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Recent years have seen a tremendous progress in the elucidation of experimental structural information for
G-protein coupled receptors (GPCRs). Although for the vast majority of pharmaceutically relevant GPCRs structural
information is still accessible only by homology models the steadily increasing amount of structural information
fosters the application of structure-based drug design tools for this important class of drug targets. In this article
we focus on the application ofmolecular dynamics (MD) simulations in GPCR drug discovery programs. Typical ap-
plication scenarios of MD simulations and their scope and limitations will be described on the basis of two selected
case studies, namely the binding of smallmolecule antagonists to thehumanCC chemokine receptor 3 (CCR3) and a
detailed investigation of the interplay between receptor dynamics and solvation for the binding of small molecules
to the human muscarinic acetylcholine receptor 3 (hM3R).
© 2014 The Authors. Tautermann et al. Published by Elsevier B.V. on behalf of the Research Network of Com-

putational and Structural Biotechnology. This is an open access article under the CC BY 3.0 license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

G-protein coupled receptors (GPCRs) are key elements of eukaryotic
signaling cascades. They transduce stimuli from the extracellular
compartment into the interior of the cell, where further intracellular signal-
ing events are triggered. Under physiological conditions GPCR signal trans-
duction is initiated by their endogenous ligands, which range from lipids,
fatty acids, neurotransmitters, cytokines, hormones, to metal ions or – in a
figurative sense – even light. The opportunity to modify cellular signaling
cascades by modulating the function of GPCRs makes them an attractive
class of targets for pharmaceutical drug discovery and development efforts
[1,2]. To date approximately 30% or evenmore of all marketed drugs target
GPCRs [3,4], and still a substantial fraction of drugs that were recently
approved by US regulatory authorities are GPCR drugs [5]. According to re-
cent estimates ~350GPCRs are of potential interest to treat humandiseases
[6]. There are still ~100 orphan receptors for which neither the natural li-
gand nor the physiological role is yet known [7].

A breakdown of the number of marketed GPCR drugs reveals that the
number of unique GPCRs which are targeted is much less than what
would be expected from the mere share of all marketed drugs: the GPCR
drugs cover less than 10% of the entire target space which is addressed to
date [5]. In other words, there are still ample opportunities to exploit hith-
erto unexploredGPCR targetswith known ligands and function, but also or-
phan receptors. Besidesnovelmolecular and cell biology techniques such as
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specifically engineered receptors [2] or the systematic generation of
chemical probes [8–10] recent breakthroughs in the elucidation of GPCR
structural information [11–13] expand the toolbox todiscover andoptimize
novel ligands with therapeutic potential for this target class.

The increasing coverage of the GPCR phylogenetic tree with struc-
tural information offers the opportunity to apply structure-based drug
design methodologies for this target class [14–17]. One approach
which gained increasing attention in pharmaceutical industry over
recent years is fragment-based drug discovery [18–20], which is nowa-
days reported to be applied also in GPCR drug discovery programs
[21–25]. Despite the continuous progress in structure elucidation, the
experimental determination of GPCR structures is still a cumbersome
and slow process, which does not match the typical cycle times in lead
optimization. Thus, only very few case studies are described in which
ligand optimization is actually accompanied by experimentally solved
GPCR-ligand complexes [26]. In most cases cost-efficient alternatives
like homologymodelingwhich allow rapid project support are reported
[15]. Moreover, it is important to note that despite the continuous in-
crease of solvedGPCR structures for themajority of theGPCRs structural
information is only accessible via homology modeling [15,27]. In many
cases homologymodels aremerely accurate enough to guide the overall
direction of optimization efforts rather than to predict compound affin-
ity [14,28,29], especially if the target to template similarity is low. Latest
developments, however, show that homology models can be signifi-
cantly improved by employing MD-methods [30,31], which is not sur-
prising due to the flexible nature of GPRCs [32].

The availability of the β2 adrenergic receptor as active [33,34] and in-
active [35] structure has prompted several research groups to model the
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Fig. 1. Multiple versions of the CCR3 receptor homology model, color-coded according to
the template that was utilized. Top view from the extracellular side.
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activation process of GPCRs on an atomistic level by using molecular dy-
namics simulations [36,37]. In other studies, ligand recognition or GPCR
oligomerization has been investigated by employing MD simulations (Ref
[38] and references therein). All these studies have been facilitated by the
availability of experimental structural information, but also by a steady in-
crease in compute powerwhich is provided either by continuous advance-
ments of hardware performance including GPUs, tailored computer
architectures [39], or cloud computing approaches [36]. Nowadays, several
microseconds of simulation data canbe collectedwithin fewdays. Since the
microsecond timescale marks the lower border at which important
biological function such as ligand binding occurs, atomistic simulations
open novel opportunities for structure-based drug discovery.

