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The retromer complex mediates export of select transmembrane proteins from
endosomes to the trans-Golgi network (TGN) or to the plasma membrane. Dysfunction of
retromer has been linked with slowly progressing neurodegenerative disorders, including
Alzheimer’s and Parkinson’s disease (AD and PD). As these disorders affect synapses
it is of key importance to clarify the function of retromer-dependent protein trafficking
pathways in pre- and postsynaptic compartments. Here we discuss recent insights
into the roles of retromer in the trafficking of synaptic vesicle proteins, neurotransmitter
receptors and other synaptic proteins. We also consider evidence that implies synapses
as sites of early pathology in neurodegenerative disorders, pointing to a possible role of
synaptic retromer dysfunction in the initiation of disease.

Keywords: retromer, VPS35, synaptic vesicle, endosome, ionotropic receptor, G protein-coupled receptor,
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The retromer protein complex also referred to as retromer, is a critical component of the
endosomal protein sorting machinery. This complex recognizes specific transmembrane proteins
and exports them by forming tubules to promote transport. Of three endosomal export destinations
(Figure 1A)—retrograde transport to the trans-Golgi network (TGN), recycling to the plasma
membrane, and traffic to lysosomes—the former two are controlled by retromer (Seaman, 2012;
McNally and Cullen, 2018). Retromer is composed of two main parts, the cargo-selection complex
(CSC) and the tubulation module. The CSC consists of three largely globular proteins, VPS35,
VPS26 and VPS29, named after the vacuolar protein sorting genes in yeast. The stability of the CSC
depends on VPS35 and hence knockout/knockdown of this protein is commonly used to disrupt
retromer function. The tubulation module comprises heterodimers of the BAR domain-containing
sorting nexins SNX1/SNX2 and SNX5/SNX6 (Seaman, 2012; Mukadam and Seaman, 2015). Recent
structural studies indicate that the CSC promotes tubule formation by directing the distribution of
SNX proteins on the membrane surface (Kovtun et al., 2018).

Retromer function depends on a set of accessory proteins. Among the most well characterized
are SNX3 and Rab7a that mediate recruitment of the CSC to the endosomal membrane, and
the GTPase activating protein TBC1D5, which acts on Rab7a to inhibit the recruitment process
(Seaman, 2012; Seaman et al., 2018). The CSC also interacts with the WASH complex that mediates
actin polymerization, which serves to constrain retromer cargo and/or signaling proteins at
discrete endosomal regions. It may also take part in the scission of tubules (Seaman and Freeman,
2014). The WASH complex is associated with SNX1 via the DNAJ protein RME8 (Seaman and
Freeman, 2014). Another accessory protein is the dynamin-like ATPase EHD. It is thought to
stabilize endosomal tubules and take part in their scission (Zhang et al., 2012). In addition to
those proteins, SNX27 has been implicated specifically in the trafficking of retromer cargos to the
plasma membrane (Temkin et al., 2011). Contrary to yeast in which the CSC and the tubulation
module are tightly associated, the two modules in animal cells are more loosely associated and can
even act independently of each other, creating a greater functional diversity (Seaman, 2012, 2017).
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FIGURE 1 | Retromer and the trafficking of synaptic vesicle proteins. (A) Endosomal trafficking pathways in animal cells. Proteins entering endosomes can be
exported retrogradely to the trans-Golgi network (TGN; 1), or recycled back to the plasma membrane (2), or transferred to lysosomes via late endosomes for
degradation (3). Retromer controls pathways 1 and 2. (B) ”False” endosome induced by synaptic activity at a presynaptic release site. The electron micrograph
shows an endosome-like object (e) in a repetitively stimulated lamprey reticulospinal axon. Note the connection with the plasma membrane via a narrow stalk (arrow)
revealing that the endosome-like object is in fact an invagination of the plasma membrane. Bar = 200 nm (reproduced from Gad et al., 1998 with permission).
(C) Deletion of VPS35 in Drosophila alters synaptic vesicles in larval motor terminals. The left micrograph shows a control motor terminal. The right micrograph
shows a terminal from a larva deficient in VPS35 and expressing a non-rescuing D620N mutant form of VPS35. Note the decreased number of synaptic vesicles and
the occurrence of some large vesicles (arrowheads). Bar = 100 nm (reproduced from Inoshita et al., 2017 with permission). (D) Knockdown of retromer in mouse
hippocampal neurons does not alter synaptic vesicles in nerve terminals. Quantitative comparison showing that the number of synaptic vesicles is similar in nerve
terminals from control neurons and from neurons treated with either of three different shRNAs for VPS35 (reproduced from Vazquez-Sanchez et al., 2018 with
permission: http://creativecommons.org/licenses/by/4.0/).

