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Introduction

The global population, resource, and climate dynamics sug-
gest we must improve sustainability of food production systems 
(Ohlsson, 2014; Kleinman et al., 2018). Improving livestock 
production sustainability is particularly important because 
a significant portion of the projected increases in global food 

demand is anticipated to come from livestock (Thornton, 2010). 
Improving sustainability of livestock production systems can be 
achieved through optimized reproductive, genetic, nutritional, 
and health management (White et al., 2014, 2015). Management 
decisions within livestock production can be thought of as two 
interleaved feedback loops. The first feedback loop is between 
the animal and the environment: the animal is influenced by its 
environment and, in turn, influences its environment. The sec-
ond feedback loop is between the animal and the manager: the 
manager takes information about the animal’s behavior and 
attempts to influence the environment to optimize the animal’s 
performance (Figure 1). Managers make management decisions 
on different timescales ranging from immediate to relaxed. 
An example of an immediate management decision would be 
a farmer identifying an animal as sick, isolating the animal, 
and treating the animal for the illness. We term this immedi-
ate because the farmer must identify the sick animal as soon as 
possible and must react to the diagnosis as soon as possible. An 
example of a relaxed management decision would be the farmer 
electing to change the feed provided to his animals in response 
to something observed about their production (i.e., the cows are 
producing poorly, so change the ration to provide higher nutri-
ent density to correct a nutrient shortfall). This decision is more 
relaxed because its formulation and response are subjected to 
natural, biological delays (i.e., it may take days to weeks to see 
a production response to a new diet). Improving the precision 
of these decision-making processes and reducing the burden 
of decision making on farmers are two critical steps toward 
improving sustainability of livestock production. Precision agri-
cultural technologies have been identified as one possible solu-
tion (Berckmans, 2014; Tullo et al., 2019).

Precision field crop agriculture has dramatically expanded 
and industrialized over the last several decades, demonstrat-
ing substantial opportunity for using precision technologies in 
agriculture (Thorp and Tian, 2004; Nash et al., 2009; Zhang 
and Kovacs, 2012). Such technologies include global position-
ing system (GPS) guided equipment, unmanned aerial vehi-
cles, robotic harvesting and monitoring equipment, automated 
application of agrochemicals, and others. Precision animal 
agriculture, on the other hand, has had limited expansion. 
Although technologies, such as temperature monitors, rumen 
sensors, robotic milking machines, and others exist, the uptake 
and industrialization of precision animal agriculture has 
not paralleled crop agriculture. There are several differences 

Implications

•	 The global population, resource, and climate dynamics 
suggest we must improve sustainability of food produc-
tion systems; precision feeding of livestock may be one 
way to accomplish this goal.

•	 Analytics for precision management can be classified 
according to four levels: I) technique, II) data interpre-
tation, III) integration of information, and IV) decision 
making. Most current animal agricultural analytics fall 
under categories I and II. Moving toward analytics that 
address integration of information and decision mak-
ing is of critical importance.

•	 Data analytical techniques such as linear modeling and 
machine learning provide unique and important tools 
for interpreting data obtained from on-farm sensors. 
These techniques each apply to the different levels of 
precision management classification.

•	 Assessing adequacy and performance of analytics 
tools must, by default, depend on the objective of 
those tools and the type of response considered. As 
more advanced level III and IV systems are developed, 
integration of expert opinion into analytics may be 
essential to optimize performance and relevance on-
farm.
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between crop and livestock management that may contribute 
to this difference in technology uptake. For example, the man-
agement time scales for crop agriculture interventions, while 
highly profitable, are often measured in days or weeks. In ani-
mal agriculture, timescales for certain management can range 
from hours to days. For issues of nutrition, health, productivity, 
and efficiency, animal agriculture must treat both the individ-
uals and the collective, whereas crop agriculture focuses pri-
marily on the field (rather than on individual plants). Animal 
losses are also perceived differently than crop losses, possibly 
imposing higher standards on animal-based decision technol-
ogy. Collectively, these challenges mean that animal agriculture 
will likely require different types of technological interventions 
than have been pioneered in crop systems. Exploring opportu-
nities for where precision technologies may be relevant in the 
livestock nutrition space exemplifies this need.