In fact, molecular dynamics (MD) simulations are being more and
more used in drug design [40–42]. The notion of the importance of
receptor flexibility has fostered the usage of computational tools such
as MD simulations to generate ensembles of energetically accessible
conformations [43,44]. Talking specifically of GPCRs, recent develop-
ments include target specific scoring functions to identifyMD snapshots
which still retain the typical GPCR specific conserved geometric features
[30] in order to avoid unphysical decoys. Hot spots in binding pockets
and, more recently, on protein–protein interfaces are being postulated
by solvent MDs. For this technique small organic molecules such as
propane or benzene are added to the water box, and regions of high
solute density in the simulation are used as indicators of protein site
druggability [45]. Recently, thermodynamic integration and/or free
energy perturbation methods have gained an increasing attention in
predicting relative free energies of binding [46,47].

In the followingwewill discuss the application of MD simulations in
GPCR drug design with the help of two case studies which were per-
formed at Boehringer Ingelheim Pharma. We selected these examples
because they illustrate the different levels of information which can be
utilized for drug design efforts. In the first case study binding of small
molecule antagonists to the human CC chemokine receptor 3 (CCR3)
was investigated. Since to date no crystal structure of CCR3 is reported
we generated homology models to provide structural information for
a medicinal chemistry program. Complexes with manually modeled
ligand binding poses were subjected to MD simulations to check the
integrity of the binding pose. The final model was utilized to rationalize
rodent selectivity data. The second case study addresses the binding of
small molecule ligands to the humanmuscarinic acetylcholine receptor
3 (hM3R). In this case, detailed experimental structural information has
been available which enabled us to investigate the interplay between
receptor dynamics, water networks, and ligand–receptor interactions
by MD simulations on a very detailed level.

2. Computational methods

2.1. Homology modeling and ligand placement for CCR3

CCR3 homologymodels were generated based on several templates.
In the following we will describe the homology modeling procedure
employing the X-ray structure of human CC chemokine receptor 5
(CCR5) complexed with maraviroc as a template (PDB code 4MBS).
This structure was solved in 2013 [48]. In order to enhance crystalliza-
tion, a rubredoxin entity was fused to intracellular loop 3. To generate
a model of the human CCR3 receptor, a sequence alignment between
the template X-ray structure and the target hCCR3 sequence was done
inMOE [49] employing the BLOSUM50matrix. By this the exact location
of the rubredoxin insertion could be identified, and rubredoxin was re-
moved manually from the template structure. The employed sequence
alignment is shown in the Supplementary material (Fig. S1), revealing
a target/template sequence identity of more than 50%. The comparative
modeling step was done with Modeller [50,51], a standard homology
modeling tool. Finally a stepwise optimization of the structure was
performed. In a first step the two loose ends caused by the cut of
rubredoxin were manually connected and the whole receptor was
protonated at pH 7.4 by the protonate3D procedure as implemented
in MOE. In a next step an energy optimization of the receptor with
high tethers on the heavy atoms was carried out (tether 1000). The
tethers were then reduced to 100 and 10. In the final optimization
step the side chains were energy minimized with fixed protein back-
bone atoms. All minimizations were done with the MMFF94x force
field as implemented in MOE. The ligand (structure shown in Fig. 2A)
was placedmanually into the receptor. First, an ensemble of low energy
conformationswas generated. These conformations were thenmanual-
ly docked into the receptor such that the ionic interaction between the
positively charged center of the ligand and the E2877.39 on transmem-
brane helix (TM) 7 was enforced. Conformations which caused major
clashes were discarded, and checks like the shape overlay with
maraviroc in hCCR5 or the formation of an additional ionic interaction
with H972.67 (for details we refer to ref. [52]) were employed to identify
the most plausible pose. This pose underwent stepwise geometry opti-
mization (as described before) and was ultimately subjected to a full
equilibration and a 60 ns production run (MD setup as described
below) to yield the binding mode shown in Fig. 3.

2.2. Molecular dynamics simulations

Molecular dynamics simulations were carried out using the
gromacs-4.5 package [53]. The simulation system consists of the afore-
mentioned CCR3 homology model or the hM3R model [54] with
bound tiotropium (derived from PDB 4DAJ) embedded in DMPC lipid
bilayer [55] and solvated in water. NaCl was added to achieve a
150 mM salt concentration. The amber99sb-ildn* force field [56,57],
the SPC/E water model [58] and ion parameters from Joung et al. were
used [59]. Force field parameters for the small molecule ligands
were obtained according to the generalized amber force field (GAFF)
procedure [60] with partial charges derived from quantum chemical
calculations with Gaussian09 [61] at a HF/6-31G* level of theory.
Amber topologies for the ligands were converted to gromacs format
using acpype [62]. The membrane simulation system was built with
g_membed [63]. After energy minimization, 50 ps equilibration with
positional restraints on heavy atoms, and 1 ns equilibration with posi-
tion restraints in z-direction on the phosphor atoms of DMPC followed.
Trajectories were subsequently collected at 310 K with standard NPT
ensemble settings (thermostat: velocity-rescaling [64,65]; barostat:
Parrinello-Rahman [66], semi-isotropic coupling). Electrostatic interac-
tions were calculated at every step with the particle-mesh Ewaldmeth-
od [67], short-range repulsive and attractive dispersion interactions
were simultaneously described by a Lennard-Jones potential, which
was cut off at 1.0 nm. The SETTLE [68] algorithm was used to constrain
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bonds and angles of water molecules; LINCS [69] was used for all other
bonds. Virtual sites [70] were introduced to remove other fast vibrating
degrees of freedom, allowing a time step of 4 fs. In the hM3R case five
trajectories (400 ns each) were recorded for every system. Individual
analyses were always done based on the averages of the 5 independent
trajectories per system.

