite random matrix and Jn be an m× d2 random matrix, where
m = mn may depend on n. Assume an|||Jn|||∞λ2

nsn
√

dn log(m + 1)→p 0 as n→ ∞. Assume also that

lim
n→∞

sup
y∈Rm

∣∣∣P (an J̃Z,n vec
(
Σ̆Z,n − ΣZ

)
≤ y

)
− P

(
J̃Z,nC

1/2
n ζn ≤ y

)∣∣∣ = 0 (12)

and
lim
b↓0

lim sup
n→∞

P(min diag( J̃Z,nCn J̃>Z,n) < b) = 0 (13)

as n→ ∞, where J̃Z,n := −Jn(ΘZ ⊗ΘZ) and ζn is a d2-dimensional standard Gaussian vector independent of
F , which is defined on an extension of the probability space (Ω,F , P) if necessary. Then,

lim
n→∞

sup
y∈Rm

∣∣∣P (an Jn vec
(
Θ̂Z,λn − ΓZ,n −ΘZ

)
≤ y

)
− P

(
J̃Z,nC

1/2
n ζn ≤ y

)∣∣∣ = 0,

where ΓZ,n := −(Θ̂Z,λn − Θ̂Z,λn Σ̂Z,nΘ̂Z,λn).
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Remark 8. It is worth mentioning that condition Equation (12) is stated for Σ̆Z,n rather than Σ̂Z,n. In other
words, for deriving the asymptotic distribution, we do not need to take account of the effect of plugging β̂n into
β, at least in the first order. This is thanks to Lemma A11.

Although it is generally difficult to derive the asymptotic mixed normality of (the de-biased
version of) Σ̂−1

Y,λn
, this is possible when d is sufficiently large. In fact, in such a situation, the entry-wise

behavior of Σ−1
Y is dominated by ΘZ as described by the following lemma:

Lemma 2. Under the assumptions of Proposition 5, ‖Σ̂−1
Y,λn
− Θ̂Z,λn‖`∞ = Op(rdn/d) and ‖Σ−1

Y −ΘZ‖`∞ =

Op(rdn/d) as n→ ∞.

Consequently, we obtain the following result.

Proposition 7. Suppose that the assumptions of Proposition 6 and [C6] are satisfied. Suppose also
an|||Jn|||∞rdn

√
log(m + 1)/d→ 0 as n→ ∞. Then we have

lim
n→∞

sup
y∈Rm

∣∣∣P (an Jn vec
(

Σ̂−1
Y,λn
− ΓZ,n − Σ−1

Y

)
≤ y

)
− P

(
J̃Z,nC

1/2
n ζn ≤ y

)∣∣∣ = 0.

4. Application to Realized Covariance Matrix

In this section, we apply the abstract theory developed above to the simplest situation where
the processes have no jumps and are observed at equidistant times without noise. Specifically,
we consider the continuous-time factor model Equation (7) and assume that both Y and X are observed
at equidistant time points h/n, h = 0, 1, . . . , n. In this case, ΣY = [Y, Y]1 is naturally estimated by the
realized covariance matrix:

Σ̂Y,n := [̂Y, Y]
n
1 :=

n

∑
h=1

(Yh/n −Y(h−1)/n)(Yh/n −Y(h−1)/n)
>. (14)

Analogously, we define Σ̂X,n := [̂X, X]
n
1 and Σ̂YX,n := [̂Y, X]

n
1 . In addition, we assume that Z and

X are respectively d-dimensional and r-dimensional continuous Itô semimartingales given by

Zt = Z0 +
∫ t

0
µsds +

∫ t

0
σsdWs, Xt = X0 +

∫ t

0
µ̃sds +

∫ t

0
σ̃sdWs,

where µ = (µs)s∈[0,1] and µ̃ = (µ̃s)s∈[0,1] are respectively d-dimensional and r-dimensional
(Ft)-progressively measurable processes, σ = (σs)s∈[0,1] and σ̃ = (σ̃s)s∈[0,1] are respectively

Rd×d′ -valued and Rr×d′ -valued (Ft)-progressively measurable processes, and W = (Ws)s∈[0,1] is
a d′-dimensional standard (Ft)-Wiener process. To apply the convergence rate results to this setting,
we impose the following assumptions:

[E1] For all n, ν ∈ N, we have an event Ωn(ν) ∈ F and (Ft)-progressively measurable processes
µ(ν) = (µ(ν)s)s∈[0,1], µ̃(ν) = (µ̃(ν)s)s∈[0,1], σ(ν) = (σ(ν)s)s∈[0,1] and σ̃(ν) = (σ̃(ν)s)s∈[0,1] which

take values in Rd, Rr, Rd×d′ and Rr×d′ , respectively, and they satisfy the following conditions:

(i) limν→∞ lim supn→∞ P(Ωn(ν)c) = 0.
(ii) µ = µ(ν), µ̃ = µ̃(ν), σ = σ(ν) and σ̃ = σ̃(ν) on Ωn(ν) for all ν ∈ N.

(iii) For all ν ∈ N, there is a constant Cν > 0 such that

sup
n∈N

sup
0≤t≤1

sup
ω∈Ω

(‖µ(ν)t(ω)‖`∞ + ‖µ̃(ν)t(ω)‖`∞ + ‖c(ν)t(ω)‖`∞ + ‖c̃(ν)t(ω)‖`∞) ≤ Cν,

where c(ν)t := σ(ν)tσ(ν)>t and c̃(ν)t := σ̃(ν)tσ̃(ν)>t .
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[E2] r = O(d) and (log d)/
√

n→ 0 as n→ ∞.

[E1] is a local boundedness assumption on the coefficient processes and typical in the literature:
For example, [E1] is satisfied when µ, µ̃, σ and σ̃ are all bounded by some locally bounded process
independent of n. This latter condition is imposed in [8], among others. [E2] restricts the growth rates
of d and r. It is indeed an adaptation of [D1] to the present setting.

Theorem 1. Assume [C1]–[C4] and [E1]–[E2]. Let λn be a sequence of positive-valued random variables
such that λ−1

n
√
(log d)/n →p 0 and (sn + r)λn →p 0 as n → ∞. Then λ−1

n |||Θ̂Z,λn −ΘZ|||w = Op(sn),
λ−1

n |||Θ̂−1
Z,λn
− ΣZ|||2 = Op(sn) and λ−1

n ‖Σ̂Y,λn − ΣY‖`∞ = Op(sn + r2) as n → ∞ for any w ∈ [1, ∞].
Moreover, if we additionally assume [C5]–[C6], then λ−1

n |||Σ̂−1
Y,λn
− Σ−1

Y |||2 = Op(sn + r) and λ−1
n |||Σ̂−1

Y,λn
−

Σ−1
Y |||∞ = Op(r3/2dn(sn + r)) as n→ ∞.

Remark 9 (Optimal convergence rate). From Theorem 1, the convergence rate of Θ̂Z,λn to ΘZ in the
`w-operator norm for any w ∈ [1, ∞] can be arbitrarily close to sn

√
(log d)/n, which is similar to that in a

standard i.i.d. setting (cf. Theorem 14.1.3 in [24]). On the other hand, in the Gaussian i.i.d. setting without factor
structure, the minimax optimal rate for this problem is known to be d(ΘZ)

√
(log d)/n (see [45] (Theorem 1.1)

and [46] (Theorem 5)), which can be faster than sn
√
(log d)/n. In a standard i.i.d. setting, this rate can be

attained by using a node-wise penalized regression (see e.g., [46] (Section 3.1)), so it would be interesting to
study the convergence rate of such a method in our setting. We leave it to future research. In the meantime, such
a method does not ensure the positive definiteness of the estimated precision matrix in general, so our estimator
would be preferable for some practical applications such as portfolio allocation.

Next we derive the asymptotic mixed normality of the de-biased estimator in the present setting.
As announced, we accomplish this purpose with the help of Malliavin calculus. In the following we
will freely use standard concepts and notation from Malliavin calculus. We refer to [47,48] (Chapter 1)
for detailed treatments of this subject.

We consider the Malliavin calculus with respect to W. For any real number p ≥ 1 and any integer
k ≥ 1, Dk,p denotes the stochastic Sobolev space of random variables which are k times differentiable
in the Malliavin sense and the derivatives up to order k have finite moments of order p. If F ∈ Dk,p,
we denote by DkF the kth Malliavin derivative of F, which is a random variable taking values in
L2([0, 1]k; (Rd′)⊗k). Here, we identify the space (Rd′)⊗k with the set of all d′-dimensional k-way arrays,
i.e., real-valued functions on {1, . . . , d′}k. Since DkF is a random function on [0, 1]k, we can consider
the value DkF(t1, . . . , tk) evaluated at (t1, . . . , tk) ∈ [0, 1]k. We denote this value by Dt1,...,tk F. Moreover,
since Dt1,...,tk F takes values in (Rd′)⊗k, we can consider the value Dt1,...,tk F(a1, . . . , ak) evaluated at

(a1, . . . , ak) ∈ {1, . . . , d′}k. This value is denoted by D(a1,...,ak)
t1,...,tk

F. We remark that the variable Dt1,...,tk F is
defined only a.e. on [0, 1]k ×Ω with respect to the measure Lebk×P, where Lebk denotes the Lebesgue
measure on [0, 1]k. Therefore, if Dt1,...,tk F satisfies some property a.e. on [0, 1]k×Ω with respect to Lebk×P,
by convention we will always take a version of Dt1,...,tk F satisfying that property everywhere on [0, 1]k×Ω
if necessary. We set Dk,∞ :=

⋂∞
p=1 Dk,p. We denote by Dk,∞(Rd) the space of all d-dimensional random

variables F such that Fi ∈ Dk,∞ for every i = 1, . . . , d. The space Dk,∞(Rd×r) is defined in an analogous
way. Finally, for any (Rd′)⊗k-valued random variable F and p ∈ (0, ∞], we set

‖F‖p,`2 :=

∥∥∥∥∥∥
√√√√ d′

∑
a1,...,ak=1

F(a1, . . . , ak)2

∥∥∥∥∥∥
p

.

We also need to define some variables related to the “asymptotic” covariance matrices of the
estimators. We define d2 × d2 random matrix Cn by

C
(i−1)d+j,(k−1)d+l
n :=
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n
n

∑
h=1

{(∫ h/n

(h−1)/n
cik

s ds
)(∫ h/n

(h−1)/n
cjl

s ds
)
+

(∫ h/n

(h−1)/n
cil

s ds
)(∫ h/n

(h−1)/n
cjk

s ds
)}

,

i, j, k, l = 1, . . . , d,

where cs := σsσ>s . Then we set Vn := (ΘZ ⊗ΘZ)Cn(ΘZ ⊗ΘZ) and Sn := diag(Vn)1/2. In addition,
under [E1], we define Cn(ν) similarly to Cn with replacing σ by σ(ν). Cn and Vn play roles of the
asymptotic covariance matrices of Σ̆Z,n and Θ̂Z,λn , respectively.

We impose the following assumptions on the model.

[F1] We have [E1] and ΣZ(ν) :=
∫ 1

0 c(ν)tdt is a.s. invertible for all n, ν ∈ N. Moreover, for all n, ν ∈ N
and t ∈ [0, 1], µ(ν)t ∈ D1,∞(Rd), σ(ν)t ∈ D2,∞(Rd×r) and

sup
n∈N

max
1≤i≤d

sup
0≤s,t≤1

‖Dsµ(ν)i
t‖∞,`2 < ∞, (15)

sup
n∈N

max
1≤i≤d

(
sup

0≤s,t≤1
‖Dsσ(ν)i·

t ‖∞,`2 + sup
0≤s,t,u≤1

‖Ds,tσ(ν)
i·
u‖∞,`2

)
< ∞, (16)

sup
n∈N

(
max
1≤i≤d

‖ΘZ(ν)
ii‖∞ + max

1≤k≤d2
‖1/Vn(ν)

kk‖∞

)
< ∞, (17)

where ΘZ(ν) := ΣZ(ν)
−1 and Vn(ν) := (ΘZ(ν)⊗ΘZ(ν))Cn(ν)(ΘZ(ν)⊗ΘZ(ν)).

[F2] The d× d matrix QZ := (1{Θij
Z 6=0})1≤i,j≤d is non-random and d(QZ) = O(1) as n→ ∞.

[F3] r = O(d) and (log d)13/n→ 0 as n→ ∞.

We give a few remarks on these assumptions. First, [F1] imposes the (local) Malliavin
differentiability on the coefficient processes of the residual process Z and the local boundedness on their
Malliavin derivatives. Such an assumption is necessary for the application of the high-dimensional
mixed normal limit theorem of [20] to our setting (see Lemma A16). Please note that we do not need to
impose this type of assumption on the factor process X. We also remark that analogous assumptions
are sometimes used in the literature of high-frequency financial econometrics even in low-dimensional
settings; see e.g., [49,50]. Second, [F2] is clearly understood when we consider a Gaussian graphical
model associated with ΣZ: The non-randomness of QZ implies that the edge structure of this Gaussian
graphical model is determined in a non-random manner (by conditioning, it is indeed sufficient that
the edge structure is determined independently of the driving Wiener process W). Also, we remark
that the condition d(QZ) = O(1) is equivalent to [C5] with dn = 1. It is seemingly possible to relax
this condition so that it allows a diverging sequence dn as long as dn(log d)κ/n→ 0 for an appropriate
constant κ > 0. However, to determine the precise value of κ, we need to carefully revise the proof
of Lemma A16 so that it allows the quantity inside supn∈N in (A7) to diverge as n → ∞. To avoid
such an additional complexity, we restrict our attention to the case of dn = 1. Third, the condition
(log d)13/n→ 0 in [F3] is used again for applying the high-dimensional CLT of [20].