Management applications for precision animal 
nutrition
Optimizing rumen fermentation.  The idea that fermentation 
can be optimized if degradable carbohydrate sources and degra-
dable protein sources are properly matched has been contem-
plated for decades (Sinclair, 1995). The theory behind optimizing 
nutrient synchrony suggests that fermentations will be optimized 
if they are never limited by energy or nitrogen (i.e., supplies are 
balanced). Despite this theory being sound, achieving nutrient 
synchrony within rumen fermentations is extremely difficult 
to accomplish with currently available technologies (Hall and 
Huntington, 2008). One potential reason for this challenge is 
the limited real-time data available on the fermentation envi-
ronment. Several models attempt to account for nutrient deg-
radation kinetics (Hanigan et al., 2013; Higgs et al., 2015; Van 
Amburgh et al., 2015; Li et al., 2018); however, obtaining data 
to construct and evaluate models of degradation kinetics in vivo 
often requires expensive experiments. The advent of technolo-
gies such as indwelling rumen sensors have enabled more pre-
cise understanding of how pH changes over the course of a day. 
Expanding these sensors to include recording other important 
metabolites could enable development of feeding recommenda-
tions that take fermentation profile into account more precisely.

Detection of metabolic diseases.  It is possible to use analytics 
to identify risk of metabolic diseases. Existing efforts to identify 
other disease states (e.g., mastitis) have shown moderate promise. 
Much like metabolic diseases, mastitis is extremely costly to the 
dairy industry. Diseases are often difficult to predict due to the 
imbalance of positive results (disease cases) relative to the popu-
lation. For example, the incidence rate of clinical mastitis ranges 
among farms and depends on many factors like housing or loca-
tion. The national average is near 15 cases per 100 cow lacta-
tions, or 1 case per 2,033 cow days, assuming a 305 day lactation 
(McDougall et al., 2007). Put another way, a priori, a randomly 
selected lactating cow from a random herd is only approximately 
0.05% likely to exhibit clinical mastitis. In some farms, this rate 
may be 0.1% or higher. The low density of the positive test cases 
and the variation in the expected rate of positive test cases both 
cause challenges for developing robust predictions.

Sparse datasets, the analytical term for the issue of having 
a disproportionate amount of positive test cases in a dataset, 
are a common problem in present-day analytics (Han et al., 
2015; Greenland et al., 2016). However, due to the widespread 
nature of the issue, new analytical techniques such as modified 
tree-based algorithms can learn patterns while maintaining the 
underlying proportion of cases in the training data (Ushikubo 
et al., 2017). Alternatively, the collation of larger datasets is 
also advantageous for producing better metabolic disease pre-
dictions. There is a tendency to collect new data to train new 
models, but in cases with sparse data, the combination of past 
data and new data will lead to richer training sets. Consider that 
each additional positive training case will greatly improve accu-
racy compared with each new negative case. In fact, removing 
additional negative cases to artificially improve the proportion 
of positive cases can help to train models. The caveat to train-
ing on stratified datasets is that they must be properly validated 
on datasets with the appropriate proportion of positive cases 
to determine real-world use. By utilizing strategies designed 
for the problem of sparse data in machine learning, predicting 
metabolic disease will become easier, and most importantly, 
more accurate, providing decreased false-positives.

Response-based nutrient requirement recommendations.  A 
major limitation of existing nutrient requirement systems like the 
National Research Council Requirements for dairy cattle (NRC, 
2001) is the requirement-based nature of the recommendations. 
Maximizing production mass is often not the same as optimizing 
production efficiency. Multicriteria optimization has previously 
been used to formulate rations to simultaneously achieve multi-
ple environmental goals (White et al., 2014, 2015). Optimizing 
productivity or economic parameters could also be accom-
plished with this technique if the underlying equations linked 
dietary inputs with productive outputs in a responsive way. A 
challenge with response-based nutrient requirements systems is 
that most of our current data that could be used to develop such 
a system relies on pen-fed cattle. Responses of individuals are 
likely unique and such a response-based model would be more 
useful if feeding systems and nutrition models did a better job of 
representing the individual, rather than the collective.

Figure 1. Depiction of the feedback loops between the farm manager, animal, 
and environment. The animal and environment influence each other, as do the 
animal and the manager’s decisions about the animal. Additionally, the man-
ager can make decisions about the environment that will influence the animal.
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Precision nutrition research.  In a wide variety of ruminant 
nutrition research, access to the rumen is obtained through 
rumen cannulae; however, sampling through this orifice is 
physically difficult and often results in mixing of naturally 
stratified (vertical and horizontal) rumen contents. The physi-
cal difficulty in sampling the rumen can impede precision mon-
itoring of difficult-to-reach areas. Additionally, disrupting the 
rumen environment through sampling physically or chemically 
alters the unique microclimates that are thought to exist within 
the rumen, and thus precluding accurate and representative 
sampling. Collectively, these challenges make accessing unique 
microclimates within the rumen a challenge. The availability of 
a platform that can monitor rumen sensors would be valuable 
to the study of these unique rumen microclimates.