RETROMER IN THE ADULT AND
DEVELOPING NERVOUS SYSTEM

Retromer components are ubiquitously expressed in the nervous
system. The expression level varies between different brain
regions and cell types (Wen et al., 2011; Wang et al., 2012;
Lucin et al., 2013; Liu et al., 2014; Tsika et al., 2014; Appel
et al., 2018). They occur in association with endosomes in the
neuronal cell body and in processes (Wen et al., 2011; Bhalla
et al., 2012; Mikhaylova et al., 2016). At synapses they are found
in both the pre- and postsynaptic compartments (Jakobsson
et al., 2011; Bhalla et al., 2012; Choy et al., 2014; Inoshita et al.,
2017; Vazquez-Sanchez et al., 2018). Notably, in postsynaptic
dendrites, retromer-bearing endosomes are associated with Golgi
satellites, which mediate anterograde protein traffic from the
ER as well as retrograde traffic from the plasma membrane
(Mikhaylova et al., 2016).

In the developing brain the expression level of VPS35 peaks
at stages P10–P15 and then declines to a low level that remains

stable during adulthood (Wang et al., 2012). Accordingly,
retromer plays a critical role in nervous system development.
Full knockout of VPS35 causes death prior to neurogenesis,
while heterozygous knockout, or in utero knockdown at a
late embryonic stage, leads to impaired development of axons
and dendrites (Wen et al., 2011; Wang et al., 2012; Tian
et al., 2015). At least some of the developmental defects are
due to loss of retromer present in microglia (Appel et al.,
2018). The precise mechanisms by which retromer influence
mammalian CNS development are not yet clear, but distinct
retromer-dependent developmental signaling pathways have
been identified in Drosophila and C. elegans (Wang and Bellen,
2015).

RETROMER AND PRESYNAPTIC PROTEIN
TRAFFICKING

Protein trafficking in presynaptic terminals is dominated
by synaptic vesicle proteins, which are inserted into the
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plasma membrane upon exocytic neurotransmitter release and
subsequently retrieved by endocytosis (Shupliakov and Brodin,
2010). Whether or not the retrieval is followed by an endosomal
sorting step prior to vesicle re-use is a classical problem that
has been discussed for decades (Heuser and Reese, 1973; Jähne
et al., 2015; Milosevic, 2018). Endosome-like structures do
indeed form in stimulated nerve terminals, but in many cases
they represent plasma membrane invaginations (Figure 1B)
or endosome-like objects resulting from ultrafast endocytosis
rather than bona fide endosomes (Gad et al., 1998; Kononenko
et al., 2014; Watanabe et al., 2014; Jähne et al., 2015; Gan
and Watanabe, 2018). Compelling evidence for endosomal
sorting of synaptic vesicle components is currently limited to
the larval Drosophila neuromuscular junction. In this model,
synaptic vesicle recycling has been shown to involve presynaptic
endosomes, identified by their characteristic lipid and protein
composition (Wucherpfennig et al., 2003; Uytterhoeven et al.,
2011). Moreover, enhancement of the endosomal recycling
route increases the sorting away of ubiquitin-tagged synaptic
vesicle proteins from presynaptic terminals (Uytterhoeven et al.,
2011).

Two studies of retromer function at presynaptic terminals
have recently shed new light on the problem of endosome
involvement in synaptic vesicle recycling. In the first study,
Inoshita and co-authors examined the effect of deleting VPS35 in
Drosophila (Inoshita et al., 2017). They examined the effect in
mutant larvae that survived to a prepupal stage due to the
supply of some maternal VPS35. Ultrastructural analysis of
VPS35-deficient motor terminals revealed that the number of
synaptic vesicles was reduced while their size was increased
and was more variable (Figure 1C). The morphological changes
correlated with an enhanced fatigue of synaptic transmission.
These data thus corroborate the involvement of endosomes in
synaptic vesicle recycling in Drosophila larvae, and provide the
first evidence for a functional role of retromer in the synaptic
vesicle cycle. In the second study, the effects of knocking
down VPS35 in mouse hippocampal neurons was investigated
(Vazquez-Sanchez et al., 2018). To circumvent developmental
defects the knockdown was performed when synaptogenesis was
essentially completed. Notably, ultrastructural analysis did not
reveal any difference in the number of synaptic vesicles between
control and VPS35-depleted nerve terminals (Figure 1D). Nor
did the knockdown affect synaptic exo- or endocytosis, which
were monitored with a pH-sensitive reporter (Vazquez-Sanchez
et al., 2018).