Now we are ready to state our result. Let Are(d2) be the set of all hyperrectangles in Rd2
,

i.e.,Are(d2) consists of all sets A of the form A = {x ∈ Rd2
: aj ≤ xj ≤ bj for all j = 1, . . . , d2} for some

−∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , d2.

Theorem 2. Assume [C1]–[C4] and [F1]–[F3]. Let λn be a sequence of positive-valued random variables such
that λ−1

n
√
(log d)/n→p 0, (sn + r)λn →p 0 and λ2

nsn
√

n log d→p 0 as n→ ∞. Then we have

sup
A∈Are(d2)

∣∣∣P (√n vec(Θ̂Z,λn − ΓZ,n −ΘZ) ∈ A
)
− P

(
V1/2

n ζn ∈ A
)∣∣∣→ 0 (18)

and
sup

A∈Are(d2)

∣∣∣P (√nS−1
n vec(Θ̂Z,λn − ΓZ,n −ΘZ) ∈ A

)
− P

(
S−1

n V1/2
n ζn ∈ A

)∣∣∣→ 0 (19)
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as n→ ∞.

Remark 10. λn is typically chosen of order close to
√

log d/n as possible, so λ2
nsn
√

n log d →p 0 is almost
equivalent to sn(log d)

3
2 /
√

n → 0. This is stronger than the condition sn(log d)/
√

n → 0 which is used to
derive the asymptotic normality of the de-biased weighted graphical Lasso estimator in [24] (Theorem 14.1.6)
(note that we assume d(ΘZ) = Op(1)). This is because Theorem 2 derives the approximations of the joint
distributions of the de-biased estimator and its Studentization, while [24] (Theorem 14.1.6) focuses only on
approximation of their marginal distributions.

Theorem 2 is statistically infeasible in the sense that Vn is unobservable. Thus, we need to estimate
it from the data. Since ΘZ is naturally estimated by Θ̂Z,λn , we construct an estimator for Cn. Define the
d2-dimensional random vectors χ̂h by

χ̂h := vec
[
(Ẑh/n − Ẑ(h−1)/n)(Ẑh/n − Ẑ(h−1)/n)

>
]

, h = 1, . . . , n,

where Ẑh/n := Yh/n − β̂Xh/n. Then we set

Ĉn := n
n

∑
h=1

χ̂hχ̂>h −
n
2

n−1

∑
h=1

(
χ̂hχ̂>h+1 + χ̂h+1χ̂>h

)
.

Lemma 3. Suppose that the assumptions of Theorem 2 are satisfied. Suppose also r2(log d)/n = O(1) as
n→ ∞ and that there is a constant γ ∈ (0, 1

2 ] such that

sup
0<t≤1− 1

n

∥∥∥∥ max
1≤i,j≤d

∣∣∣∣c(ν)ij
t+ 1

n
− c(ν)ij

t

∣∣∣∣∥∥∥∥
2
= O(n−γ) (20)

as n→ ∞ for all ν ∈ N. Then, ‖Ĉn − Cn‖`∞ = Op(r(log d)5/2/
√

n + n−γ) as n→ ∞.

Let us set V̂n := (Θ̂Z,λn ⊗ Θ̂Z,λn)Ĉn(Θ̂Z,λn ⊗ Θ̂Z,λn) and Ŝn := diag(V̂n)1/2.

Corollary 1. Under the assumptions of Lemma 3, we have the following results:

(a) Assume snλn log d→p 0 and r(log d)7/2/
√

n + n−γ log d→ 0 as n→ ∞. Then,

lim
n→∞

sup
A∈Are(d2)

∣∣∣P (√nŜ−1
n vec(Θ̂Z,λn − ΓZ,n −ΘZ) ∈ A

)
− P

(
S−1

n V1/2
n ζn ∈ A

)∣∣∣ = 0.

(b) Assume snλn(log d)2 →p 0 and r(log d)9/2/
√

n + n−γ(log d)2 → 0 as n→ ∞. Then,

sup
A∈Are(d2)

∣∣∣P (V̂1/2
n ζn ∈ A | F

)
− P

(
V1/2

n ζn ∈ A | F
)∣∣∣→p 0,

sup
A∈Are(d2)

∣∣∣P (Ŝ−1
n V̂1/2

n ζn ∈ A | F
)
− P

(
S−1

n V1/2
n ζn ∈ A | F

)∣∣∣→p 0

as n→ ∞.

Corollary 1(a) particularly implies that

lim
n→∞

max
1≤i,j≤d

sup
x∈R

∣∣∣∣∣∣P
√n

(
Θ̂ij

Z,λn
− Γij

Z,n −Θij
Z

)
ŝ

ij
n

≤ x

−Φ(x)

∣∣∣∣∣∣ = 0, (21)
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where ŝ
ij
n := Ŝ

(i−1)d+j,(i−1)d+j
n and Φ is the standard normal distribution function. This result can

be used to construct entry-wise confidence intervals for ΘZ. Meanwhile, combining Corollary 1(b)
with [20] (Proposition 3.2), we can estimate the quantiles of maxk∈K(V

1/2
n ζn)k and maxk∈K(S

−1
n V1/2

n ζn)k

for a given set of indices K ⊂ {1, . . . , d2} by simulation. Such a result can be used to construct
simultaneous confidence intervals and control the family-wise error rate in multiple testing for entries of
ΘZ; see Sections 2.3–2.4 of [51] for details.

As announced, another application of our result is to construct an estimator with selection
consistency via thresholding. This is carried out by using the following result:

Corollary 2. Let αn ∈ (0, 1) (n = 1, 2, . . . ) satisfy αn → α and − log αn = O(log d) as n → ∞ for some
α ∈ [0, 1). Define cn := Φ−1

(
1− αn

d(d−1)

)
and

Ŝn(ΘZ) :=

(i, j) : i 6= j and

√
n|Θ̂ij

Z,λn
− Γij

Z,n|

ŝ
ij
n

> cn

 .

Then, under the assumptions of Corollary 1(a), we have

lim inf
n→∞

P(Ŝn(ΘZ) = S(ΘZ)) ≥ 1− 2α,

provided that
√

n/ log d min(i,j)∈S(ΘZ)
|Θij

Z| →p ∞ as n→ ∞.

Please note that the last condition is satisfied if min(i,j)∈S(ΘZ)
|Θij

Z| is bounded away from zero
because

√
n/ log d→ ∞ under our assumptions. Taking the sequence αn so that α = 0 in Corollary 2,

we can asymptotically recover the support of ΘZ. In this case, if we define Θ̃Z,λn = (Θ̃ij
Z,λn

)1≤i,j≤d by

Θ̃ij
Z,λn

=

{
Θ̂ij

Z,λn
− Γij

Z,n if i = j or (i, j) ∈ Ŝn(ΘZ),

0 otherwise,

Θ̃Z,λn will be oracle in the sense of [38]. However, we note that the estimator Θ̃Z,λn would not be
continuous in data, so it would not satisfy the third desirable property in [38] (p. 1349). To construct an
oracle estimator for ΘZ which is continuous in data, we will need to consider a non-concave penalized
estimator as in [52]. This is left to future research.

5. Simulation Study

5.1. Implementation

To implement the proposed estimation procedure, we need to solve the optimization problem in
Equation (10). Among many existing algorithms to solve this problem, we employ the GLASSOFAST

algorithm of [53], which is an improved implementation of the popular GLASSO algorithm of [54] and
implemented in the R package glassoFast.

The remaining problem is how to select the penalty parameter λ. Following [17,55], we select it
by minimizing the following formally defined Bayesian information criterion (BIC):

BIC(λ) := n
{

tr
(
Θ̂Z,λΣ̂Z,n

)
− log det

(
Θ̂Z,λ

)}
+ (log n)∑

i≤j
1{

Θ̂ij
Z,λ 6=0

}.

The minimization is carried out by grid search. The grid {λ1, . . . , λm} is constructed analogously
to the R package glmnet (see Section 2.5 of [56] for details): First, as the maximum value λmax

of the grid, we take the smallest value for which all the off-diagonal entries of Θ̂Z,λmax are zero:
In our case, λmax is set to the maximum modulus of the off-diagonal entries of Σ̂Z,n (cf. [57]
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(Corollary 1)). Next, we take a constant ε > 0 and set λmin := ελmax as the minimum value of
the grid. Finally, we construct the values λ1, . . . , λm increasing from λmin to λmax on the log scale:

λi = exp
(

log(λmin) +
i− 1
m− 1

log(λmax/λmin)

)
, i = 1, . . . , m.

We use ε =
√
(log d)/n and m = 10 in our experiments (the computation procedure of the

weighted graphical Lasso described here is implemented in the R package yuima as the function
cce.factor with the option regularize="glasso" since version 1.9.2).

5.2. Simulation Design

We basically follow the setting of [8]. We simulate the model (7) with the following specification:
For the factor process X, we set r = 3 and

dX j
t = µjdt +

√
vj

tdW j
t , dvj

t = κj(θj − vj
t)dt + ηj

√
vj

t

(
ρjdW j

t +
√

1− ρ2
j dW̃ j

t

)
, j = 1, 2, 3,

where W1, W2, W3, W̃1, W̃2, W̃3 are independent standard Wiener processes. We set κ = (3, 4, 5), θ =

(0.09, 0.04, 0.06), η = (0.3, 0.4, 0.3), ρ = (−0.6,−0.4,−0.25) and µ = (0.05, 0.03, 0.02). The initial value
vj

0 is drawn from the stationary distribution of the process (vj
t)t∈[0,1], i.e., the gamma distribution

with shape 2κjθj/η2
j and rate 2κj/η2

j . The entries of the loading β are independently drawn as

βi1 i.i.d.∼ U [0.25, 2.25] and βi2, βi3 i.i.d.∼ U [−0.5, 0.5] (U [a, b] denotes the uniform distribution on [a, b]).
Finally, as the residual process Z, we take a d-dimensional Wiener process with covariance matrix Q.
We consider the following two designs for Q:

Design 1 Q is a block diagonal matrix with 10 blocks of size (d/10)× (d/10). Each block has diagonal
entries independently generated from U [0.2, 0.5] and a constant correlation of 0.25.

Design 2 We simulate a Chung-Lu random graph G and set Q := (Ed + D− A)−1, where D and A are
respectively the degree and adjacent matrices of the random graph G. Formally, given a weight
vector w ∈ Rd with w ≥ 0, A is defined as a d× d symmetric random matrix such that all the
diagonal entries of A are equal to 0 and the off-diagonal upper triangular entries are generated
by independent Bernoulli variables so that P(Aij = 1) = 1− P(Aij = 0) = wiwj/ ∑d

k=1 wk for
i < j. Then, D is defined as the diagonal matrix such that the j-th diagonal entry of D is given
by dj(A) = ∑d

i=1 Aij. The weight vector w is specified as follows: For every i = 1, . . . , d, we set

wi := c ((i + i0 − 1)/d)−1/(α−1) with i0 := d(c/wM)α−1 and c := (α− 2)/(α− 1), where we use
α = 2.5 and wM = bd0.45c.

Design 1 is the same one as in [8]. Design 2 is motivated by the recent work of Barigozzi et al. [42],
which reports that several characteristics of the residual precision matrix of the S&P 500 assets exhibit
power-law behaviors and they are well-described by the power-law partial correlation network model
proposed in [42]; the specification in Design 2 is the same one as in the simulation study of [42].

We observe the processes Y and X at the equidistant times h/n, h = 0, 1, . . . , n. We set d = 500
and vary n as n ∈ {78, 130, 195, 390, 780}. We run 10,000 Monte Carlo iterations for each experiment.

5.3. Results

We begin by assessing the estimation accuracy of the proposed estimator in various norms.
For comparison, we consider the following 5 different methods to estimate ΣY:

RC We simply use the realized covariance matrix [̂Y, Y]
n
1 defined by Equation (14) to estimate ΣY.

glasso We estimate Σ−1
Y by the (unweighted) graphical Lasso based on [̂Y, Y]

n
1 . Then, ΣY is estimated

by its inverse.