What limitations exist for current technologies?  Rutten and 
colleagues summarized 126 publications describing 139 dairy 
sensor systems from the period 2002 to 2012 (Rutten et al., 
2013). The systems were then compared based on the four 
levels of  I) technique, II) data interpretation, III) integra-
tion of  information, and IV) decision making. Systems that 
accomplish all four of  these levels are often referred to as 
cyberphysical systems. These cyberphysical systems are often 
an automated network of  sensors, networking technologies, 
analytics, and actuation technologies that work in combina-
tion with or independent of  the farmer to affect management 
changes based on real-time sensed information on-farm. None 
of  the 139 sensor systems evaluated by Rutten and colleagues 
included integration of  sensed metrics with other informa-
tion available on the farm to produce management advice or 
automated decision making (Rutten et al., 2013). Most sensor 
systems that were used in the farmer’s decision process only 
provided the raw data measured by the sensor, or a probability 
(such as the probability of  disease given the sensor data). In 
both cases, the farmer is left to their intuition to integrate and 
actually make a management decision. Although basic linear 
models or logit models produce predictions that are correct 
on average over a group, these models cannot account for 
increased variation in individuals. The models being used to 
interpret data, as referenced in level II of  Rutten et al. (2013) 
can struggle under the complexity of  decision making. For 
example, although there may be a manageable number of  fac-
tors that affect the prediction of  ketosis, the number of  factors 
affecting the costs and benefits of  the treatment of  said ketosis 
is surely greater. Put another way, knowing that a cow is 35% 
± 2 likely to be ketotic tomorrow does not say anything about 
whether the farmer should check the cow, treat the cow, cull 
her, or something else. To properly assess the promise of  ana-
lytics in creating cyberphysical systems capable of  filling all 
four levels of  the Rutten et al. (2013) summary of  agricultural 
systems, we will present a common precision nutrition aim: 
automated individualized feeding of  dairy cows. Using this 
example objective, we highlight several possible alternative 
analytical approaches and discuss their strengths and poten-
tial pitfalls relevant to this objective.

A nutrition analytics example: automated individ-
ual feeding
Automated individualized feeding.  Given the variation 
among individual animals, it is reasonable to assume that by 
using data specific to each animal, we can make better deci-
sions on what, and how much, to feed. As we have previously 
noted, model-based feeding can optimize productivity for the 
whole farm because individuals likely have differing and unique 
requirements. Individual feeding requires the ability to collect 
data specific to each animal and analytics capable of estimat-
ing individual requirements from that data. Feeding individ-
uals eliminates the need to over-feed some animals to avoid 
under-feeding others, likely leading to more targeted feeding 
practices. One does not necessarily need to feed each animal 
individually; this same reduction in over/under feeding can be 
accomplished simply by reducing the variation in the feeding 
group, either by feeding more like-animals together or by feed-
ing animals in small groups. An example of variance reduction 
through smaller groupings of animals would be the use of dif-
ferent feeding groups by lactation number in dairy cows. It is 
clear that nutrient requirements are vastly different for first and 
fourth lactation cows, so they are separated to reduce the feed 
requirement prediction variance. Another more targeted exam-
ple of individualized feeding is concentrate supplement feed-
ing. A larger group of animals can receive the same basal diet 
and the supplement is provided separately to smaller groups 
(Dela Rue and Eastwood, 2017). However, this type of individ-
ualized feeding, as noted by Dela Rue and Eastwood (2017), 
has not been shown to provide marginal benefit to farmers. 
Multiple recent studies which suggested individualized supple-
ment feeding saw no improvement in milk production, body 
condition score, or body weight (Lawrence et al., 2015; Dale 
et al., 2016; Little et al., 2016). Although it seems intuitive that 
more individualized feeding regimens would lead to better 
performance, this is not always what occurs in practice. These 
limitations may be because of the aforementioned issues with 
requirement models, which are based on data from groups of 
animals, not individuals. Another limitation might be the com-
plexity of analytics used for feeding recommendations. Of the 
three citations above that showed no increase in performance 
on individualized concentrate feeding, all studies used only one 
variable (milk yield) to inform concentrate requirement. In one 
study, only two levels of concentrate based on milk yield were 
fed. In the other two studies, a linear multiplier of milk yield 
was used to determine concentrate. Such low-dimensionality 
models, using only one variable to predict a response, limits 
the robustness of the predictions and results. We will examine 
potentials of higher-level modeling approaches by examining 
the current infrastructure to support cyberphysical systems in 
the four levels described by Rutten et al. (2013).