3. Case Study 1: binding of small molecules to the CC
chemokine receptor-3

CCR3 is a member of the chemokine receptor family. One of its en-
dogenous ligands, the chemokine eotaxin-1/CCL11, is a chemoattractive
protein which has been identified to recruit eosinophils under allergic
conditions and binds exclusively to CCR3. It is therefore postulated
that antagonizing CCR3 with small molecules is a viable approach to
treat allergic diseases such as asthma, for which numerous in vivo
studies suggest that they are closely linked to eosinophilia [71,72].

When optimizing antagonists for their potency on CCR3 in binding
and functional cellular assayswe observed a pronounced selectivity ver-
sus rodent receptor orthologues [52]. To explain the selectivity profiles
and eventually identify opportunities to optimize potency especially
on mouse and/or rat CCR3 we constructed a homology model of CCR3.
Over the time the homology model underwent several refinements.
They were triggered either by the release of a novel GPCR structure
with a higher sequence similarity to CCR3 or – in one instance – by the
availability of an ab-initio algorithm to predict GPCR 3D structures [73].
Fig. 1 shows an overlay of the different models, color-coded according
to the template or modeling technique that was employed. In all models,
E2877.39 (the superscript corresponds to the Weinstein–Ballesteros
Fig. 2.A)2D representation of themolecule thatwas embedded inCCR3. B) Conformations thatw
conformation in dark green. C) RMSD plot for the full protein. D) RMSD plots for certain parts
C) and D) all RMSD values are calculated with respect to the starting geometry.
numbering scheme) on TM7, which is postulated as one key anchoring
residue for small molecule CCR3 ligands [74] and which is highly con-
served among other chemokine receptors and across species [75], points
towards the interior of the transmembrane cavity in a very similar man-
ner. The same observation was made e.g. for Y411.39 on TM1. The largest
differences between the individual models were observed for TM2,
which underwent in total a 90° rotation throughout all model versions.
When rhodopsin or β2 was used as template structure, W902.60 pro-
trudes into the lipid bilayer. We were not able to generate a plausible li-
gand bindingmodewith these twomodels since the cavity between TM2
and TM3 is notwell defined. In themodels thatwere either generated ab-
initio or from closer related templates (CXCR4 and CCR5), W902.60 lines
up the TM cavity such that a hydrophobic patch is offered for ligands to
interactwith. A closer inspection of the CXCR4 and CCR5 X-ray structures
shows that TM2 displays a helical bulge in the extracellular part,
thus causing this 90° rotation of the upper part, which is different to
β2/rhodopsin based models.

3.1. Results of Case Study 1

Wemanually docked a compound (Fig. 2A) carrying the essentialmo-
lecular topology and key functional groups of one of our CCR3 antagonists
(ref [76]) into the CCR5-derived homology model as described above. In
the initial pose ionic interactions with E2877.39 and H972.67 and a
hydrophobic interaction with W902.60 were established. In addition, the
hydrophobic phenylsulfanylpropyl tail pointed to a region between heli-
ces 4 and 5 (Fig. 2B, conformations colored in red). The complexwas sub-
sequently submitted to a 60 nsMD simulation to check the stability of the
proposed binding mode. The entire complex remained stable during the
ere visitedduring the simulation. The starting conformation is shown indark red, thefinal
of the ligand, illustrating the flexibility of these parts throughout the simulation. In panels
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simulation, as indicated by the RMSD plot (Fig. 2C). The ligand did not
show major rearrangements such as complete dissociation from the
transmembrane cavity or flips around the center of the molecule. In par-
ticular, the positioning of the piperidine-indole part, which is engaged in
directed interactions with receptor residues, did not vary substantially
(c.f. Fig. 2D). On the other hand, the more flexible phenylsulfanylpropyl
moiety fluctuated between various orientations. This is reflected in the
corresponding RMSD plots (Fig. 2C). After approximately 25 ns the tail
adopted a conformation in which it protruded deeply into the interior
of the TM cavity, in close analogy to the X-ray bindingmode ofmaraviroc
in CCR5 (PDB entry 4MBS [48]). This conformation remained stable over
the remaining 35 ns of the simulations. Representative snapshots are
shown in cyan and green (Fig. 2B). After minimization of the last snap-
shot of the trajectory we ultimately came up with the pose shown in
Fig. 3. This pose was utilized as template to place close analogs into the
receptor andultimately to rationalize species selectivity thatwe observed
in this particular structural class. For more details we refer to ref. [52].