In view of these apparently contradictory data it is
unavoidable to speculate that the developmental stage is a
critical factor. Studies in toad and mouse motorneurons,
for example, suggest that synapse maturation can involve a
switch from endosome-dependent to endosome-independent
vesicle recycling modes (Zakharenko et al., 1999; Shetty et al.,
2013). If this is true, the retromer system in mature nerve
terminals can be assumed to serve other functions than to
sort synaptic vesicle proteins. In this context it is interesting
to note that Vazquez-Sanchez et al. (2018) detected VPS35 in
some but not all hippocampal nerve terminals. Investigation
of the role of retromer in different synapse types, and at

different developmental stages will be of great interest for further
studies.

Another presynaptic endosomal system of considerable
physiological and pathological importance consists of signaling
endosomes. Such endosomes take part in sorting and retrograde
axonal transport of endogenous proteins like BDNF and its
receptors TrkB and p75NTR, and exogenous agents like Tetanus
toxin (Deinhardt et al., 2006; Shupliakov and Fernandez-Chacon,
2008; Surana et al., 2018). Notably, they are also enriched in
proteins linked with neurodegenerative disorders (Debaisieux
et al., 2016). Whether or not signaling endosomes utilize
retromer currently remains an open question.

RETROMER AND NEUROTRANSMITTER
TRANSPORTERS

The plasma membrane dopamine transporter (DAT) acts to
terminate DA transmission primarily by mediating reuptake into
dopaminergic presynaptic terminals. DA reuptake is affected
by psychostimulants such as cocaine and amphetamine, and
altered reuptake has been linked with different neuropsychiatric
conditions (Sawa and Snyder, 2002; Kristensen et al., 2011;
Sharma and Couture, 2014). The level of DAT at the
presynaptic plasma membrane is finely tuned by endocytosis
followed by either degradation or recycling back to the
plasma membrane. Recently, Wu et al. (2017) showed that
retromer plays a key role in DAT handling. Newly endocytosed
DAT was observed to enter retromer-positive endosomes, and
knockdown of VPS35 decreased DAT recycling leading to
reduced plasma membrane levels. Moreover, the increase of
plasma membrane DAT levels induced by cocaine (Little et al.,
2002) could be linked with enhanced recycling of DAT out of
retromer-positive endosomes (Wu et al., 2017). Whether other
neurotransmitter transporters are sorted by retromer remains to
be investigated.

RETROMER AND IONOTROPIC
NEUROTRANSMITTER RECEPTORS

The postsynaptic compartment is a hotspot for trafficking of
neurotransmitter receptors. With regard to ionotropic receptors
detailed studies have primarily concerned glutamate receptors,
which mediate most fast synaptic communication in the
brain. In particular, the AMPA receptor subtype, made up of
GluA1–4 subunits, has been thoroughly examined (Pick and
Ziff, 2018). AMPA receptors are supplied to the postsynaptic
membrane by two principal routes. One comprises constitutive
delivery whereby receptors are inserted at extrasynaptic sites
and then move into synapses by diffusion. The other is a
triggered mechanism, which is used to insert receptors into the
postsynaptic plasma membrane upon induction of long-term
potentiation (LTP), and to remove them upon induction of
long-term depression (LTD; Lüscher et al., 2000). In immature
hippocampal neurons the constitutive delivery pathway depends
on retromer. Thus, heterozygous knockout of VPS35 leads to
a reduction of excitatory synaptic transmission along with a
reduced amount of AMPA receptors in synaptosomes (Tian
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FIGURE 2 | Retromer supports AMPA receptor trafficking during long-term potentiation (LTP). (A) Plot of the excitatory postsynaptic current (EPSC) amplitude during
induction of LTP in control hippocampal slices (black dots) and hippocampal slices infected with lentivirus expressing an shRNA for VPS35 (green dots), and a further
control, in which VPS35 expression had been restored (red dots). (B) Induction of chemical LTP causes incorporation of GluA1 receptors (tagged with a pH-sensitive
reporter) in the dendritic plasma membrane of a hippocampal control neuron (left). The dendrite was photobleached prior to LTP induction to reveal the successive
accumulation of GluA1 receptors. Knockdown of VPS35 (right) effectively inhibited receptor incorporation (reproduced from Temkin et al., 2017 with permission).