Current cyberphysical systems infrastructure.  Level I, the 
techniques for data collection, is comprised of  technologies 
such as radio frequency identification (RFID) tags, acceler-
ometers, and other output measurement software (e.g., inline 
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milking parlor sensors). We can use these data that are col-
lected daily, or even in real-time, to broadly evaluate the per-
formance of  animals. One of  the issues with the techniques of 
collecting raw data is the interpretation. With only raw data, 
it is hard to determine the cause–effect relationship between 
feeding and performance. For example, the fact that the daily 
step count of  an animal has increased on a new diet does not 
inform the farmer whether or not to continue feeding this 
diet or what needs to be changed. Rather, raw data must be 
interpreted before it can be used effectively to make diet deci-
sions. Level II, or the interpretation of  sensor data, seeks to 
add context to sensor data with emphasis on explaining such 
relationships. Many models attempt to predict intake require-
ments of  dairy cows using raw data as predictors (Jensen et 
al., 2015). Jensen et al. (2015) evaluated models that were 
used on a national scale in different countries. All models 
were fit to held-out intake data to determine the residual error 
in each prediction model. The root mean square prediction 
error for each model ranged between 1.2 kg dry matter per 
day and 3.2 kg dry matter per day (Jensen et al., 2015). The 
held-out data included 94 treatment means derived from 917 
lactating dairy cows. A given model’s average prediction was 
near 2.0 kg of  dry matter greater or less than a cow’s average 
intake. If  these results were applied to individual cow days, 
the variance would necessarily be greater than the variance 
in predictions for a cow’s average intake. Models predicting 
dry matter intake can be simple, lending themselves to being 
correct on average, which is not as useful in individualized 
feeding because response variance increases. In a review of lin-
ear models predicting dry matter intake (Jensen et al., 2015), 
models referred to as “advanced” were those that incorporated 
interaction terms into the linear model, specifically the mod-
els “TDMI” and “NorFor” (Huhtanen et al., 2011; Volden et 
al., 2011). Many recent publications involve predicting intake 
using less than 10 total predictor variables and rely on basic 
linear regression (McParland et al., 2014; de Haas et al., 2015; 
Shetty et al., 2017; White et al., 2017). Most models attempt 
to find the few variables that will reduce the variance better 
than previous models. At some point, we will not be able to 
find a selection of  10 or fewer variables that continue to reduce 
variance in a meaningful way. One advance in data analytics 
is hierarchical modeling, which works well in the case where 
there are many models using varying parameters to predict 
the same response. Making a “model of  models” can improve 
accuracy beyond that of  any one model in the group (Gelman, 
2006). This is possible due to uncorrelated error structures in 
different submodels. To create an example hierarchical model 
for predicting dry matter intake in dairy cows, we could com-
bine the outputs of  models built on herd level data into models 
built on models using different individual cow measurements 
to make a more accurate prediction of  individual dry matter 
intake than using a single model alone. Although hierarchi-
cal modeling is just a framework, there are many useful ways 
to combine existing models that can improve model accuracy. 
Models can be weighted based on accuracy in a test dataset, 
the variance of  predictions, or even on prior knowledge.