3.2. Discussion of Case Study 1

A retrospective analysis of themodeling procedure and the outcome
of theMD simulations highlight two important aspects: first, the choice
of the template for homology modeling efforts has a crucial impact on
the quality of the results and hypotheses which are derived therefrom.
Although the GPCR structures solved to date show a high degree of
analogy in the TM region [13], subtle structural features such as unusual
helix turns or side chain orientations can be expected to be accurately
modeled only when the template for homology modeling is sufficiently
close. Evenwith amodel thatwas derived from the sequence-wise close
CCR5 templatewe observed that themodeled bindingmode underwent
some changes during an MD simulation. Without further experimental
information it is challenging (if not impossible) to pick the relevant
bindingmode from anMD trajectory alone. In that respect the MD sim-
ulation helped us to build up confidence in the general orientation of the
ligand inside the TM cavity and the directed (ionic) interactions that are
formed. A true validation of the binding mode can only be established
by experimental data. In our case, we found agreement with species se-
lectivity data. A more rigorous validation would be provided by site-
directed mutagenesis data.

4. Case Study 2: binding of small molecules to hM3R

Bronchodilators are central to symptom management in airway
diseases like asthma and COPD. While short-acting medications are
Fig. 3. Final modeled binding mode for molecule shown in Fig. 2A. CCR3 and key residues
are shown in green. For comparison, CCR5 in complexwithmaraviroc (PDBentry 4MBS) is
shown too (gray).
used for immediate symptom relief, long-acting drugs are essential for
disease control and maintenance therapy [77,78]. Currently two major
classes of long-acting bronchodilators are available: muscarinic antago-
nists and β2-adrenergic agonists. The use of long-acting muscarinic
antagonists (LAMAs), like tiotropium, is the mainstay of current COPD
treatment [77,78]. The structure of the complex of tiotropium and rat
muscarinic M3 receptor (M3R) has been solved in 2012 [79], and this
makes hM3R a well suited target for structure based drug design inves-
tigations. The binding mode of tiotropium in a homology model of
hM3R is shown in Fig. 4. (The homology model of the human receptor
is very closely based on the X-ray structure of rat M3R and has already
been described elsewhere [54].) Tiotropium is binding in a deeply
buried site in the receptor, which is accessed through a narrow channel.
In the binding site the positively charged epoxytropane head group of
the ligand is coordinated into an aromatic/ionic cage consisting of
D1483.32, Y1493.33, W5046.48, Y5076.51, Y5307.39, and Y5347.43 by ionic
and aromatic interactions. Remarkably Y1493.33, Y5076.51, and Y5307.39

form a “lid” above tiotropium which blocks its way through the exit
channel. In addition the ligand forms a strong double hydrogen bond
to N5086.52, and the thiophene groups fit into a hydrophobic crevice
formed by W2004.57, L2265.33/EL2, T2325.39, A2365.43, and A2395.46.
Altogether, the ligand is very tightly bound, making all kinds of interac-
tions – hydrophilic, hydrophobic and ionic – thus leading to a very high
potency of about 10 pM [54].

In a recent study we have published residence times and binding
affinities of tiotropium and related compounds to hM3R and mutated
variants thereof [54]. The goal of the investigation was the elucidation
of the key structural elements of tiotropium which leads to the very
slow off-rate from hM3R. In the course of the study about 30 single
point mutants have been generated, and the dissociation rates of
tiotropium from the mutated receptors have been recorded. In most
cases Ki values and the corresponding off-rates are directly related to
each other (i.e., koff = const ∗ Ki), but mutation of residues along the
exit channel accelerates the dissociation tremendously. Single amino
acid mutation of Y1493.33, Y5076.51, N5086.52, or Y5307.39 results in off-
rates which deviate from linearity by more than one order of magni-
tude. Modification of the ligand only leads to unexpected behavior if
the hydroxy group ismodified. As shown in Fig. 4 the hydroxy-group di-
rectly interacts with N5086.52, thus prompting the assumption that the
double hydrogen bond is a decisive structural element for long acting
antimuscarinic drugs. To rationalize the effect of the N5086.52A muta-
tion several MD simulations have been performed. From them it has
been proposed that the interaction of the ligand with N5086.52 works
like a snap-lock. Once the interaction is formed it keeps tiotropium in
place and prevents its translation towards the exit-channel. These
investigations have been a first step to understand the experimental
findings on a molecular basis. Additional, more extensive simulations
for closely related ligands are the subject of the present study. The
systems thatwere investigated are described in Table 1. For each system
a total of 2 μs simulation data was collected from five independent
trajectories of 400 ns length.

4.1. Results of Case Study 2

MD trajectories were analyzed by focusing on various different re-
ceptor regions. Therefore the description of our observations will be
split into four sections: (i) changes of the tyrosine cage, (ii) changes
of the ligand–receptor interactions, (iii) exit channel flexibility, and
(iv) water densities and networks. In the discussion the observations
will be put into context to obtain a clear picture of the changes of
receptor dynamics upon mutation of receptor or ligand.