et al., 2015; see also Choy et al., 2014). Knockout of SNX6 or
SNX27 similarly reduces AMPA receptor trafficking to the
postsynapse (Hussain et al., 2014; Loo et al., 2014; Niu et al.,
2017). In mature neurons, however, the role of retromer is
restricted to the triggered pathway. Knockdown of VPS35 in the
CA1 region of hippocampus at P21 does not affect basal synaptic
transmission but causes an efficient blockade of LTP (Figure 2A;
Temkin et al., 2017). Imaging of tagged AMPA receptor subunits
suggested that retromer mediates the exit of AMPA receptors
into ‘‘LTP-ready’’ vesicles that fuse with the dendritic plasma
membrane (Figure 2B). The induction of LTD was not affected
by retromer depletion (Temkin et al., 2017).

It should be noted that inhibitory synaptic transmission
via GABA receptors is unaffected by retromer depletion even
in immature neurons (Choy et al., 2014), thus suggesting a
differential regulation of excitatory and inhibitory receptors.

RETROMER AND G-PROTEIN COUPLED
NEUROTRANSMITTER RECEPTORS

G-protein coupled receptors (GPCRs) comprise a large and
heterogenous group that induce a wide variety of intracellular
signals, mainly via G-proteins or β-arrestin. Recent studies
suggest that retromer plays a key role in the transduction of
GPCR signals. This is partly due to the fact that GPCRs, unlike
ionotropic receptors, act not only at the plasma membrane but
continue to signal at intracellular sites, including endosomes and
the TGN (Eichel and von Zastrow, 2018). The localization of
GPCRs to these internal compartments typically gives rise to
a slower and more prolonged response as compared to plasma
membrane localization. Moreover, the type of signal can also
be affected. For example, retromer-dependent localization of
TSH receptors to the TGN activates a transcriptional response
(CREB phosphorylation) that is not seen when the receptor
remains at the plasma membrane (Godbole et al., 2017).
Similarly, localization of β2 adrenergic receptors and dopamine

D1 receptors to endosomes promotes transcriptional responses
(Tsvetanova and von Zastrow, 2014; Varandas et al., 2016). In
so far most studies of spatial factors and retromer in GPCR
signaling have been conducted in cell lines, but future studies in
neurons with many of their receptors located in distal dendrites
and nerve terminals is likely to give a new level of insight
into neuronal GPCR communication. The clinical importance of
localized GPCR signaling has recently been underscored by the
observation of a spatial signaling difference between opioid drugs
and the corresponding native peptide ligands (Stoeber et al.,
2018).

Retromer can also regulate the plasma membrane levels of
GPCRs (including D1 and β2 receptors) by recycling them back
from endosomes (Choy et al., 2014; Wang et al., 2016). Imaging
studies in striatal medium spiny neurons have elegantly tracked
the export of β2 receptors from retromer-bearing endosomes
that move in the vicinity of postsynaptic densities (Choy et al.,
2014). Moreover, GPCR signaling can be regulated by retromer
in a more direct way. The CSC component VPS26, which is
structurally similar to β-arrestin, can terminate GPCR signaling
by displacing β-arrestin from the GPCR (Seaman, 2018).

LINKS TO NEURODEGENERATIVE
DISORDERS

Retromer has gained wide interest in recent years due to its
involvement in neurodegenerative disorders (Small and Petsko,
2015; Li et al., 2016; McMillan et al., 2017; Williams et al., 2017;
Reitz, 2018; Vagnozzi and Praticò, 2018; Zhang et al., 2018).
With regard to Alzheimer’s disease (AD), the first evidence came
from protein profiling studies showing a reduction of VPS26 and
VPS35 in brain regions affected by the disease (Small et al., 2005).
Genetic studies have subsequently coupled AD with a number
of retromer-associated proteins, including SNX1, SNX3, rab7a
and SORL1/SORLA (Vardarajan et al., 2012; Lambert et al., 2013;
Reitz, 2018). The latter is a retromer receptor that binds to and
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removes the amyloid precursor protein (APP) from endosomes
(Eggert et al., 2018). Experimental studies have shown that
depletion of VPS35 enhances amyloid β peptide (Aβ) production
by prolonging the endosomal residence time of APP (Bhalla et al.,
2012). Conversely, enhancement of retromer function with a
pharmacological chaperone can reduce Aβ formation (Mecozzi
et al., 2014), as can overexpression of SNX3 (Xu et al., 2018).
The endosomal trafficking of the rate-limiting enzyme in Aβ