With over 9 million dairy cows in the United States, it intu-
itively seems easy to collect sufficient data to predict intake; 
however, this is not necessarily the case (McParland et al., 
2014). First, data must be collated, not dispersed, to create bet-
ter-trained models. There are incentives now for farmers to con-
tinue to collect individual intake data and genetic data relating 
to intake to help inform farmers in the future (Berry et al., 2014). 
An estimated 89% of genetic variation in dry matter intake 
could be explained with only four common animal characteris-
tics, according to one meta-analysis of genetic studies (Berry and 
Crowley, 2013). Although we have great amounts of data, there 
are near-infinite permutations of cow characteristics that would 
need to be predicted to improve dry matter intake prediction. 
Luckily, data analytics offers a way to reduce the dimensionality 
of problems and also group similar animals together to make the 
prediction space more manageable. Principal component analy-
sis attempts to reduce dimensionality while maintaining maxi-
mal variance in the remaining dimensions using an orthogonal 
transformation (Pearson, 1901). Consider a three-dimensional 
set of data, shown in Figure 2. If we know the groupings ahead 
of time, we can find two angles using all three factors that max-
imizes variance in the dataset. This is modeled using a flashlight 
at different angles and shining it through the data and observing 
the shadow cast along the “wall’s” two axes. The angle of the 
flashlight that casts the shadow with the least variance within 
groups indicates the two planes to condense the data onto. By 
using all three factors but condensing the descriptors into two 
values for each point, we have reduced the dimensionality at min-
imal variance cost between groups. This is evident in the second 
image in Figure 2. Using principal component analysis can also 
help discern groups, as this analysis is sensitive to scale changes 
and can be used to determine the distance between two mul-
ti-dimensional points in space. Traditionally, a machine learning 
technique like k-nearest neighbors (Altman, 1992) or k-means 
(Lloyd, 1982) is used to determine the similarity between points. 
In our example with a herd of cows that we need to predict and 
feed individually, a linear model trained on the entire herd will 
only be right on average. If we do not have sufficient data to 
make low-variance predictions for individual cows, we could 
employ principal component analysis on the individual cow 
data to determine cows that are most similar, combine their data 
and train models on these smaller combined datasets of similar 
cows to achieve more accurate results. By using a fixed mode-
ling procedure and measure of accuracy, we could iteratively test 
models using data from smaller groups until we no longer saw 
an improvement in accuracy. Consider the scenario outlined in 
Figure 3 which explains the framework for using principal com-
ponent analysis to find the optimal groupings for a given model.

It is important to note that although two-dimensional prin-
cipal component analysis is easiest to visualize, these results 
should be retained in the number of dimensions that explains a 
specified amount of variance. Figure 4 shows a plot of the var-
iance explained as the number of dimensions included in prin-
cipal component analysis is increased. With fewer dimensions 
there is less variance explained by the components and the pro-
portion of variance explained by each additional component 
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is high. As we increase dimensions, the cumulative variance 
explained increases but the proportion of variance explained by 
each additional component decreases. Humans tend to inter-
pret best in two dimensions, but we can see that if  we wanted 
our principal component analysis to explain at least 80% of the 
variance in our dataset, two dimensions would not be sufficient. 
Also keep in mind that not all datasets will produce such steady 
reductions in variance with each component. There is no rule of 
thumb for how many components to condense. With principal 
component analysis, and many algorithms in data analytics, we 
must trade-off interpretability for accuracy.

Opportunities to leverage machine learning in 
precision livestock nutrition

In level III, integration of information, the predictions made 
by models are used to created recommendations for the farmer. 
Level IV is the culmination of the prediction, leading to action, 
either by the system itself  or the farmer. A lack of level III and 
IV cyberphysical systems was noted in Rutten et al. (2013). We 
would expect that, by utilizing the most appropriate modeling 

techniques to generate predictions at levels I and II, appropri-
ate decision-making models would be possible. However, this 
is obviously not the case, as we see minimal examples of deci-
sion-making algorithms present in the current animal nutrition 
literature. One factor that traditional modeling frameworks 
do not allow for is the ability to update based on feedback. 
If  a level II model predicts dry matter intake at 50 kg, but 
the farmer continuously adjusts this to 45 kg, based on his/
her knowledge of something outside the model scope, a tra-
ditional model does not “learn.” Here, neural networks and 
other recurrent machine learning algorithms provide a prom-
ising approach to decision-making frameworks by allowing for 
revising predictions in practice. In a traditional individualized 
feeding modeling framework, a model is built for each cow 
and the model itself  does not change, only the predictions. In 
a machine learning framework, the predicted dry matter intake 
for a cow each day could be predicted and, using all data availa-
ble along with the actual response of the animal, the algorithm 
may change the weights of certain factors in the model. This 
dynamic feedback loop allows the model to “learn” on-farm 
and produce more accurate predictions.