4.1.1. Changes in the tyrosine cage
As described in the Introduction section and displayed in Fig. 4, the

positively charged head group is surrounded by several tyrosine resi-
dues. The three most important tyrosines in dissociation experiments



Fig. 4. Bindingmodeof tiotropium(cyan) inhM3R. Top left: top view from the extracellular side. Bottom left: side viewwith TM6 and TM7 in front. Right: structure and 2D-interaction plot
of tiotropium.
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(Y1493.33, Y5076.51, and Y5307.39) form a lid above the ligand. This lid
has to break up for ligand dissociation. In the case of tiotropium binding
to wild type hM3R this lid is tightly closed [54]. In the apo-WT simula-
tion it has been shown that the lid is open in a significant number of
snapshots and thus enables quick ligand association. The correlations
of movements of the lid-tyrosines in the systems under consideration
are shown in Fig. 5. Ligand binding stabilizes the lid in a closed position
for all ligands investigated, and in both apo simulations open as well as
closed conformations are found. Surprisingly the apo-WT simulation
still has the larger fraction of closed lid structures, whereas the apo sim-
ulation of the mutated receptor (apo-N5086.52A) shows a predominant
population of snapshots with an open lid.
Table 1
Systems under investigation in the present study.

Ligands:

1 Tiotropium (R = OH)
2 Des-OH tiotropium (R = H) [“hyd-tio”]
3 Methyl-des-OH-tiotropium (R = CH3) [“methyl-tio”]
4 Tiotropium (R = OH)
5 None
6 None
In tiotropium bound simulations the tyrosine lid is very stable showing
hardly any opening events. However, the distance between Y1493.33 and
Y5307.39 is slightly elongated in the tio-N5086.52A simulation compared to
tio-WT, as displayed in Fig. 6. Upon binding of methyl-tio or hyd-tio the
tyrosines are much more flexible. Especially for hyd-tio the tyrosine lid is
open in many snapshots. An example for a snapshot with an open lid
configuration is shown in the inset in Fig. 6. We find both tyrosines
(Y1493.33 and Y5307.39) in a different rotameric state compared to the
M3R X-ray structure, and the ligand is directly accessible by the solvent.

To summarize the observations for the tyrosine lid flexibility: in apo
simulations a dynamic equilibrium between open and closed lids is
observed. Ligand binding stabilizes the tyrosine lid, however, ligands
Receptor Abbreviation
of the system

Wild type hM3R Tio-WT
Wild type hM3R Hyd-tio-WT
Wild type hM3R Methyl-tio-WT
N5086.52A hM3R Tio-N5086.52A
Wild type hM3R Apo-WT
N5086.52A hM3R Apo-N5086.52A



Fig. 5. Correlation plots for 100.000 snapshots of all trajectories. Red shaded areas correspond to snapshot conformations, where the tyrosine lid opened by breaking at least one of the
tyrosine hydrogen–bond interactions.
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without the OH-group are not able to stabilize the lid over the full
simulation time to the same extent as tiotropium.

4.1.2. Changes in the ligand–receptor interactions
Tiotropium is strongly bound to hM3R by ionic interactionswith the

charged epoxytropane head group, by hydrogen bonds with the ester
carbonyl group as well as the hydroxy group, and by lipophilic interac-
tionswith the two thiophenes. In this chapter we investigate the chang-
es of tiotropium movement if the hydrogen bonds are weakened or
even entirely removed. In Fig. 7 the distances of the charged nitrogen
of the ligand to D1483.32 are monitored as a measure for the flexibility
of the head group. It can be observed that neither removal of the
Fig. 6. Cumulative distribution function of the Y1493.33–Y5307.39 (oxygen–oxygen) distance (o
overlaid with the M3R crystal structure (orange lines). The red arrows mark lid-opening move
hydroxy groupof tiotropiumnor theN5086.52Amutation of the receptor
has any significant effect on the distance of the ionic interaction. Not
surprisingly, the mobility of the quaternary carbon of the ligand is
strongly affected by distorting the double hydrogen bond. We plot the
distance to the Cβ atom of N5086.52 (we chose to use the Cβ to be able
also to include tio-N5086.52A in the analysis) as a measure for the flexi-
bility of the bis-thiophene substructure in relation to the decisive
N5086.52 interaction partner. Although both modified ligands, i.e., hyd-
tio and methyl-tio, still do have the ability to form hydrogen bonds to
N5086.52, these bonds are often strongly elongated or even broken. Es-
pecially methyl-tio shows very long distances, where the hydrogen
bond is mediated by an additional water molecule, as shown in Fig. 7.
range dashed line in the insert). Inset: snapshot from the hyd-WT simulation (blue sticks)
ments of Y1493.33 and Y5307.39.