Entropy 2020, 22, 456 15 of 38

wglasso We estimate Σ−1
Y by the weighted graphical Lasso based on [̂Y, Y]

n
1 (i.e., the estimator defined

by Equation (1) with Σ̂n = [̂Y, Y]
n
1 ). Then, ΣY is estimated by its inverse.

f-glasso We estimate Σ−1
Z by the (unweighted) graphical Lasso based on Σ̂Z,n defined by Equation (9)

with Σ̂Y,n = [̂Y, Y]
n
1 and Σ̂X,n = [̂X, X]

n
1 . Then, ΣY is estimated by Equation (11) with Θ̂Z,λ

being the estimator so constructed.
f-wglasso We estimate Σ−1

Z by the weighted graphical Lasso based on Σ̂Z,n defined by Equation (9)

with Σ̂Y,n = [̂Y, Y]
n
1 and Σ̂X,n = [̂X, X]

n
1 . Then, ΣY is estimated by Equation (11) with Θ̂Z,λ

being the estimator so constructed.

In addition, for Design 1, we also consider the estimator proposed in [8]: Assuming that we
know which entries of ΣZ are zero, we estimate ΣY by β̂nΣ̂X,n β̂>n + (Σ̂ij

Z,n1{Σij
Z 6=0})1≤i,j≤d. We label this

method f-thr. Since the estimates of RC and f-thr are not always regular, we use their Moore-Penrose
generalized inverses to estimate Σ−1

Y when they are singular. Please note that the methods glasso and
f-glasso correspond to those proposed in [17], while wglasso and f-wglasso are those proposed in this
paper. We report the simulation results in Tables 1 and 2.

We first focus on the accuracy of estimating the precision matrix Σ−1
Y . The tables reveal the

excellent performance of graphical Lasso-based methods. In particular, they outperform f-thr in Design
1 except for the case n = 780 even when we ignore the factor structure of the model. Nevertheless,
the tables also show apparent benefit to take the factor structure into account in constructing the
graphical Lasso type estimators. When we compare the weighted graphical Lasso estimators with
the unweighted versions, the weighted ones tend to outperform the unweighted ones as n increases,
especially when the factor structure is taken into account. This is more pronounced in Design 2. It is
also worth mentioning that the estimation errors for Σ−1

Y in the method RC are greater at n = 390,780
than those at n = 78,130,195. This is presumably due to a “resonance” effect between the sample size n
and dimension d coming from the use of the Moore-Penrose generalized inverse, which is well-known
in multivariate analysis (see e.g., [58]): The estimation error for the precision matrix by the generalized
inverse of the sample covariance matrix drastically increases as n approaches d. Theoretically, this
occurs because the smallest non-zero eigenvalue of the sample covariance matrix tends to 0 as n
approaches d.

Turning to the estimation accuracy for ΣY in terms of the `∞-norm, we find little advantage to
use the graphical Lasso type methods over the realized covariance matrix: f-glasso and f-wglasso tend
to outperform RC at small values of n, but the differences of the performance become less clear as
n increases. From a theoretical point of view, this is not surprising because the realized covariance
matrix is a consistent estimator for ΣY in the `∞-norm with the convergence rate

√
log d/n; this can be

seen from e.g., Lemma A15. Meanwhile, in Design 1 f-thr performs the best in terms of estimating ΣY
at all the values of n.

Next we assess the accuracy of the mixed normal approximation for the de-biased estimator.
For this purpose, we construct entry-wise confidence intervals for ΘZ based on Equation (21) (with
taking the factor structure into account) and evaluate their nominal coverages. Table 3 reports these
coverages averaged over the sets {(i, j) : i ≤ j, Θij

Z = 0} and {(i, j) : i ≤ j, Θij
Z 6= 0}, respectively.

We see from the table that the asymptotic approximation perfectly works to construct confidence
intervals for zero entries of ΘZ. By contrast, confidence intervals for non-zero entries of ΘZ tend to be
over-coverages, especially in Design 1. However, these coverage distortions tend to be moderate at
larger values of n, which suggests that the normal approximation starts to work for relatively large
sample sizes.
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Table 1. Estimation accuracy of different methods in Design 1.

n RC glasso wglasso f-glasso f-wglasso f-thr

78 22.431 18.857 19.083 15.122 15.130 416.197
130 26.307 17.931 17.954 14.353 14.353 93.242

|||Σ̂−1
Y − Σ−1

Y |||∞ 195 45.795 17.447 17.471 13.923 13.928 50.605
390 722.381 16.687 16.678 11.306 10.806 25.335
780 423.434 15.965 15.908 9.387 8.851 15.227

78 6.576 4.270 4.263 3.419 3.420 138.442
130 6.508 3.654 3.468 3.193 3.193 28.384

|||Σ̂−1
Y − Σ−1

Y |||2 195 6.480 3.381 3.271 3.094 3.097 14.307
390 203.038 3.009 3.015 2.133 2.100 6.446
780 93.354 2.788 2.855 1.782 1.693 3.562

78 0.361 0.432 0.441 0.351 0.351 0.347
130 0.279 0.311 0.296 0.281 0.281 0.268

‖Σ̂Y − ΣY‖`∞ 195 0.227 0.255 0.250 0.241 0.241 0.219
390 0.160 0.181 0.189 0.166 0.169 0.154
780 0.112 0.130 0.143 0.118 0.119 0.108

Note. RC: realized covariance matrix; glasso: graphical Lasso; wglasso: weighted graphical Lasso; f-glasso: graphical
Lasso with taking the factor structure into account; f-wglasso: weighted graphical Lasso with taking the factor
structure into account; f-thr: location-based thresholding with taking the factor structure into account (the method
of [8]). The results are based on 10,000 Monte Carlo iterations.

Table 2. Estimation accuracy of different methods in Design 2.

n RC glasso wglasso f-glasso f-wglasso

78 47.934 43.144 43.055 35.347 35.263
130 48.266 43.166 41.750 34.767 34.284

|||Σ̂−1
Y − Σ−1

Y |||∞ 195 50.049 42.806 40.571 34.154 32.835
390 338.847 41.060 37.801 33.100 29.934
780 401.447 38.886 34.961 32.163 23.121

78 17.805 13.557 13.522 7.857 7.843
130 17.798 13.543 12.628 7.954 7.866

|||Σ̂−1
Y − Σ−1

Y |||2 195 17.752 13.319 11.630 8.006 7.742
390 87.239 12.296 9.888 8.059 7.416
780 55.619 11.189 8.522 8.065 6.072

78 0.669 0.723 0.721 0.632 0.631
130 0.509 0.678 0.572 0.489 0.481

‖Σ̂Y − ΣY‖`∞ 195 0.412 0.567 0.470 0.403 0.390
390 0.289 0.298 0.339 0.282 0.273
780 0.203 0.198 0.252 0.197 0.192

Note. RC: realized covariance matrix; glasso: graphical Lasso; wglasso: weighted graphical Lasso; f-glasso: graphical
Lasso with taking the factor structure into account; f-wglasso: weighted graphical Lasso with taking the factor
structure into account. The results are based on 10,000 Monte Carlo iterations.

Table 3. Average coverages of entry-wise confidence intervals.

Design 1 Design 2

n 95% 99% 95% 99%

Θij
Z = 0

78 95.21 99.04 95.22 99.04
130 95.13 99.03 95.13 99.03
195 95.09 99.02 95.09 99.02
390 95.04 99.01 95.05 99.01
780 95.02 99.00 95.02 99.01
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Table 3. Cont.

Design 1 Design 2

n 95% 99% 95% 99%

Θij
Z 6= 0

78 99.33 99.87 95.16 99.03
130 99.82 99.96 95.90 99.18
195 99.97 99.99 96.36 99.26
390 96.00 99.20 96.65 99.33
780 96.09 99.22 96.41 99.27

This table reports the average coverages of entry-wise confidence intervals for the residual precision matrix ΘZ over
the sets {(i, j) : i ≤ j, Θij

Z = 0} and {(i, j) : i ≤ j, Θij
Z 6= 0}, respectively. The confidence intervals are constructed

based on the normal approximation Equation (21). The results are based on 10,000 Monte Carlo iterations.

6. Empirical Application

To illustrate the applicability of the proposed method to real data analysis, we conduct a simple
empirical study using high-frequency financial data. We take 1 March 2018 as the observation interval
[0, 1] and the log-price processes of the component stocks of the S&P 500 index as the process Y.
In addition, as is often performed in the literature, we regard the SPDR S&P 500 ETF (SPY) as the
observable factor process X. We use 5-minute returns to compute the estimators presented in Section 4.
The dataset is provided by Bloomberg. Please note that our setting implies d = 504 and n = 77,
yielding a high-dimensional setting considered in this paper (note that our dataset does not contain
observations at the market opening).

The selection procedure presented in Section 5.1 suggests λn ≈ 0.272. Then we estimate the
support S(ΘZ) of ΘZ by the estimator Ŝn(ΘZ) with αn = 0.05 from Corollary 2. Figure 1 shows the
partial correlation network induced by Ŝn(ΘZ), drawn by the R package igraph. Specifically, it depicts
the undirected graph with vertices consisting of the S&P 500 component stocks and an edge set given
by Ŝn(ΘZ). To illuminate the relationship between the network and sector structures, we color the
vertices according to their Global Industry Classification Standard (GICS) sectors. We find there are
strong interconnections in several sectors such as Consumer Staples, Energy, Real Estate and Utilities.
The figure also suggests that the network would have some characteristics that are commonly observed
in scale-free networks: It consists of a giant component with several hubs and a few small components.
This is consistent with an observation made in [42]. Indeed, in [42] the authors have proposed a model
for ΘZ that induces a scale-free partial correlation network. According to their model, the decay of the
largest eigenvalues of ΘZ also exhibits power-law behavior. More precisely, letting Λ1 ≥ · · · ≥ Λd be
the ordered eigenvalues of ΘZ, we have Λi � i−α with some α > 0 for moderate i and large d. Then,
it is interesting to check whether this is the case in our dataset. Figure 2 shows the log-log size-rank
plot for the 50 largest eigenvalues of Θ̂Z,λn . We see that except for the three largest eigenvalues, they
clearly display power-law behavior.
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Figure 1. Partial correlation network of the S&P 500 component stocks on 1 March 2018.
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Figure 2. Log-log size-rank plot for the eigenvalues of the estimated residual precision matrix of the
S&P 500 component stocks on 1 March 2018.

7. Conclusions

In this paper, we have developed a generic asymptotic theory to estimate the high-dimensional
precision matrix of high-frequency data using the weighted graphical Lasso. We have shown that
the consistency of the weighted graphical Lasso estimator in matrix operator norms follows from
the consistency of the initial estimator in the `∞-norm, while the asymptotic mixed normality of its
de-biased version follows from that of the initial estimator, where the asymptotic mixed normality
has been formulated appropriately for the high-dimensional setting considered here. Our theory also
encompasses a situation where a known factor structure is present in the data. In such a situation,
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we have applied the weighted graphical Lasso to the residual process obtained after removing the
effect of factors.

We have applied the developed theory to the concrete situation where we can use the realized
covariance matrix as the initial covariance estimator. We have derived the desirable asymptotic mixed
normality of the realized covariance matrix by an application of the recent high-dimensional central
limit theorem obtained in [20], where Malliavin calculus resolves the main theoretical difficulties
caused by the high-dimensionality. Consequently, we have obtained a feasible asymptotic distribution
theory to conduct inference for entries of the precision matrix. A Monte Carlo study has shown the
good finite sample performance of our asymptotic theory.

A natural direction for future work is to apply the developed theory to a more complex situation
where the process is asynchronously observed with noise and/or jumps. To accomplish this purpose,
we need to establish the high-dimensional asymptotic mixed normality of relevant covariance estimators.

Funding: This research was funded by JST CREST Grant Number JPMJCR14D7 and JSPS KAKENHI Grant Numbers
JP17H01100, JP18H00836, JP19K13668.

Acknowledgments: The author thanks two anonymous referees for their constructive comments that substantially
improved the original version of this paper.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

i.i.d. independent and identically distributed
MLE maximum likelihood estimation
KKT Karush–Kuhn–Tucker
CLT central limit theorem

Appendix A. Matrix Inequalities

This appendix collects some elementary (but less trivial) inequalities for matrices used in the
proofs of the main results.

Lemma A1. Let A ∈ Sd. Then Λmin(A) ≤ Aii ≤ Λmax(A) for every i = 1, . . . , d.

Proof. See Theorem 14 in [59] (Chapter 11).

Lemma A2. Let A ∈ S+d and B ∈ Rd×r. Then Λmax(B>AB) ≤ Λmax(B>B)Λmax(A) and Λmin(B>AB) ≥
Λmin(B>B)Λmin(A).

Proof. Let x be an eigenvector associated with Λmax(A) such that ‖x‖`2 = 1. Then, by Theorem 4
in [59] (Chapter 11) we have Λmax(B>AB) = x>B>ABx ≤ Λmax(A)x>B>Bx ≤ Λmax(A)Λmax(B>B).
Therefore, we obtain the first inequality. The second one can be shown analogously.

Lemma A3. Let A, B ∈ Sd. Then |Λmax(A)−Λmax(B)| ∨ |Λmin(A)−Λmin(B)| ≤ |||A− B|||2.

Proof. Noting the identity |||C|||2 = Λmax(C) ∨ (−Λmin(C)) holding for any symmetric matrix C,
the desired result follows from Weyl’s inequality (cf. Corollary 4.3.15 in [60]).