Figure 2. Example of principal component analysis from three to two dimensions. Consider flashing a light on a set of points in three dimensions and observing 
the shadows of the points in two dimensions on the wall. The shining of the flashlight through the data represents the search for the plane which creates the 
greatest variance between groups in the data. The angle of the light in the bottom picture finds a better two-dimensional plane to project the points onto com-
pared with the image above.
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Neural networks, or artificial neural networks, are actually a 
combination of many algorithms in a network, where layers of 
nodes, representing algorithms, feed outputs from the previous 
layer of nodes as inputs to the next layer, until the final layer’s 

output is used as the prediction (McCulloch and Pitts, 1943). 
Figure 5 shows a typical framework for neural network, with 
raw information being fed into the left and predictions coming 
from the right. Nodes each represent a nondescript function, 
typically those that make small changes to inputs, allowing 
for better control at each node over the final prediction. The 
real power for a problem with the complexity of individualized 
feeding is the idea of backpropagation, where the accuracy of 
prediction is back-propagated through the nodes of a network 
to re-weight the importance of each node, thereby ensuring 
better accuracy on the same example datum if presented again 
(Werbos, 1974). Put simply, backpropagation allows us to dis-
tribute error through the existing network. Neural networks 
have been shown to detect patterns in highly nonlinear data, 
which is nearly impossible for linear models (Fukushima, 1980).

Reinforcement learning is another key concept in the field 
of machine learning and is crucial for problems where cost 
functions are not explicit, like in predicting feed intake. That is, 
we do not know the exact cost of overfeeding or underfeeding. 
Suppose we are training a model to tell a farmer how to feed 
each cow, but the farmer is well-informed and keeps adjust-
ing the predictions. If  we were trying to minimize the need for 
farmer intervention, our feedback loop would weight errors 
based on the farmer’s adjustment to each prediction. That is to 
say the recurrent neural network is estimating the model that 
limits error under the unknown cost function. The framework 
starts with substantial uncertainty about the cost function and 
the network performs poorly; then, the network is trained and 
the model parameterized to decrease the cumulative costs. 
This is done in an updating manner called a Markov decision 

Figure 4. An example plot of the proportion of variance explained by each 
additional component in principal component analysis. Variance explained by 
each additional component can vary considerably based on the data you are 
working with (Shah et al., 2018).
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process (Howard, 1960). In the real world, our farmers are 
likely not omniscient, but the ability to estimate models under 
cost uncertainty can still be utilized to choose better models for 
actual decision making, because the cost of feeding decisions 
is not fixed or known, but predictions must be made every day 
for every cow. In fact, reinforcement models are seen in many 
places where decisions must be made, despite uncertainty about 
their costs, like game-playing algorithms and resource alloca-
tion problems (Damas et al., 2000).

Having to make predictions faced with sometimes vast 
uncertainty can make prediction modeling more difficult and is 
surely a reason why reliable levels III and IV cyberphysical sys-
tems are not seen in animal agriculture. For example, a model 
built to predict appropriate plane ticket costs will have a large 
amount of training data, because there have been many flights 
before. But how will a model predict the appropriate desire for 
a plane ticket in the days after a terrorist attack? This is a main-
stream example, but consider one in the context of feeding ani-
mals. Assume a scenario where predictions for a cow’s intake 
have been very accurate, then she gets her foot caught in the 
parlor and is in a great deal of pain, the injury is not caught 
immediately and will not be fed into the model as an explicit 
variable. Is it correct to punish the model for incorrectly predict-
ing intake on this day? Likely not, because a known, but unan-
ticipated, event can explain the variation. This example points 
to a major challenge with deploying these modeling techniques 
on-farm. If  allowed to iterate and update in an unrestricted 
manner, the model will try to assign weights to other factors 
to explain why the cow reduced intake the day she injured her-
self. For example, if  activity data were included in the model, 
the weight on activity responses might be updated because we 
would anticipate activity to also change with the injured hoof. 
However, the model may take some time to recover from this 
prediction to correct the weight on activity under a noninjured 
scenario, resulting in a period of time where predictions were 

poor. A solution to this type of challenge would be to include 
an injury variable in the model to account for these types of 
cases; however, the point of the example is that there is always 
opportunity for factors exogenous to the model to influence the 
behavior of the response variable. When building and deploy-
ing these analytics, we must consider that reality. Another 
solution to the challenge is to omit data from the day in ques-
tion. However, that opportunity introduces the issue of human 
perception with respect to identifying exogenous causes and 
correctly differentiating them from endogenous causes. It is 
important to keep in mind that we cannot leave out predictions 
that are not correct without reason, because every cow needs to 
get a prediction every day. A different solution might be found 
in the training of the model. Instead of focusing on minimizing 
the average cost of a prediction, it is possible to train the model 
on minimizing the maximum cost of prediction. The measure 
of costs relates to a secondary problem plaguing models of all 
varieties today: how to choose the cost functions, or, how to 
know which model is best.