Fig. 7.Top:Distances of the ligands to the interaction partners on the receptor side. Bottom: snapshot from themethyl-WT simulation,where the ligand–N5086.52 hydrogenbond is broken
(left) and snapshot from the tio-N5086.52A simulation to demonstrate the shift of tiotropium towards the exit channel (white structure: X-ray, brown: snapshot from the tio-N5086.52A
simulation).
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Themovements of tiotropium in N5086.52A-hM3R reveal a high flexibil-
ity due to the lack of the hydrogen bond partner N5086.52. Tiotropium's
hydroxy group forms an intramolecular hydrogen bond to the ester car-
bonyl group (Fig. S2, Supplementary material). Calculation of the RMSF
of different parts of themolecule confirms this observation, as shown in
Fig. S5 in the Supplementary material. Additional analyses show that
the quaternary carbon is located much more towards the extracellular
part of the exit channel compared to the tio-WT simulation (Fig. S6,
Fig. 8. Left: location of the Cα atoms of V5116.55 and Y1493.33 as indicator for the diameter of
V5116.55 and Y1493.33.
Supplementary material). A snapshot to illustrate this ready-to-exit
behavior is also shown in Fig. 7.

To summarize the observations for the ligand–receptor interactions:
for the modified ligands (hyd-tio and methyl-tio) the hydrogen bond
between the ligand and receptor is elongated and especially for
methyl-tio often broken. Tiotropium in N5086.52A-hM3R reveals pro-
nounced dislocations of the bis-thiophene substructure of the molecule
in the receptor and is pushing towards the exit channel.
the exit channel. Right: distribution functions of the distances between the Cα atoms of
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4.1.3. Flexibility of the entry/exit channel
So far only the direct binding site of tiotropium has been investi-

gated. Considerations of dissociation dynamics also need to include
the investigation of the dissociation pathway. As shown in Fig. 4, the
binding site is accessed through a narrow tunnel.We investigate the ac-
cessibility of the entry channel by monitoring the distance of the Cα
atomsof V5116.55 andY1493.33. These two amino acids are located at op-
posing locations of the channel. Their location is shown in Fig. 8.

The distribution functions of the distances show some very surpris-
ing results. Tiotropium does not allow too much flexibility of the exit
channel. When simulating methyl-tio or hyd-tio in WT hM3R, the pic-
ture changes entirely, because these ligands induce open-channel
states. Especially in the methyl-tio-WT simulation very large values
for the diameter of the channel are observed. Similar open-channel
structures are observed in the apo-WT simulation. In sharp contrast to
that, the apo-N5086.52A simulation shows a preference for a tightly
closed channel. The difference between the open state in methyl-tio-
WT and apo-N5086.52A can be as large as 10 Å. In line with this, the
channel is also slightly tighter closed in the tio-N5086.52A simulation
than in the tio-WT simulation. Fig. 9 shows the correlation of the chan-
nel diameter and the solvation of N5086.52, which sits at the bottom of
the channel. In WT hM3R tiotropium prevents N5086.52 from being sol-
vated. A closer water site can be observed at a distance of about 7 Å. Re-
moval of tiotropium's hydroxy group allows water to access the exit
channel and to directly interact with N5086.52. Therefore, the close in-
teraction is only feasible if the channel opens up — as shown in Fig. 9
(middle panel). For methyl-tio there are two distinct open states of
the channel, where both allow a solvation of N5086.52 and with that
also water insertion into the ligand-N5086.52 hydrogen bond. When ob-
serving the trajectories over time (Fig. S3, Supplementarymaterial), the
opening and closingmotions resemble a “breathing” like behavior of the
receptor. Also for hyd-tio the solvation of N5086.52 comeswith an open-
ing of the channel, but no distinct second (widely) open state is ob-
served. In the WT-apo simulation N5086.52 is, as expected, always
solvated, independently from the opening state of the channel. The
Fig. 9. Density plots of the correlation between the channel diameter (V5116.55–Y1493.33) and th
direct interaction of N5086.52 with water.
simulations of the N5086.52A mutants have to be interpreted with cau-
tion, because the hydrophilic N5086.52 is substituted by an apolar
amino acid, which does not require solvation to achieve a low free ener-
gy. Tiotropium bound N5086.52A-hM3R shows a similar pattern to
tiotropium bound WT, but apo-N5086.52A completely deviates from
apo-WT. First, the channel is always closed and second, A5086.52 is sol-
vated only in a small fraction of the snapshots. All these observations
strongly suggest that the opening and closing of the channel are directly
connected to the water network at the extracellular surface of the
receptor.

To summarize the observations for the channel flexibility: the
N5086.52A variants of the receptor induce a more tightly closed confor-
mation of the exit channel. This is caused by the lack of the water
network required for the solvation of N5086.52. Tiotropium stabilizes
the channel in a closed state, thus preventing water to interfere with
the double hydrogen bond between N5086.52 and the ligand. Methyl-
tio and hyd-tio enable openings of the channel, always accompanied
by the entry of water, which competes with the ligand–N5086.52 hydro-
gen bond.