Lemma A4. For any A ∈ Sd, |||A|||1 = |||A|||∞ ≤
√

d(A)|||A|||2.

Proof. This is a straightforward consequence of the Schwarz inequality.
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Lemma A5. Let A, B ∈ Rr×r. If A is invertible and |||A−1(B− A)|||w < 1 for some w ∈ [1, ∞], B is invertible and

|||B−1 − A−1|||w ≤
|||A−1|||w|||A−1(B− A)|||w

1− |||A−1(B− A)|||w
.

Proof. See pages 381–382 of [60].

Lemma A6. Let A ∈ Sr and B, C ∈ Rd×r. Then

‖BAC>‖`∞ ≤ |||A|||2
(

max
1≤i≤d

‖Bi·‖`2

)(
max

1≤j≤d
‖Cj·‖`2

)
≤ r|||A|||2‖B‖`∞‖C‖`∞ .

Proof. This result has essentially been shown in [61] (Lemma A.7). Since A is symmetric, there is an
orthogonal matrix U ∈ Rr×r such that Λ := U>AU is a diagonal matrix. Now, for any i, j ∈ {1, . . . , d},

|(BAC>)ij| = |(Bi·)>ACj·| = |(Bi·)>UΛU>Cj·| =
∣∣∣∣∣ r

∑
k=1

Λkk((Bi·)>U)k(U>Cj·)k

∣∣∣∣∣
≤ max

1≤k≤r
|Λkk|‖U>Bi·‖`2‖UCj·‖`2 = |||A|||2‖Bi·‖`2‖C

j·‖`2 ≤ r|||A|||2‖B‖`∞‖C‖`∞ .

This yields the desired result.

Lemma A7. Let A, B, C ∈ Rd×d. Then, for any i, j = 1, . . . , d,

|(BAC>)ij|2 ≤
(

d

∑
k=1
|Bik|

)(
d

∑
l=1
|Cil |

)
d

∑
k,l=1
|BikCjl |(Akl)2.

Proof. This is a straightforward consequence of the Schwarz inequality.

Appendix B. Proofs for Section 2

Appendix B.1. Proof of Proposition 1

The following result has essentially been proven in [24] and gives an estimate for the “deterministic
part” of oracle inequalities for graphical Lasso type estimators.

Proposition A1. Let A0, A ∈ Sd and assume ‖A− A0‖`∞ ≤ λ0 for some λ0 > 0. Assume also that there
are numbers L > 1 and λ > 0 such that L−1 ≤ Λmin(A0) ≤ Λmax(A0) ≤ L, 2λ0 ≤ λ ≤ (8LcL)

−1 and
8c2

Lsλ2 + 2cLλ2
0‖diag(A)− diag(A0)‖2

`2
≤ λ0/(2L), where s := s(B0) and cL := 8L2. Set B0 := A−1

0 .
Then, for any B ∈ S++

d satisfying

tr (BA)− log det (B) + λ‖B−‖`1 ≤ tr (B0 A)− log det (B0) + λ‖B−0 ‖`1 , (A1)

it holds that

‖B− B0‖2
`2

/cL + λ‖B− − B−0 ‖`1 ≤ 8c2
Lsλ2 + 2cLλ2

0‖diag(A)− diag(A0)‖2
`2

.

We first prove Proposition A1 under an additional assumption:

Lemma A8. Proposition A1 holds true if we additionally have ‖B− B0‖`2 ≤ 1/(2L).

Proof. Set ∆ = B− B0. By assumption we have ‖∆‖`2 ≤ 1/(2L), so Lemma 2 in [24] implies that

E(∆) := tr (∆A0)− {log det (∆ + B0)− log det (B0)}
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is well-defined and we have
E(∆) ≥ c‖∆‖`2 , (A2)

where c = c−1
L . Moreover, Equation (A1) yields

E(∆) + λ‖B−‖`1
= − tr (∆(A− A0)) +

{
tr (BA)− log det (B) + λ‖B−‖`1

}
− tr (B0 A) + log det (B0)

≤ − tr (∆(A− A0)) +
{

tr (B0 A)− log det (B0) + λ‖B−0 ‖`1

}
− tr (B0 A) + log det (B0)

= − tr (∆(A− A0)) + λ‖B−0 ‖`1
.

(A3)

Now, note that tr(A1B1) = tr(A−1 B−1 ) + tr(diag(A1)diag(B1)) and | tr(A1B1)| ≤ ‖A1 ◦ B1‖`1 for
any A1, B1 ∈ Rd×d. Thus, we infer that

| tr (∆(A− A0)) | ≤ ‖∆−‖`1‖A− − A−0 ‖`∞ + ‖diag(∆)‖`2‖diag(A)− diag(A0)‖`2

≤ λ0‖∆−‖`1 + ‖diag(A)− diag(A0)‖`2‖diag(∆)‖`2 ,

where we use ‖A − A0‖`∞ ≤ λ0 in the last line. Combining this with Equations (A2) and (A3),
we conclude that

c‖∆‖2
`2
+ λ‖B−‖`1 ≤ λ0‖∆−‖`1 + ‖diag(A)− diag(A0)‖`2‖diag(∆)‖`2 + λ‖B−0 ‖`1 .

Let S := S(B0). Also, for a subset I of {1, . . . , d}2 and a d × d matrix U, we define the d × d
matrix UI = (Uij

I )1≤i,j≤d by Uij
I = Uij1{(i,j)∈I}. Then, by definition and assumption, we have ‖B−‖`1 =

‖B−S ‖`1 + ‖B
−
Sc‖`1 , ‖∆−‖`1 = ‖∆−S ‖`1 + ‖B

−
Sc‖`1 , ‖B−0 ‖`1 ≤ ‖∆

−
S ‖`1 + ‖B

−
S ‖`1 , λ ≥ 2λ0, so we deduce

c‖∆‖2
`2
+

λ

2
‖B−Sc‖`1 ≤

3λ

2
‖∆−S ‖`1 + ‖diag(A)− diag(A0)‖`2‖diag(∆)‖`2 .

Consequently, we obtain

2c‖∆‖2
`2
+ λ‖∆−‖`1 = 2c‖∆‖2

`2
+ λ(‖B−Sc‖`1 + ‖∆

−
S ‖`1)

≤ 4λ‖∆−S ‖`1 + 2‖diag(A)− diag(A0)‖`2‖diag(∆)‖`2

≤ 4λ
√

s‖∆−S ‖`2 + 2‖diag(A)− diag(A0)‖`2‖diag(∆)‖`2 (∵ Schwarz inequality)

≤ 8sλ2/c2 + c‖∆−S ‖
2
`2

/2 + 2‖diag(A)− diag(A0)‖2
`2

/c + c‖diag(∆)‖2
`2

/2,

where we use the inequality xy ≤ (x2 + y2)/2 in the last line. Since ‖∆‖2
`2
= ‖diag(∆)‖2

`2
+ ‖∆−‖2

`2
,

we conclude that

c‖∆‖2
`2
+ λ‖∆−‖`1 ≤ 8sλ2/c2 + 2‖diag(A)− diag(A0)‖2

`2
/c,

which completes the proof.

Proof of Proposition A1. Thanks to Lemma A8, it suffices to prove ‖B− B0‖`2 ≤ 1/(2L).
Set B̃ = αB + (1− α)B0 with α = M/(M + ‖B− B0‖`2) and M = 1/(2L). By definition we have

‖B̃− B0‖`2 ≤ M = 1/(2L). Moreover, Equation (A1) and the convexity of the loss function imply that

tr(B̃A)− log det(B̃) + λ‖B−‖`1 ≤ tr (B0 A)− log det (B0) + λ‖B−0 ‖`1 .

Therefore, we can apply Lemma A8 with replacing B by B̃, and thus we obtain

‖B̃− B0‖2
`2

/cL + λ‖B̃− − B−0 ‖`1 ≤ 8c2
Lsλ2 + 2cLλ2

0‖diag(A)− diag(Σ)‖2
`2

.

In particular, we have
‖B̃− B0‖2

`2
≤ cLλ0/(2L) ≤ 1/(16L2),
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so we obtain ‖B̃− B0‖`2 ≤ 1/(4L) = M/2. By construction this yields ‖B− B0‖`2 ≤ M = 1/(2L),
which completes the proof.

Proof of Proposition 1. Thanks to Lemma 7.2 of [45], it suffices to consider the case w = 1.
For any L, n ∈ N, we define the set Ωn,L ⊂ Ω by

Ωn,L := {‖R̂n − RY‖`∞ ≤ λn/2} ∩ {L−1 ≤ Λmin(RY) ≤ Λmax(RY) ≤ L}
∩ {s(KY) ≤ Lsn} ∩ {8c2

LLsnλn > 1/(4L)},

where cL := 8L2. Then we have
lim

L→∞
lim sup

n→∞
P(Ωc

n,L) = 0.

In fact, noting that Lemma A1 and [A1] yield

max
1≤j≤d

(
Σjj

Y + 1/Σjj
Y

)
= Op(1), (A4)

[A1]–[A2], [B1] and Lemma A2 imply that λ−1
n ‖R̂n − RY‖`∞ = op(1), s(KY) = Op(sn) and

Λmax(RY) + 1/Λmin(RY) = Op(1). Finally, [B2] yields limn→∞ P(8Lsnλn > 1/(4L)) = 0 for all L.
Now, note that λn ≤ 1/(16Lc2

L) ≤ (8LcL)
−1 on the set Ωn,L. Therefore, applying Proposition A1 with

λ := λn and λ0 := λn/2, for any fixed L we have

‖K̂λn − KY‖2
`2

/cL + λn‖K̂−λn
− K−Y ‖`1 ≤ 8c2

Lsnλ2
n on Ωn,L.

Consequently, we obtain

lim sup
n→∞

P
(
‖K̂λn − KY‖`2 > 64L3√snλn

)
≤ lim sup

n→∞
P(Ωc

n,L)

and
lim sup

n→∞
P
(
‖K̂−λn

− K−Y ‖`1 > 512L4snλn

)
≤ lim sup

n→∞
P(Ωc

n,L).

Therefore, we conclude that

lim sup
M→∞

lim sup
n→∞

P
(
‖K̂λn − KY‖`2 > M

√
snλn

)
≤ lim sup

L→∞
lim sup

n→∞
P(Ωc

n,L) = 0

and
lim sup

M→∞
lim sup

n→∞
P
(
‖K̂−λn

− K−Y ‖`1 > Msnλn

)
≤ lim sup

L→∞
lim sup

n→∞
P(Ωc

n,L) = 0,

which yields ‖K̂λn − KY‖`2 = Op(
√

snλn) and ‖K̂−λn
− K−Y ‖`1 = Op(snλn). In particular, we obtain the

first convergence of Equation (3). Moreover, since we have

|||K̂λn − KY|||1 ≤ ‖diag(K̂λn)− diag(KY)‖`∞ + ‖K̂−λn
− K−Y ‖`1

≤ ‖K̂λn − KY‖`2 + ‖K̂
−
λn
− K−Y ‖`1 ,

we also obtain the second convergence of Equation (3).
Now we prove Equation (4). First, Equation (A4) and [B1] yield λ−1

n |||V̂n − V|||1 →p 0.
Since |||V|||1 = Op(1), |||KY|||1 = Op(sn) and λn = op(1) by Equation (A4), [A2] and [B2], we obtain
|||V̂n|||1 = Op(1) and |||K̂λn |||1 = Op(sn). Since

|||Θ̂λn −ΘY|||1 = |||V̂nK̂λn V̂n −VKYV|||1
≤ |||V̂n −V|||1|||K̂λn |||1|||V̂n|||1 + |||V|||1|||K̂λn − KY|||1|||V̂n|||1 + |||V|||1|||KY|||1|||V̂n −V|||1,



Entropy 2020, 22, 456 23 of 38

we obtain the first convergence of Equation (4). Next, since |||Θ̂λn −ΘY|||2 = op(1) by the above result,
[A1] and Lemma A3 yield |||Θ̂−1

λn
|||2 = Λmin(Θ̂λn)

−1 = Op(1). Since |||Θ̂−1
λn
− ΣY|||2 ≤ |||Θ̂−1

λn
|||2|||ΘY −

Θ̂λn |||2|||ΣY|||2, we obtain the second convergence of Equation (4).

Appendix B.2. Proof of Lemma 1

First, by Proposition 14.4.3 of [62] there is a (not necessarily measurable) d× d random matrix Ẑn

such that
Σ̂n − Θ̂−1

λn
+ λnV̂nẐnV̂n = 0, ‖Ẑn‖`∞ ≤ 1,

and Ẑij
n = sign(Θ̂ij

λn
) if Θ̂ij

λn
6= 0. Consequently, it holds that

Σ̂nΘ̂λn − Ed + λnV̂nẐnV̂nΘ̂λn = 0.