Challenges with model selection and evaluation
There are a number of  model evaluation statistics used 

commonly to assess the precision and accuracy of  predictions; 
however, when models are applied as analytics in conjunction 
with sensors and in the context of  cyberphysical systems, the 
system as a whole is often evaluated on the basis of  sensitivity 
and specificity. Indeed, in an example outside nutrition, there 
are actually International Standards Organization standards 
for sensitivity and specificity for cyberphysical systems formu-
lated initially for automated detection of  mastitis (Rutten et al., 
2013). Sensitivity is a model’s ability to detect positive cases, 
that is, the percentage of  all true positives that are detected. 
Specificity is the same metric applied to negative cases, namely 
the percentage of  total negative cases that the model detects 

Figure 5. An example of a neural network framework. Circles represent individual equations which are fed data from all connected nodes. The lack of a 1-1 
ratio of nodes in each layer of the network forces the model to condense information and leads to the most important information being determined iteratively 
through backpropagation of error (Ivezic et al., 2014).
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correctly. High specificity and low sensitivity leads to models 
that rarely detect (predict) a positive case, while the opposite 
would be true of  high sensitivity, low specificity models. If  
detecting metabolic disease is an important attribute of  the 
precision feeding system, a positive case might be an animal 
with metabolic disease whereas a negative case might be an 
animal free from disease. Although both of  these calculations 
are extremely important for a useful cyberphysical system 
model in animal agriculture, false alarms can become an issue, 
especially in cases where the proportion of  positive to negative 
cases is skewed in the overall population. In the case of  models 
that detect animal conditions to alert farmers, the positive pre-
dictive value is a third measure of  model accuracy that should 
be considered. The positive predictive value can be thought 
of  as the probability that an alert (predicted positive case) 
actually is positive. Models with low positive predictive value 
will have more false alarms. Although positive predictive value 
would not be useful in the proportion of  positive to negative 
cases in the population was equal, in many disease detection, 
less than 1% of cow days on a typical farm will be positive.

When we consider the example of predicting intake, or 
designing an ideal supplementation strategy for a cow, the use 
of sensitivity and specificity for model evaluation becomes 
more nebulous. Undoubtedly, it is more important to know by 
how much you over- or under-predicted a response like intake 
or milk yield than it is to know the binary directionality of the 
residual. A number of statistics (root mean squared error, mean 
absolute error, etc.) are available to quantify fit in this manner. 
However, as discussed above, when making recommendations 
on-farm, incorporating the cost of these decisions is perhaps 
most important. Working more explicitly to tie performance 
predictions to economic data on-farm will be an important 
step in advancing analytics of precision feeding.

When are the analytics good enough?
As John von Neumann said, “truth … is much too compli-

cated to allow anything but approximations” (Szász, 2011). 
Approximations are a necessary evil, particularly in the business 
of feeding animals. Livestock nutrition is a complex science, 
verging on an art form, and successful nutritionists combine 
analytics and exogenous information to optimize productivity of 
their farms. A cyberphysical system, almost by design, limits the 
opportunity for exogenous data, or at a minimum, changes the 
way that exogenous data will influence the system. To assess gold 
standards for when a cyberphysical system is good enough for 
deployment to farms, it may be useful to evaluate the standards 
professional nutritionists use for making feeding recommenda-
tions. Many nutritionists have a dollar value or a milk response 
cutoff that they believe a product, or feeding recommendation, 
must be expected to achieve before it should be recommended 
to a farmer. Gaining consensus on those cutoffs may be one way 
to evaluate the relevance of precision nutrition analytics from an 
industry context. Although it is possible to set more objective cut-
offs, creating such an objective cutoff implies that a given model’s 
knowledge completely covers that of the experts, which is very 
unlikely. Although models can help weigh options in complex 

environments, they are only as complex as the data they are 
trained on, and thus by default are less informed than an expert 
who has the opportunity to see exogenous and endogenous var-
iables. Further work is needed to identify the best strategies to 
combine and incorporating expert opinion/knowledge into a 
cyberphysical system focused on animal feeding.
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