4.1.4. Water densities and networks
In the previous sectionwe have reported that the channel opening is

always accompanied by the approach of water towards N5086.52. In this
section we are comparing water networks in the simulations by means
of calculatedwater densities. Fig. 10 shows the differences in the tio-WT
and hyd-WT/methyl-WT water grids. The most important difference is
the occurrence of some water density close to N5086.52 in the methyl-
WT and also to a smaller extent in the hyd-WT grids. These water loca-
tions correspond to those events inwhich the channel is open andwater
gets close to the ligand–N5086.52 hydrogen bond. Within the ligand
binding site no water mediated contacts are observed. Towards the
extracellular region, the water densities are becoming more and more
bulk-like, however, close to the receptor very distinct water shapes
are observed. This means that close to the protein surface water net-
works arewell conserved. In Fig. 8 very strong differences in the channel
e distance of the closest water to the Cβ of N5086.52. The yellow boxesmark the regions of



Fig. 10. Comparison of the water (oxygen) densities in the tio-WT and the hyd-WT (left panel) and themethyl-WT (middle panel). The tio-WTwater densities are displayed as blue solid
surfaces, hyd-tio-WT andmethyl-tio-WTwater densities as red and greenmesh, respectively. Themost important difference in thewater densities is encircled in red. Regions of conserved
water networks are marked by a yellow box. Right panel: overlay of apo-WT (magenta mesh) with N5086.52A-apo (cyan solid surface) water grids. Regions which are nearly exclusively
hydrated in apo-WT are marked by red contours. All grids are overlaid onto the tiotropium boundWT hM3R.
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geometry between apo-WT and apo-N5086.52A are shown. The corre-
sponding water grids are also displayed in Fig. 10 (right). In the apo-
WT simulation water density is found throughout the channel and
also close to N5086.52. In contrast the apo-N5086.52A simulation shows
essentially a “dry” channel and no water density close to A5086.52. In
other regions of the binding site, i.e., in the tyrosine cage the water
grids are similar for both simulations. This means that the lack of
N5086.52 causes the interruption of thewater network connecting the li-
gand binding site with bulk water. The tiotropium bound simulations
(tio-WT and tio-N5086.52) do not show any significant difference in
the water network densities (Fig. S4, Supplementary material).

To summarize the observations for the water networks: tiotropium
binding to either WT or N5086.52A-hM3R keeps the channel closed,
and no water density is observed in the exit channel. For the modified
ligands (methyl-tio and hyd-tio) a distinct water density is observed
in the WT-simulation, solvating the ligand-N5086.52 hydrogen bond.
The N5086.52A mutation causes a completely different water density
pattern as hardly any water density is found in the exit channel.

4.2. Discussion of Case Study 2

Putting together all these findings from the MD simulations we can
now understand the differences in the binding dynamics of tiotropium
analogs and the effect of the N5086.52A mutant. Experimentally we
have shown that the removal of one ligand–receptor hydrogen bond
leads to overproportionally quick dissociation, nomatter if the hydrogen
bond partner was removed on the ligand side (hyd-tio, methyl-tio) or
on the receptor side (N5086.52A). Thus we observed experimentally
that the N5086.52A mutation of the receptor has exactly the same effect
as the removal of the hydroxy group from the ligand. Experimental data
however, did not give any hint towards differences in the mechanism
which causes accelerated dissociation, whereas insights obtained from
MD simulations suggest that there is a major discrepancy between the
underlying mechanisms. Upon removal of the hydroxy-group of
tiotropium (hyd-tio, methyl-tio) the ligand–receptor hydrogen bond
becomes water accessible. This is supposed to have a significant effect
on the off-rates. Schmidtke et al. [80] have investigated buried polar
atoms in protein binding sites that form ligand–protein hydrogen
bonds which are shielded from water. Forming and breaking of this
kind of hydrogen bonds lead to an energetically unfavorable transition
state because it occurs asynchronously with hydration. In consequence,
water-shielded hydrogen bonds are exchanged at slower rates. When
tiotropium binds to the receptor the hydrogen bond to N5086.52 is
water shielded, thus breaking more slowly. For the derivatives hyd-tio
and methyl-tio the hydrogen bond is not shielded any longer as water
enters into the channel, and the exchange occurs faster. This is now a
plausible explanation for the observed rate enhancement upon hydroxy
removal from the ligand.

The explanation for the accelerated rate upon N5086.52Amutation of
hM3R is not that straightforward, because no hydrogen bond needs to
be broken and the line of argumentation from above is not applicable.
Tiotropium forms an intramolecular hydrogen bond (hydroxy to
ester) and no solvation of the hydroxy group of the bound ligand is
observed. Indeed in the tio-N5086.52A simulation the exit channel is as
tightly closed as in the tio-WT simulation. The most striking difference
is found in the location of the ligand, where tiotropium frequently
progresses into the exit channel in the tio-N5086.52A simulation. We
thus propose that the first steps of dissociation of tiotropium from
N5086.52A hM3R do occur through a different mechanism than the
dissociation from WT hM3R. In WT a solvation of the hydrogen bond
is the first step for dissociation, but in N5086.52A hM3R the ligand's
motion into the exit channel is not supported by extracellular water. It
may be seen as a mechanical event of impinging against the exit chan-
nel, which occursmuchmore often if the hydrogen bond to the receptor
is missing.