Therefore, we have

Θ̂λn −ΘY + ΘY(Σ̂n − ΣY)ΘY

= Θ̂λn −ΘY + ΘY(Σ̂n − ΣY)Θ̂λn −ΘY(Σ̂n − ΣY)(Θ̂λn −ΘY)

= Θ̂λn −ΘY + ΘY(Ed − λnV̂nẐnV̂nΘ̂λn − ΣYΘ̂λn)−ΘY(Σ̂n − ΣY)(Θ̂λn −ΘY)

= −λnΘYV̂nẐnV̂nΘ̂λn −ΘY(Σ̂n − ΣY)(Θ̂λn −ΘY)

= λn(Θ̂λn −ΘY)V̂nẐnV̂nΘ̂λn − (Θ̂λn − Θ̂λn Σ̂nΘ̂λn)−ΘY(Σ̂n − ΣY)(Θ̂λn −ΘY),

so we obtain

‖Θ̂λn −ΘY − Γn + ΘY(Σ̂n − ΣY)ΘY‖`∞

≤ λn|||Θ̂λn −ΘY|||∞‖V̂nẐnV̂nΘ̂λn‖`∞ + |||ΘY|||∞‖Σ̂n − ΣY‖`∞ |||Θ̂λn −ΘY|||`∞

≤ λn|||Θ̂λn −ΘY|||∞|||V̂n|||2∞|||Θ̂λn |||∞ + |||ΘY|||∞‖Σ̂n − ΣY‖`∞ |||Θ̂λn −ΘY|||`∞
.

Now the desired result follows from Proposition 1 and Lemma A4.

Appendix B.3. Proof of Proposition 2

In the light of Lemma 3.1 of [20], it is enough to prove√
log(m + 1)

∥∥∥Jn vec
(
Θ̂λn −ΘY − Γn

)
− J̃n vec

(
Σ̂n − Σ

)∥∥∥
`∞
→p 0

as n→ ∞. Please note that vec(ABC) = (C> ⊗ A) vec(B) for any d× d matrices A, B, C (cf. Theorem 2
in [59] (Chapter 2)). Thus, we obtain the desired result once we prove√

log(m + 1)
∥∥Jn

(
Θ̂λn −ΘY − Γn + ΘY

(
Σ̂n − Σ

)
ΘY
)∥∥

`∞
→p 0

as n→ ∞. This follows from Lemma 1 and the assumptions of the proposition.

Appendix C. Proofs for Section 3

Appendix C.1. Proof of Proposition 3

Set Ωn := {|||Σ−1
X (Σ̂X,n − ΣX)|||2 ≤ 1/2}.

Lemma A9. Under the assumptions of Proposition 3, we have the following results:

(a) On the event Ωn, Σ̂X,n is invertible and |||Σ̂−1
X,n − Σ−1

X |||2 ≤ 2|||Σ−1
X |||2|||Σ

−1
X (Σ̂X,n − ΣX)|||2.

(b) λ−1
n |||Σ̂X,n − ΣX |||2 = op(r) and |||Σ̂X,n|||2 = Op(r) as n→ ∞.
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(c) P(Ωn)→ 1 as n→ ∞.

Proof. (a) is a direct consequence of Lemma A5. (b) follows from [C3], [D2] and the inequalities |||Σ̂X,n −
ΣX|||2 ≤ r‖Σ̂X,n−ΣX‖`∞ and |||ΣX|||2 ≤ r‖ΣX‖`∞ . (c) follows from the inequality |||Σ−1

X (Σ̂X,n−ΣX)|||2 ≤
r|||Σ−1

X |||2‖Σ̂X,n − ΣX‖`∞ .

Lemma A10. Under the assumptions of Proposition 3, λ−2
n ‖Σ̂Z,n − Σ̆Z,n‖`∞ = op(r) as n→ ∞.

Proof. Since β̂n = Σ̂YX,nΣ̂−1
X,n on the event Ωn, we have

Σ̂Z,n − Σ̆Z,n = −β̂nΣ̂X,n β̂>n + Σ̂YX,nβ> + βΣ̂>YX,n − βΣ̂X,nβ>

= −Σ̂YX,n(β̂n − β)> + βΣ̂X,n(β̂n − β)>

= −(Σ̂YX,n − βΣ̂X,n)Σ̂−1
X,n(Σ̂YX,n − βΣ̂X,n)

> on Ωn.

Therefore, Lemma A6 yields

‖Σ̂Z,n − Σ̆Z,n‖`∞ ≤ r|||Σ̂−1
X,n|||2‖Σ̂YX,n − βΣ̂X,n‖2

`∞
on Ωn.

Now, by [C3] and Lemma A9 we have |||Σ̂−1
X,n|||21Ωn = Op(1), so we obtain λ−2

n ‖Σ̂Z,n −
Σ̆Z,n‖`∞ 1Ωn = op(r) by [D1]. Since P(Ωn)→ 1 by Lemma A9(c), we complete the proof.

Lemma A11. Under the assumptions of Proposition 3, λ−1
n ‖Σ̂Z,n − ΣZ‖`∞ →p 0 and P(min1≤i≤d Σ̂ii

Z,n >

0)→ 1 as n→ ∞.

Proof. The first claim immediately follows from Lemma A10 and [D1]. The second one is a
consequence of the first one, Lemma A1 and [C2].

Proof of Proposition 3. Set En := Ωn ∩ {Σn ∈ S+d } ∩ {min1≤i≤d Σ̂ii
Z,n > 0}. From Equation (0.8.5.3)

in [60], we have Σ̂Z,n ∈ S+d on En. Hence, from the proof of [34] (Lemma 1), the optimization problem
in Equation (10) has the unique solution on En. Since P(En)→ 1 as n→ ∞ by [D3] and Lemmas A9
and A11, the desired result follows once we prove λ−1

n ‖Σ̂Z,n − ΣZ‖`∞ →p 0 as n → ∞ according to
Proposition 1. This has already been established in Lemma A11.

Appendix C.2. Proof of Proposition 4

We first establish some asymptotic properties of β̂n which are necessary for the subsequent proofs.

Lemma A12. Under the assumptions of Proposition 3, we have the following results:

(a) ‖β‖`2 = Op(
√

d) as n→ ∞.
(b) λ−1

n max1≤i≤d ‖β̂i·
n − βi·‖`2 = op(

√
r) and max1≤i≤d ‖β̂i·

n‖`2 = Op(
√

r) as n→ ∞.
(c) λ−1

n ‖β̂n − β‖`2 = op(
√

dr) and ‖β̂n‖`2 = Op(
√

d) as n→ ∞.
(d) λ−1

n |||β̂n − β|||1 = op(d
√

r) and |||β̂n|||1 = Op(d) as n→ ∞.
(e) λ−1

n |||β̂n − β|||∞ = op(r) and |||β̂n|||∞ = Op(r) as n→ ∞.

Proof. (a) Since ΣX − Λmin(ΣX)Er is positive semidefinite, βΣX β> − Λmin(ΣX)ββ> is also positive
semidefinite. Thus, ΣY − Λmin(ΣX)ββ> is positive definite by Equation (8). This implies that 0 ≤
tr(ΣY −Λmin(ΣX)ββ>) = tr(ΣY)−Λmin(ΣX)‖β‖2

`2
. Since tr(ΣY) = Op(d) by [C1], we obtain ‖β‖2

`2
=

Op(d) by [C3].
(b) By Lemma A9, on the event Ωn, we have β̂n = Σ̂YX,nΣ̂−1

X,n. Hence, for every i = 1, . . . , d,

‖β̂i·
n − βi·‖`2 = ‖(Σ̂i·

YX,n − βΣ̂i·
X,n)Σ̂

−1
X,n‖`2 ≤ |||Σ̂

−1
X,n|||2‖Σ̂

i·
YX,n − βΣ̂i·

X,n‖`2

≤
√

r|||Σ̂−1
X,n|||2‖Σ̂YX,n − βΣ̂X,n‖`∞ on Ωn.
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Since |||Σ̂−1
X,n|||21Ωn = Op(1) by Lemma A9, λ−1

n max1≤i≤d ‖β̂i·
n − βi·‖`∞1Ωn = op(

√
r) by [D1].

Since P(Ωc
n)→ 0 by Lemma A9, we obtain λ−1

n max1≤i≤d ‖β̂i·
n− βi·‖`2 = op(

√
r). Since max1≤i≤d ‖βi·‖`2 ≤√

r‖β‖`∞ = O(
√

r) by [C1], we also obtain max1≤i≤d ‖β̂i·
n‖`∞ = Op(

√
r).

(c) This follows from (a)–(b) and rλn = op(1).
(d) This is a direct consequence of (b).
(e) This follows from (b) and the Schwarz inequality.

Proof of Proposition 4. Since ‖A‖`∞ ≤ |||A|||2 for any matrix A, in view of Proposition 3 it suffices to
prove λ−1

n ‖β̂nΣ̂X,n β̂>n − βΣX β>‖`∞ = Op(r2). By Lemma A6 we have

‖β̂nΣ̂X,n β̂>n − βΣX β>‖`∞ ≤ |||Σ̂X,n|||2
(

max
1≤i≤d

‖β̂i·
n − βi·‖`2

)(
max
1≤i≤d

‖β̂i·
n‖`2

)
+ |||Σ̂X,n − ΣX |||2

(
max
1≤i≤d

‖βi·‖`2

)(
max
1≤i≤d

‖β̂i·
n‖`2

)
+ |||ΣX |||2

(
max
1≤i≤d

‖βi·‖`2

)(
max
1≤i≤d

‖β̂i·
n − βi·‖`2

)
.

Therefore, the desired result follows from Lemmas A9, A12(b) and assumption.

Appendix C.3. Proof of Proposition 5

Set Π := (Σ−1
X + β>Σ−1

Z β)−1 and Π̂n := (Σ̂†
X,n + β̂>n Θ̂Z,λn β̂n)−1.

Lemma A13. Under the assumptions of Proposition 5, we have the following results:

(a) Λmin(β>β)−1 = O(d−1) as n→ ∞.
(b) |||Π|||2 = Op(d−1) as n→ ∞.
(c) λ−1

n |||Π̂n −Π|||2 = Op(d−1(sn + r)) and |||Π̂n|||2 = Op(d−1) as n→ ∞.

Proof. (a) By Lemma A3 we have |Λmin(d−1β>β)−Λmin(B)| ≤ |||d−1β>β− B|||2. Hence the desired
result follows from [C6].

(b) Since |||Π|||2 = Λmin(Σ−1
X + β>Σ−1

Z β)−1 and Σ−1
X is positive definite, Corollary 4.3.12 in [60]

and Lemma A2 yield

|||Π|||2 ≤ Λmin(β>Σ−1
Z β)−1 ≤ Λmin(β>β)−1Λmin(Σ−1

Z )−1 = Λmin(β>β)−1Λmax(ΣZ).

Thus, the desired result follows from claim (a) and [C2].
(c) First, since we have

|||β̂>n Θ̂Z,λn β̂n − β>ΘZβ|||2
≤ |||β̂n − β|||2|||Θ̂Z,λn |||2|||β̂n|||2 + |||β|||2|||Θ̂Z,λn −ΘZ|||2|||β̂n|||2 + |||β|||2|||ΘZ|||2|||β̂n − β|||2,

Lemma A12(a) and (c) and Proposition 3 yield λ−1
n |||β̂>n Θ̂Z,λn β̂n − β>ΘZβ|||2 = Op(dsn).

Combining this with Lemma A9 and (b), we obtain λ−1
n |||Π(Π̂−1

n −Π−1)|||21Ωn = Op(sn + r). Now let
us set Ωn,1 := Ωn ∩ {|||Π(Π̂−1

n − Π−1)|||2 ≤ 1/2}. Then, using (b) and Lemmas A5 and A9(c),
we obtain λ−1

n |||Π̂n −Π|||21Ωn,1 = Op(d−1(sn + r)) and P(Ωc
n,1)→ 0. This completes the proof.

Proof of Proposition 5. By Sherman–Morrison–Woodbury formula (cf. Equation (0.7.4.1) in [60]),
for any w ∈ {2, ∞} we have

|||Σ̂−1
Y,λn
− Σ−1

Y |||w
≤ |||Θ̂Z,λn −ΘZ|||w + |||(Θ̂Z,λn −ΘZ)β̂nΠ̂n β̂>n Θ̂Z,λn |||w + |||ΘZ(β̂n − β)Π̂n β̂>n Θ̂Z,λn |||w
+ |||ΘZβ(Π̂n −Π)β̂>n Θ̂Z,λn |||w + |||ΘZβΠ(β̂n − β)>Θ̂Z,λn |||w + |||ΘZβΠβ>(Θ̂Z,λn −ΘZ)|||w
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=: ∆1 + ∆2 + ∆3 + ∆4 + ∆5 + ∆6.

Proposition 3 yields λ−1
n ∆1 = Op(sn). Moreover, noting that |||ΘZ|||∞ = Op(

√
dn) by Lemma A4 and

[C2], Proposition 3 and Lemmas A12 and A13 imply that λ−1
n (∆2 + ∆6) = Op(sn), λ−1

n (∆3 + ∆5) =

op(
√

r) and λ−1
n ∆4 = Op(sn + r) when w = 2 and λ−1

n (∆2 + ∆6) = Op(r3/2sn
√
dn), λ−1

n ∆3 = op(r3/2dn),
λ−1

n ∆4 = Op(r3/2(sn + r)dn) and λ−1
n ∆5 = op(r2dn) when w = ∞. This completes the proof.