Obviously the cavity around D1483.32 has to be re-solvated upon
ligand dissociation (for both cases, WT and N5086.52A), but this site is
directly connected to the receptor spanning water network which is
conserved across class A GPCRs [81]. Therefore there is no need for the
synchronous movement of extracellular solvent into the binding site
upon ligand dissociation.

To sum up, the MD-simulations provide deeper insight in themech-
anisms which cause accelerated dissociation from theM3 receptor. The
lack of a hydrogen bond between the ligand and N5086.52 of hM3R
causes an enhanced off-rate, but the underlyingmechanism is different.
If the hydroxy group of tiotropium is removed, the hydrogen bond
between N5086.52 and the ester group of the ligand gets exposed to
water and is not shielded any more. However, if N5086.52 is mutated
to alanine, tiotropium pushes towards the exit channel. In this case
solvation of the exit channel does not seem to be important. Without
MD simulations we would not be able to elucidate the differences in
the dissociation enhancements. The remaining question is if we would
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have been able to predict behavior like this by MD and thus identify
crucial ligand–protein interactions. For systems like the present one
there is currently no method available which allows a quantification
of the effects.We expect that in the future the application of recently de-
veloped simulation and analysis techniques based on Markov State
Models together with increased computer power will lead to reliable
predictions of off-rates also for highly potent ligands which show
slower association rates [36,42,82,83]. For potent ligands, at present,
we can use MD simulations only to rationalize the experiments or
qualitatively investigate if some modifications of the ligands cause
major rearrangements of the receptor or of the water network.

5. Summary and outlook

We described two case studies in which MD simulations were
employed to investigate the interactions between a GPCR and small
molecule ligands. However, both studies were carried out within totally
different initial situations: in the case of CCR3, structural information
about the ligand–receptor complex had to be generated via homology
modeling. We observed that the template which is chosen to derive
the homology model had a significant impact on key characteristics
of the putative transmembrane binding pocket. For some template/
alignment combinations it was even impossible to postulate a reason-
able bindingmode.With the availability of an X-ray structure of a suffi-
ciently closely related receptor we were able to generate binding
hypotheses which were in line with observed species differences and
SAR. MD simulations helped to exclude receptor and ligand conforma-
tions whichmight not reflect themost stable state under the conditions
that were modeled. At the same time the MD simulations delivered an
ensemble of conformations of the receptor–ligand complex which are
all accessible. Without additional experimental or computed informa-
tion it is not possible to predict which configuration is biologically rele-
vant. Experimental information such as structure activity relationship
data, species selectivity data as in our case, or – ideally – site-directed
mutagenesis data is key to establish a validated binding mode which
is suitable for prospective ligand design efforts. Althoughwewere final-
ly able to rationalize species selectivity data and postulate regions for
chemical modifications on a very coarse-grained level, it is important
to emphasize that the final ligand–receptor model was not accurate
enough to assess the impact of chemical modifications on the free ener-
gy of binding in a quantitative manner. Also, the accuracy of the model
does not allow us to investigate the role of water molecules for ligand
binding in detail.

In contrast to the CCR3 case study the computational study of
ligand binding to hM3R is based on very detailed experimental
(X-ray) structural information of a receptor–ligand complex. This
allowed us to investigate the influence of solvation and desolvation
and receptor motions on the binding of a congeneric series of small
molecules to this receptor on a molecular level. Complemented by
site-directed mutagenesis studies, a microscopic model of binding
and dissociation could be derived which is in agreement with exper-
imental data collected so far. MD simulations were key to elucidate
differences between the behavior of closely related ligands in wild-
type and mutated receptors.

In both case studiesMD simulations turned out to be instrumental to
come upwithmodels which are able to rationalize experimental data in
a retrospective fashion. However, the true impact of MD simulations on
GPCRdrug discovery programs can only be evaluated byprospective ap-
plications and subsequent experimental challenging of the predictions.
Either synthesis and testing of compounds with proposed structural
modifications or measuring ligand binding in mutated receptors will
reveal if in silico predictions have been correct. Ideally, a combination
of both approaches will be employed. The speed in elucidation of
novel GPCR structural information together with further growth in
compute power will enable us to carry out computational experi-
ments on a large scale. From a careful analysis of these studies and
a rigorous assessment of the agreement or disagreement between
computational predictions and experimental outcomes we can
hope to derive general rules which can guide the prospective appli-
cation of MD simulations in GPCR ligand design. This might also be
expanded beyond pure binding to e.g. computational modeling of
GPCR modulation.
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