Appendix C.4. Proof of Proposition 6

We apply Proposition 2 to Σ̂Z,n. From the arguments in the proof of Proposition 3, it remains to
check condition Equation (5). More precisely, we need to prove

lim
n→∞

sup
y∈Rm

∣∣∣P (an J̃Z,n vec
(
Σ̂Z,n − ΣZ

)
≤ y

)
− P

(
J̃Z,nC

1/2
n ζn ≤ y

)∣∣∣ = 0.

Thanks to Lemma 3.1 in [20] and Equation (12), this claim follows once we prove√
log(m + 1)‖an J̃Z,n vec(Σ̂Z,n − ΣZ)− an J̃Z,n vec(Σ̆Z,n − ΣZ)‖`∞ → 0. Since we have

‖an J̃Z,n vec(Σ̂Z,n − ΣZ)− an J̃Z,n vec(Σ̆Z,n − ΣZ)‖`∞ ≤ an|||Jn|||∞|||ΘZ|||2∞‖Σ̂Z,n − Σ̆Z,n‖`∞

and |||ΘZ|||∞ = Op(
√
dn) by Lemma A4, the desired result follows from Lemma A10 and assumption.

Appendix C.5. Proof of Lemma 2 and Proposition 7

We use the same notation as in Section C.3. By Sherman-Morisson-Woodbury formula we have

‖Σ̂−1
Y,λn
−ΘZ,λn‖`∞ ≤ ‖Θ̂Z,λn β̂nΠ̂n β̂>n Θ̂Z,λn‖`∞

≤ r‖Θ̂Z,λn β̂n‖2
`∞
|||Π̂n|||2 ≤ r|||Θ̂Z,λn |||

2
∞‖β̂n‖2

`∞
|||Π̂n|||2,

where the second inequality follows from Lemma A6. Since |||ΘZ|||2∞ = O(dn) by Lemma A4, we
have |||Θ̂Z,λn |||

2
∞ = Op(dn) by Proposition 3. We also have ‖β̂n‖`∞ = Op(1) by [C1], [D2] and Lemma

A12(b). Consequently, we obtain ‖Σ̂−1
Y,λn
−ΘZ,λn‖`∞ = Op(rdn/d) by Lemma A13. Similarly, we can

prove ‖Σ−1
Y −ΘZ‖`∞ = Op(rdn/d). Therefore, we complete the proof of Lemma 2.

Proposition 7 is an immediate consequence of Proposition 6, Lemma 2 and [20] (Lemma 3.1).

Appendix D. Proofs for Section 4

Appendix D.1. Proof of Theorem 1

The proof relies on the following concentration inequalities for discretized quadratic covariations
of continuous martingales:

Lemma A14. Let M = (Mt)t∈[0,1] and N = (Nt)t∈[0,1] be two continuous martingales. Suppose that there is
a constant L > 0 such that

|[M, M]t − [M, M]s| ∨ |[N, N]t − [N, N]s| ≤ L|t− s| (A5)

for all s, t ∈ [0, 1]. Then, for any θ > 0, there is a constant CL,θ > 0 which depends only on L and θ such that

P
(√

n
∣∣∣[̂M, N]

n
1 − [M, N]1

∣∣∣ > x
)
≤ 2 exp

(
−CL,θ x2

)
for all n ∈ N and x ∈ [0, θ

√
n].
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Remark A1. Similar estimates to Lemma A14 have already been obtained in the literature (see e.g., [36]
(Lemma 3), [4] (Lemma 10) and [8] (Lemma A.1)). Since we use slightly different assumptions from the existing
ones, we give its proof in Appendix E for the shake of completeness.

Define the (d + r)-dimensional semimartingale Z̄ = (Z̄t)t∈[0,1] by Z̄t = (Z1
t , . . . , Zd

t , X1
t , . . . , Xr

t )
>.

Lemma A15. Assume [E1] and log(d + r)/
√

n → 0 as n → ∞. Then, ‖[̂Z̄, Z̄]
n

1 − [Z̄, Z̄]1‖`∞ =

Op(
√

log(d + r)/n) as n→ ∞.

Proof. For all n, ν ∈ N and t ∈ [0, 1], set

µ̄(ν)t =

(
µ(ν)t

µ̃(ν)t

)
, σ̄(ν)t =

(
σ(ν)t

σ̃(ν)t

)
.

Then we define the processes Ā(ν) = (Ā(ν)t)t∈[0,1] and M̄(ν) = (M̄(ν)t)t∈[0,1] by Ā(ν)t =∫ t
0 µ̄(ν)sds and M̄(ν)t =

∫ t
0 σ̄(ν)sdWs. By the local property of Itô integrals (cf. [47], pp. 17–18),

we have Z̄ = Z̄(ν) := Ā(ν) + M̄(ν) on Ωn(ν). Hence, for every L > 0, it holds that

P
(
‖[̂Z̄, Z̄]

n

1 − [Z̄, Z̄]1‖`∞ > L
√

log(d + r)/n
)

≤ P
(
‖ ̂[Z̄(ν), Z̄(ν)]

n

1 − [Z̄(ν), Z̄(ν)]1‖`∞ > L
√

log(d + r)/n
)
+ P(Ωn(ν)

c).

Therefore, the proof is completed once we show that

lim
L→∞

lim sup
n→∞

P
(
‖ ̂[Z̄(ν), Z̄(ν)]

n

1 − [Z̄(ν), Z̄(ν)]1‖`∞ > L
√

log(d + r)/n
)
= 0

for any fixed ν > 0. We decompose the target quantity as

̂[Z̄(ν), Z̄(ν)]
n

1 − [Z̄(ν), Z̄(ν)]1

= ( ̂[M̄(ν), M̄(ν)]
n

1 − [M̄(ν), M̄(ν)]1) +
̂[Ā(ν), Ā(ν)]

n

1 +
̂[Ā(ν), M̄(ν)]

n

1 +
̂[M̄(ν), Ā(ν)]

n

1

=: In + IIn + IIIn + IVn.

First we consider In. Since we have |[M̄(ν)i, M̄(ν)i]t − [M̄(ν)i, M̄(ν)i]s| ≤ Cν|t− s| for all s, t ∈
[0, 1] and i ∈ {1, . . . , d + r} by [E1], by Lemma A14 there is a constant C > 0 such that

max
1≤i,j≤d+r

P
(√

n
∣∣∣Iij

n

∣∣∣ > x
)
≤ 2e−Cx2

for all n ∈ N and x ∈ [0,
√

n]. Therefore, for every L ∈ [0,
√

n/ log(d + r)] we obtain

P

(
‖In‖`∞

> L

√
log(d + r)

n

)
≤

d+r

∑
i,j=1

P
(√

n
∣∣∣Iij

n

∣∣∣ > L
√

log(d + r)
)
≤ 2(d + r)2−CL2

.

Hence, noting the assumption
√

n/ log(d + r)→ ∞, we conclude that

lim
L→∞

lim sup
n→∞

P

(
‖In‖`∞

> L

√
log(d + r)

n

)
= 0.
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Next, by [E1] we have ‖IIn‖`∞ ≤ C2
ν/n. Therefore, we obtain ‖IIn‖`∞ = O(n−1) =

O(
√

log(d + r)/n). Third, we consider IIIn. By the Schwarz inequality we have

‖IIIn‖`∞ ≤
√
‖IIn‖`∞ max

1≤j≤d+r

√
̂[M̄(ν)j, M̄(ν)j]

n

1 .

From the above result we have
√
‖IIn‖`∞ = O(1/

√
n). Meanwhile, using the inequality

√
x ≤√

|x− y|+√y holding for all x, y ≥ 0, we have

max
1≤j≤d+r

√
̂[M̄(ν)j, M̄(ν)j]

n

1 ≤
√
‖In‖`∞ + max

1≤j≤d+r

√
[M̄(ν)j, M̄(ν)j]1 ≤

√
‖In‖`∞ +

√
Cν.

Hence the above result yields max1≤j≤d+r

√
̂[M̄(ν)j, M̄(ν)j]

n

1 = Op(1). Thus, we conclude that
‖IIIn‖`∞ = Op(1/

√
n) = Op(

√
log(d+ r)/n). Finally, since ‖IVn‖`∞ = ‖IIIn‖`∞ , we complete the proof.

Proof of Theorem 1. In view of Propositions 3–5, it suffices to check [D1]. Noting that Σ̂YX,n− βΣ̂X,n =

[̂Z, X]
n
1 and Σ̆Z,n = [̂Z, Z]

n
1 , [D1] immediately follows from Lemma A15.

Appendix D.2. Proof of Theorem 2

Our proof relies on the following “high-dimensional” asymptotic mixed normality of the realized
covariance matrix:

Lemma A16 ([20], Theorem 4.2(b)). Assume [F1]. For every n, let Xn be an m × d2 random matrix
and Υn be an m × d2 non-random matrix such that |||Υn|||∞ ≥ 1, where m = mn possibly depends on n.
Define Ξn := Υn ◦ Xn. Suppose that for all n, ν ∈ N, we have Xn(ν) ∈ D2,∞(Rm×d2

) such that Xn = Xn(ν)

on Ωn(ν) and

lim
b↓0

lim sup
n→∞

P(min diag(Ξn(ν)Cn(ν)Ξn(ν)
>) < b) = 0, (A6)

sup
n∈N

max
1≤i≤m

max
1≤j≤d2

(
‖Xn(ν)

ij‖∞ + sup
0≤t≤1

‖DtXn(ν)
ij‖∞,`2 + sup

0≤s,t≤1
‖Ds,tXn(ν)

ij‖∞,`2

)
< ∞, (A7)

where Ξn(ν) := Υn ◦ Xn(ν). Suppose also |||Υn|||5∞(log dm)
13
2 → 0 as n→ ∞. Then we have

sup
y∈Rm

∣∣∣P (Ξn vec
(
[̂Z, Z]

n
1 − [Z, Z]1

)
≤ y

)
− P(ΞnC

1/2
n ζn ≤ y)

∣∣∣→ 0 (A8)

as n→ ∞.

To apply Lemma A16 to the present setting, we prove some auxiliary results.

Lemma A17. Let A1, A2, B1, B2 ∈ Rd×d. Then (A1 ⊗ A2) ◦ (B1 ⊗ B2) = (A1 ◦ B1)⊗ (A2 ◦ B2).

Proof. This follows from a straightforward computation.

Lemma A18. Assume [F1]. Then, for any n, ν ∈ N and t ∈ [0, 1], c(ν)t ∈ D2,∞(Rd×d), Cn(ν) ∈
D2,∞(Rd2×d2

) and

sup
n∈N

max
1≤i,j≤d

(
sup

0≤t,u≤1
‖Dsc(ν)ij

t ‖∞,`2 + sup
0≤t,u,v≤1

‖Du,vc(ν)ij
t ‖∞,`2

)
< ∞,
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sup
n∈N

max
1≤k,l≤d2

(
sup

0≤u≤1
‖DuCn(ν)

kl‖∞,`2 + sup
0≤u,v≤1

‖Du,vCn(ν)
kl‖∞,`2

)
< ∞.

Proof. This directly follows from Lemmas B.11–B.12 in [20].

Lemma A19. Assume [F1]–[F2]. For any n, ν ∈ N, ΘZ(ν) ∈ D2,∞(Rd×d) and

sup
n∈N

max
1≤i,j≤d

(
sup

0≤t≤1
‖DtΘZ(ν)

ij‖∞,`2 + sup
0≤s,t≤1

‖Ds,tΘZ(ν)
ij‖∞,`2

)
< ∞.

Proof. First, by Remark 15.87 in [48] and Lemma A18, ΣZ(ν) ∈ D2,∞(Rd×d) and DkΣZ(ν) =∫ 1
0 Dkc(ν)sds for k = 1, 2. In particular, we have

sup
n∈N

max
1≤i,j≤d

(
sup

0≤t≤1
‖DtΣZ(ν)

ij‖∞,`2 + sup
0≤s,t≤1

‖Ds,tΣZ(ν)
ij‖∞,`2

)
< ∞ (A9)

by Lemma A18 and Equation (16). Next, by Theorem 15.78 in [48] and Theorem 4 in [59] (Chapter 8),
we have ΘZ(ν) ∈ D2,∞(Rd×d) with D(a)

s ΘZ(ν) = −ΘZ(ν)D(a)
s ΣZ(ν)ΘZ(ν) and

D(a,b)
s,t ΘZ(ν) = ΘZ(ν)D(b)

t ΣZ(ν)ΘZ(ν)D(a)
s ΣZ(ν)ΘZ(ν)

−ΘZ(ν)D(a,b)
s,t ΣZ(ν)ΘZ(ν) + ΘZ(ν)D(a)

s ΣZ(ν)ΘZ(ν)D(b)
t ΣZ(ν)ΘZ(ν)

for all s, t ∈ [0, 1] and a, b ∈ {1, . . . , d′}. Therefore, by Lemma A7 we have

‖DsΘZ(ν)
ij‖`2 ≤ |||ΘZ(ν)|||2∞ max

1≤k,l≤d
‖DsΣZ(ν)

kl‖`2

for all i, j = 1, . . . , d. Then, noting that QZ is non-random, we have (1{ΘZ(ν)
ij 6=0})1≤i,j≤d = QZ by

assumption. Therefore, we obtain |||ΘZ(ν)|||∞ ≤ |||QZ|||∞‖ΘZ(ν)‖`∞ . Hence, Equation (A9), [F2] and
Equation (17) yield supn∈N max1≤i,j≤d sup0≤t≤1 ‖DtΘZ(ν)

ij‖∞,`2 < ∞. In the meantime, by Lemma A7
we also have

‖Ds,tΘZ(ν)
ij‖`2

≤ 2

√√√√ d′

∑
b=1

(
d

∑
k=1

∣∣∣∣(ΘZ(ν)D(b)
t ΣZ(ν)ΘZ(ν)

)ik
∣∣∣∣
)2

|||ΘZ(ν)|||∞ max
1≤k,l≤d

‖DsΣZ(ν)
kl‖`2

+ |||ΘZ(ν)|||2∞ max
1≤k,l≤d

‖Ds,tΣZ(ν)
kl‖`2

= 2

√√√√ d′

∑
b=1

(
d

∑
k=1

∣∣∣D(b)
t ΘZ(ν)ik

∣∣∣)2

|||ΘZ(ν)|||∞ max
1≤k,l≤d

‖DsΣZ(ν)
kl‖`2

+ |||ΘZ(ν)|||2∞ max
1≤k,l≤d

‖Ds,tΣZ(ν)
kl‖`2 .

Now, since QZ is non-random, we have D(b)
t ΘZ(ν) = QZ ◦ D(b)

t ΘZ(ν). Therefore, the Schwarz
inequality yields

‖Ds,tΘZ(ν)
ij‖`2

≤ 2

√√√√|||QZ|||∞
d

∑
k=1

d′

∑
b=1

∣∣∣D(b)
t ΘZ(ν)ik

∣∣∣2|||ΘZ(ν)|||∞ max
1≤k,l≤d

‖DsΣZ(ν)
kl‖`2
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+ |||ΘZ(ν)|||2∞ max
1≤k,l≤d

‖Ds,tΣZ(ν)
kl‖`2

≤ 2|||QZ|||∞
(

max
1≤k,l≤d

‖DtΘZ(ν)
kl‖`2

)
|||ΘZ(ν)|||∞ max

1≤k,l≤d
‖DsΣZ(ν)

kl‖`2

+ |||ΘZ(ν)|||2∞ max
1≤k,l≤d

‖Ds,tΣZ(ν)
kl‖`2 .

Consequently, we conclude supn∈N max1≤i,j≤d sup0≤s,t≤1 ‖Ds,tΘZ(ν)
ij‖∞,`2 < ∞ by [F2], Equation (17)

and the results proved above.

Lemma A20. Assume [F1]–[F2]. For any n, ν ∈ N, ΘZ(ν)⊗ΘZ(ν),Vn(ν) ∈ D2,∞(Rd2×d2
) and

supn∈N max1≤i,j≤d2

(
sup0≤t≤1 ‖Dt{ΘZ(ν)⊗ΘZ(ν)}ij‖∞,`2 + sup0≤s,t≤1 ‖Ds,t{ΘZ(ν)⊗ΘZ(ν)}ij‖∞,`2

)
< ∞, (A10)

supn∈N max1≤i,j≤d2

(
sup0≤t≤1 ‖DtVn(ν)ij‖∞,`2 + sup0≤s,t≤1 ‖Ds,tVn(ν)ij‖∞,`2

)
< ∞. (A11)

Proof. First, Corollary 15.80 in [48], Equation (17) and Lemma A19 imply that ΘZ(ν) ⊗ ΘZ(ν) ∈
D2,∞(R2d2×d2

) and Equation (A10) holds true. Next, Corollary 15.80 in [48] and Lemma A18 imply
that Vn(ν) ∈ D2,∞(Rd2×d2

) and

D(a)
s Vn(ν) = {D(a)

s Θ⊗2
Z (ν)}Cn(ν)Θ⊗2

Z (ν)

+ Θ⊗2
Z (ν){D(a)

s Cn(ν)}Θ⊗2
Z (ν) + Θ⊗2

Z (ν)Cn(ν){D(a)
s Θ⊗2

Z (ν)}

and

D(a,b)
s,t Vn(ν) = {D(a,b)

s,t Θ⊗2
Z (ν)}Cn(ν)Θ⊗2

Z (ν) + {D(a)
s Θ⊗2

Z (ν)}{D(b)
t Cn(ν)}Θ⊗2

Z (ν)

+ {D(a)
s Θ⊗2

Z (ν)}Cn(ν){D(b)
t Θ⊗2

Z (ν)}+ {D(b)
s Θ⊗2

Z (ν)}{D(a)
s Cn(ν)}Θ⊗2

Z (ν)

+ Θ⊗2
Z (ν){D(a,b)

s,t Cn(ν)}Θ⊗2
Z (ν) + Θ⊗2

Z (ν){D(a)
s Cn(ν)}{D(b)

t Θ⊗2
Z (ν)}

+ {D(b)
t Θ⊗2

Z (ν)}Cn(ν){D(a)
s Θ⊗2

Z (ν)}+ Θ⊗2
Z (ν){D(b)

t Cn(ν)}{D(a)
s Θ⊗2

Z (ν)}

+ Θ⊗2
Z (ν)Cn(ν){D(a,b)

s,t Θ⊗2
Z (ν)}

for any s, t ∈ [0, 1], where Θ⊗2
Z (ν) := ΘZ(ν)⊗ΘZ(ν). Thus, by Lemma A7 we obtain

max
1≤i,j≤d2

‖DsVn(ν)
ij‖`2 ≤ 2 max

1≤i≤d2

√√√√ d′

∑
a=1

(
d2

∑
k=1

∣∣∣D(a)
s Θ⊗2

Z (ν)ik
∣∣∣)2

‖Cn(ν)‖`∞ |||Θ
⊗2
Z (ν)|||∞

+ |||Θ⊗2
Z (ν)|||2∞ max

1≤i,j≤d2
‖DsCn(ν)

ij‖`2

and

max
1≤i,j≤d2

‖Ds,tVn(ν)
ij‖`2

≤ 2 max
1≤i≤d2

sup
0≤s,t≤1

√√√√ d′

∑
a,b=1

(
d2

∑
k=1

∣∣∣D(a,b)
s,t Θ⊗2

Z (ν)ik
∣∣∣)2

‖Cn(ν)‖`∞ |||Θ
⊗2
Z (ν)|||∞

+ 4 max
1≤i,j,l≤d2

sup
0≤s,t≤1

√√√√ d′

∑
a=1

(
d2

∑
k=1

∣∣∣D(a)
s Θ⊗2

Z (ν)ik
∣∣∣)2

‖DtCn(ν)
jl‖`2 |||Θ

⊗2
Z (ν)|||∞

+ 2 max
1≤i≤d2

sup
0≤s≤1

‖Cn(ν)‖`∞

d′

∑
a=1

(
d2

∑
k=1

∣∣∣D(a)
s Θ⊗2

Z (ν)ik
∣∣∣)2
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+ max
1≤i,j≤d2

sup
0≤s,t≤1

|||Θ⊗2
Z (ν)|||2∞‖Ds,tCn(ν)

ij‖`2 .

Now, as pointed out in the proof of Lemma A19, we have ΘZ(ν) = QZ ◦ ΘZ(ν). Therefore,
Lemma A17 yields Θ⊗2

Z (ν) = (QZ ⊗ QZ) ◦ Θ⊗2
Z (ν). Since QZ is non-random by [F2], we have

D(a)
s Θ⊗2

Z (ν) = (QZ ⊗QZ) ◦ D(a)
s Θ⊗2

Z (ν). Thus, using the Schwarz inequality repeatedly, we obtain

max
1≤i,j≤d2

‖DsVn(ν)
ij‖`2 ≤ 2 max

1≤ij≤d2
|||QZ|||2∞‖DsΘ⊗2

Z (ν)ij‖`2‖Cn(ν)‖`∞ |||Θ
⊗2
Z (ν)|||∞

+ |||Θ⊗2
Z (ν)|||2∞ max

1≤i,j≤d2
‖DsCn(ν)

ij‖`2

and

max
1≤i,j≤d2

‖Ds,tVn(ν)
ij‖`2

≤ 2 max
1≤i,j≤d2

sup
0≤s,t≤1

|||QZ|||2∞‖Ds,tΘ⊗2
Z (ν)ij‖`2‖Cn(ν)‖`∞ |||Θ

⊗2
Z (ν)|||∞

+ 4 max
1≤i,j,k,l≤d2

sup
0≤s,t≤1

|||QZ|||2∞‖DsΘ⊗2
Z (ν)ik‖`2‖DtCn(ν)

jl‖`2 |||Θ
⊗2
Z (ν)|||∞

+ 2 max
1≤i,j≤d2

sup
0≤s≤1

‖Cn(ν)‖`∞ |||QZ|||2∞‖DsΘ⊗2
Z (ν)ij‖`2

+ max
1≤i,j≤d2

sup
0≤s,t≤1

|||Θ⊗2
Z (ν)|||2∞‖Ds,tCn(ν)

ij‖`2 .

Hence we complete the proof by Lemma A18, Equation (A10) and assumption.

Proof of Theorem 2. Set Un :=
√

n vec(Θ̂Z,λn − ΓZ,n −ΘZ). Define the 2d2× d2 matrices Jn,1 and Jn,2 by

Jn,1 =

(
Ed2

−Ed2

)
, Jn,2 =

(
S−1

n
−S−1

n

)
.

Then we have

sup
A∈Are(d2)

∣∣∣P (Un ∈ A)− P
(
V1/2

n ζn ∈ A
)∣∣∣ = sup

y∈R2d2

∣∣∣P (Jn,1Un ≤ y)− P
(

Jn,1V
1/2
n ζn ≤ y

)∣∣∣
and

sup
A∈Are(d2)

∣∣∣P (S−1
n Un ∈ A

)
− P

(
S−1

n V1/2
n ζn ∈ A

)∣∣∣ = sup
y∈R2d2

∣∣∣P (Jn,2Un ≤ y)− P
(

Jn,2V
1/2
n ζn ≤ y

)∣∣∣ .

Therefore, in view of Proposition 6, it suffices to check [D1] and Equations (12)–(13) for Jn ∈
{Jn,1, Jn,2}. We have already checked [D1] in the proof of Theorem 1. Meanwhile, Equation (13)
immediately follows from [E1] and Equation (17). To check Equation (12), we apply Lemma A16 with

Ξn = −Jn(ΘZ ⊗ΘZ) (note that Σ̆Z,n = [̂Z, Z]
n
1 ). Set

Υn =

(
QZ ⊗QZ
QZ ⊗QZ

)
.

Then we have Ξn = Υn ◦ Ξn by Lemma A17. Since Υn is non-random by [F2], we can apply
Lemma A16 with Xn = Ξn once we show that for every ν ∈ N, there is an Xn(ν) ∈ D2,∞(Rm×d2

) such
that Xn = Xn(ν) on Ωn(ν) and Equations (A6)–(A7) hold true. Now we separately consider the two cases.

Case 1: Jn = Jn,1. In this case, we set Xn(ν) := −Jn,1(ΘZ(ν)⊗ ΘZ(ν)). By [E1] we have Xn =

Xn(ν) on Ωn(ν), while Equations (A6)–(A7) follow from Equation (17) and Lemma A20, respectively.
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Case 2: Jn = Jn,2. In this case, we set Xn(ν) := −Jn,2(ν)(ΘZ(ν)⊗ΘZ(ν)), where

Jn,2(ν) =

(
Sn(ν)−1

−Sn(ν)−1

)
.

By [E1] we have Xn = Xn(ν) on Ωn(ν), while Equation (A6) is evident because Ξn(ν)Cn(ν)Ξn(ν)>

is the identity matrix in this case. Therefore, it remains to prove Equation (A7). Noting that Sn(ν) is a
diagonal matrix, Equation (A7) follows from Corollary 15.80 in [48] and Lemma A20 once we show that
Sn(ν)kk ∈ D2,∞ for every k = 1, . . . , d2 and

sup
n∈N

max
1≤k≤d2

(
‖Sn(ν)

kk‖∞ + sup
0≤t≤1

‖DtSn(ν)
kk‖∞,`2 + sup

0≤s,t≤1
‖Ds,tSn(ν)

kk‖∞,`2

)
< ∞.

Since we can write Sn(ν)kk = (Vn(ν)kk)5/2(Vn(ν)kk)−3, we obtain the desired result by
combining Theorem 15.78 and Lemma 15.152 in [48] with Lemma A20.

Appendix D.3. Proof of Lemma 3

We use the following notation: For a d-dimensional process U = (Ut)t∈[0,1], we set ∆n
hU :=

Uh/n −U(h−1)/n, h = 1, . . . , n. Also, we set χh := vec[∆n
h Z(∆n

h Z)>] for h = 1, . . . , n and

C̃n := n
n

∑
h=1

χhχ>h −
n
2

n−1

∑
h=1

(
χhχ>h+1 + χh+1χ>h

)
.

Lemma A21. Assume [E1]. Then ∑n
h=1(‖∆n

h Z‖4
`∞

+ ‖∆n
h X‖4

`∞
) = Op(log2(d + r)/n) as n→ ∞.

Proof. We use the same notation as in the proof of Lemma A15. Then, we need to prove ∑n
h=1 ‖∆n

h Z̄‖4
`∞

=

Op(log2(d + r)/n) as n→ ∞. For every ν ∈ N and L > 0, we have

P

(
n

∑
h=1
‖∆n

h Z̄‖4
`∞

> L

)
≤ P

(
n

∑
h=1
‖∆n

h Z̄(ν)‖4
`∞

> L

)
+ P(Ωn(ν)

c).

Hence it suffices to prove ∑n
h=1 ‖∆n

h Z̄(ν)‖4
`∞

= Op(log2(d + r)/n) as n → ∞ for any
fixed ν ∈ N. By Lemma A23 there is a universal constant c > 0 such that ‖∆n

h M̄(ν)j‖p ≤
c
√

p‖
√

∆n
h [M̄(ν)j, M̄(ν)j]‖p for all p ≥ 2. Thus, by [E1] we obtain ‖∆n

h Z̄(ν)j‖p ≤ Cν/n + c
√

Cν

√
p/n.

Therefore, by [63] (Proposition 2.5.2), there is a constant C′ > 0 such that maxj,h ‖∆n
h Z̄(ν)j‖ψ2 ≤

C′/
√

n for all n, where ‖ξ‖ψ2 := inf{Λ > 0 : E[exp(|ξ|/Λ)] ≤ 2} for a random variable ξ.
Thus, [64] (Lemma 2.2.2) implies that there is a constant C′′ > 0 such that maxh ‖‖∆n

h Z̄(ν)‖`∞‖ψ2 ≤
C′′
√

log(d + r)/n for all n. Thus, we obtain

E

[
n

∑
h=1
‖∆n

h Z̄(ν)‖4
`∞

]
≤ 4!4C′′

log2(d + r)
n

,

so the desired result follows from the Markov inequality.

Lemma A22. Assume [C1]–[C4] and [E1]. Then ∑n
h=1 ‖χ̂h − χh‖2

`∞
= Op(r2(log d)3/n2) as n→ ∞.

Proof. Since Ẑh/n = Zh/n − (β̂n − β)Xh/n, we have

χ̂h − χh = − vec[(β̂n − β)∆n
h X(∆n

h Z)>]− vec[∆n
h Z((β̂n − β)∆n

h X)>]

+ vec[(β̂n − β)∆n
h X((β̂n − β)∆n

h X)>].
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Now, since ‖ vec(xy>)‖`∞ ≤ ‖x‖`∞‖y‖`∞ for any x, y ∈ Rd, it holds that

‖χ̂h − χh‖`∞ ≤ 2‖(β̂n − β)∆n
h X‖`∞‖∆

n
h Z‖`∞ + ‖(β̂n − β)∆n

h X‖2
`∞

≤ 2|||β̂n − β|||∞‖∆n
h X‖`∞‖∆

n
h Z‖`∞ + |||β̂n − β|||2∞‖∆n

h X‖2
`∞

.

Therefore, we obtain

n

∑
h=1
‖χ̂h − χh‖2

`∞
≤ 2|||β̂n − β|||2∞

n

∑
h=1

(‖∆n
h X‖4

`∞
+ ‖∆n

h Z‖4
`∞
) + 2|||β̂n − β|||4∞

n

∑
h=1
‖∆n

h X‖4
`∞

.

Now, noting Lemma A15, we infer that |||β̂n − β|||∞ = Op(r
√
(log d)/n) from the proof of

Lemma A12(e). Thus, we complete the proof by Lemma A21.

Proof of Lemma 3. Since ‖C̃n − Cn‖`∞ = Op((log d)2/
√

n + n−γ) by Proposition 4.1 in [20], it suffices
to prove ‖Ĉn − C̃n‖`∞ = Op(r(log d)5/2/

√
n). Since ‖vec(xy>)‖`∞ ≤ ‖x‖`∞‖y‖`∞ for any x, y ∈ Rd,

Lemma A21 yields ∑n
h=1 ‖χh‖2

`∞
= Op((log d)2/n). Combining this with Lemma A22 and r2(log d)/n =

O(1), we also obtain ∑n
h=1 ‖χ̂h‖2

`∞
= Op((log d)2/n). Now the desired result follows from the Schwarz

inequality and Lemma A22.

Appendix D.4. Proof of Corollary 1

(a) Since |||ΘZ|||∞ = Op(1) by Equation (17) and [F2], we have ‖Cn‖`∞ + ‖Vn‖`∞ = Op(1) by
[E1] and λ−1

n |||Θ̂Z,λn ⊗ Θ̂Z,λn −ΘZ ⊗ΘZ|||∞ = Op(sn) by Theorem 1. Combining this with Lemma 3
and assumption, we obtain ‖V̂n‖`∞ = Op(1) and (log d)‖V̂n −Vn‖`∞ →p 0. Noting Equation (17)
and the fact that Ŝn is a diagonal matrix, we also obtain |||Ŝ−1

n |||∞ = Op(1) and (log d)|||Ŝ−1
n −

S−1
n |||∞ →p 0. Since Equation (18) yields ‖

√
n vec(Θ̂Z,λn − ΓZ,n −ΘZ)‖`∞ = Op(

√
log d), we obtain√

log d‖
√

n(Ŝ−1
n − Sn) vec(Θ̂Z,λn − ΓZ,n − ΘZ)‖`∞ →p 0. Now the desired result follows from

Theorem 2 and [20] Lemma 3.1.
(b) The same argument as above implies that (log d)2‖V̂n −Vn‖`∞ →p 0 and (log d)2|||Ŝ−1

n −
S−1

n |||∞ →p 0. Thus, the desired result follows from [20] Proposition 3.1.

Appendix D.5. Proof of Corollary 2

First, we have by Corollary 1(a)

lim sup
n→∞

P

 max
1≤i<j≤d

√
n|Θ̂ij

Z,λn
− Γij

Z,n −Θij
Z|

ŝ
ij
n

> cn


= lim sup

n→∞
P
(

max
1≤i<j≤d

|(S−1
n V1/2

n ζn)
(i−1)d+j| > cn

)
≤ lim sup

n→∞

d(d− 1)
2

· 2(1−Φ(cn)) = lim sup
n→∞

αn = α.

Hence we have

lim sup
n→∞

P(Ŝ(ΘZ) 6⊂ S(ΘZ)) ≤ lim sup
n→∞

P

 max
(i,j):Θij

Z=0

√
n|Θ̂ij

Z,λn
− Γij

Z,n|

ŝ
ij
n

> cn


≤ lim sup

n→∞
P

 max
1≤i<j≤d

√
n|Θ̂ij

Z,λn
− Γij

Z,n −Θij
Z|

ŝ
ij
n

> cn

 ≤ α
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and

lim sup
n→∞

P(Ŝ(ΘZ) 6⊃ S(ΘZ))

≤ lim sup
n→∞

P

 min
(i,j)∈S(ΘZ)

√
n|Θ̂ij

Z,λn
− Γij

Z,n|

ŝ
ij
n

≤ cn


≤ lim sup

n→∞
P

 min
(i,j)∈S(ΘZ)

√
n|Θij

Z|
ŝ

ij
n

≤ max
1≤i<j≤d

√
n|Θ̂ij

Z,λn
− Γij

Z,n −Θij
Z|

ŝ
ij
n

+ cn


≤ lim sup

n→∞
P

(
min

(i,j)∈S(ΘZ)

√
n|Θij

Z|
ŝ

ij
n

≤ 2cn

)
+ lim sup

n→∞
P

 max
1≤i<j≤d

√
n|Θ̂ij

Z,λn
− Γij

Z,n −Θij
Z|

ŝ
ij
n

> cn


≤ lim sup

n→∞
P
(

min
(i,j)∈S(ΘZ)

|Θij
Z| ≤

2cn√
n

max
i,j

ŝ
ij
n

)
+ α.

Now, we have maxi,j ŝ
ij
n = Op(1) from the proof of Corollary 1(a). Moreover, since αn

d(d−1)/2 =

1−Φ(cn) ≤ e−c
2
n/2 by Chernoff’s inequality, we have cn ≤

√
−2 log αn

d(d−1)/2 . Hence cn = O(
√

log d)

as n→ ∞ by assumption. Consequently, we obtain

lim sup
n→∞

P
(

min
(i,j)∈S(ΘZ)

|Θij
Z| ≤

2cn√
n

max
i,j

ŝ
ij
n

)
= 0

by assumption. This completes the proof.

Appendix E. Proof of Lemma A14

In this appendix we prove Lemma A14 with the help of two general martingale inequalities.
The first one is the Burkholder-Davis-Gundy inequality with a sharp constant:

Lemma A23 (Barlow and Yor [65], Proposition 4.2). There is a universal constant c > 0 such that∥∥∥∥∥ sup
0≤t≤T

|Mt|
∥∥∥∥∥

p

≤ c
√

p
∥∥∥[M, M]1/2

T

∥∥∥
p

for any p ∈ [2, ∞) and any continuous martingale M = (Mt)t∈[0,T] with M0 = 0.

The second one is a Bernstein-type inequality for martingales:

Lemma A24. Let (ξi)
n
i=1 be a martingale difference sequence with respect to the filtration (Gi)

n
i=0. Suppose

that there are constants a, b > 0 such that ∑n
i=1 E[|ξi|k | Gi−1] ≤ k!ak−2b2/2 a.s. for any integer k ≥ 2. Then,

for any x ≥ 0,

P

(
max

1≤m≤n

∣∣∣∣∣ m

∑
i=1

ξi

∣∣∣∣∣ ≥ x

)
≤ 2 exp

(
− x2

b2 + b
√

b2 + 2ax

)
.

Proof. This is a special case of Pinelis [66] (Theorem 3.3). In fact, since R is a Hilbert space, we can
apply this result with X = R and D = 1 in the notation of that paper.

Proof of Lemma A14. For every h = 1, . . . , n, set

ξn,h :=
√

n
{∫ th

th−1

(Mt −Mth−1)dNt +
∫ th

th−1

(Nt − Nth−1)dMt

}
.
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Itô’s formula yields
√

n
(
[̂M, N]

n
1 − [M, N]1

)
=

n

∑
h=1

ξn,h.

Also, by assumption (ξn,h)
n
h=1 is a martingale difference with respect to (Fth)

n
h=0. Moreover,

for any integer k ≥ 2, we have

E[|ξn,h|k | Fth−1 ]

≤ 2k−1nk/2 E

[∣∣∣∣∫ th

th−1

(Mt −Mth−1)dNt

∣∣∣∣k + ∣∣∣∣∫ th

th−1

(Nt − Nth−1)dMt

∣∣∣∣k | Fth−1

]

≤ 2k−1nk/2ckkk/2 E

[(∫ th

th−1

(Mt −Mth−1)
2d[N, N]t

)k/2
+

(∫ th

th−1

(Nt − Nth−1)
2d[M, M]t

)k/2
| Fth−1

]
(∵ Lemma A23)

≤ 2k−1ckkk/2Lk/2 E

[
sup

th−1<t≤th

|Mt −Mth−1 |
k + sup

th−1<t≤th

|Nt − Nth−1 |
k | Fth−1

]
(∵ (A5))

≤ 2k−1c2kkkLk/2 E
[
([M, M]th − [M, M]th−1)

k/2 + ([N, N]th − [N, N]th−1)
k/2 | Fth−1

]
(∵ Lemma A23)

≤ 2kc2kkk Lk

nk/2 (∵ (A5)),

where c > 0 is the universal constant appearing in Lemma A23. Thus, using Stirling’s formula,
we obtain

n

∑
h=1

E[|ξn,h|k | Fth−1 ] ≤ 2kc2k ek
√

2πk
k!

Lk

nk/2−1 ≤
k!
2

(
a0√

n

)k−2
b2

0,

where a0 := 2ec2L and b0 := 2
√

2c2Le/(2π)1/4. Hence, Lemma A24 yields

P

(∣∣∣∣∣ n

∑
h=1

ξn,h

∣∣∣∣∣ ≥ x

)
≤ 2 exp

− x2

b2
0 + b0

√
b2

0 + 2(a0/
√

n)x


for every x ≥ 0. Consequently, when x ∈ [0, θ

√
n] for some θ > 0, we have

P

(∣∣∣∣∣ n

∑
h=1

ξn,h

∣∣∣∣∣ ≥ x

)
≤ 2 exp

(
−CL,θ x2

)

with CL,θ := (b2
0 + b0

√
b2

0 + 2a0θ)−1. This completes the proof.
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