production, BACE1, also depends on retromer (Wen et al., 2011;
Wang et al., 2012; Toh et al., 2017).

Adding to the link between retromer and APP processing,
indirect evidence also suggests an involvement of retromer in
Tau pathology, which is another hallmark of AD. The delivery of

cathepsin D to lysosomes is retromer-dependent and cathepsin
D deficiency has been shown to aggravate Tau toxicity (Small
and Petsko, 2015). Moreover, retromer stabilization can reduce
pathology-associated Tau phosphorylation (Young et al., 2018).

In spite of the links with Aβ and Tau pathology, the precise
role of retromer in AD pathogenesis is not fully clear. The
question of whether synaptic retromer systems are involved
remains open (Figure 3). Synapse loss is a hallmark of AD
that occurs early in disease progression (Masliah et al., 2001;
Scheff et al., 2006), and both Aβ and Tau pathologies have
been linked with synapses. Thus, Aβ is produced locally at
synapses (Dolev et al., 2013; Lundgren et al., 2014, 2015; Das
et al., 2016; Schedin-Weiss et al., 2016), and Aβ oligomers

FIGURE 3 | Retromer failure at different synaptic sites may contribute to neurodegenerative disorders. Aβ and Tau are key pathogenic proteins in Alzheimer’s disease
(AD) that can impair both pre- and postsynaptic functions. α-synuclein is a presynaptic protein strongly linked with Parkinson’s disease (PD). Mutations or altered
expression/processing of retromer components may result in impaired retromer function in pre- and/or postsynaptic compartments and perturbed protein
degradation. Moreover, retromer dysfunction in adjacent glial cells, including both microglia and astrocytes, may contribute to decreased clearance of pathogenic
proteins from the synaptic region. Retromer defects may also trigger aberrant phase separation of key proteins that can contribute to aggregate formation. Overall,
impairment of retromer function at synapses may thus result in various defects in the handling of Aβ, Tau and α-synuclein leading to pathological aggregate formation.
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exert toxic effects both pre- and postsynaptically (Ovsepian
et al., 2018). Hyperphosphorylated and misfolded Tau oligomers
accumulate at pre- and postsynaptic sites at early disease
stages (Spires-Jones and Hyman, 2014; Tai et al., 2014), and
different Tau forms can disrupt pre- and postsynaptic functions
(Hoover et al., 2010; Ittner et al., 2010; Zhou et al., 2017;
McInnes et al., 2018). The prion-like spread of Tau pathology
between brain regions (Braak and Braak, 1991) appears to
occur via synapses, and seed-competent Tau aggregates have
been found enriched in synaptosomes (Chang et al., 2018;
DeVos et al., 2018). Taken together, these observations point
at synaptic retromer systems as possible players in early AD
pathogenesis.

Genetic evidence implicates retromer also in Parkinson’s
disease (PD). A missense mutation in VPS35, D620N, has been
found to cause late-onset PD in several patient populations
world-wide (Williams et al., 2017; Cui et al., 2018). The
D620N mutation affects the interaction between VPS35 and
the WASH complex, which has multiple effects on endosomal
traffic (Seaman and Freeman, 2014; McMillan et al., 2017).
The precise link with PD pathogenesis still remains unclear. It
has, for instance, been suggested that retromer dysfunction may
impair the clearance of α-synuclein aggregates, a hallmark of PD,
either by impairing the delivery of cathepsin D (via the retromer
receptors CI-MPR or SORLA) to lysosomes, or of autophagy-
related protein 9a to autophagosome precursors (Follett et al.,
2014; Zavodszky et al., 2014; Small and Petsko, 2015; Cui et al.,
2018). It has also been suggested that connections between
retromer and different PD-associated gene products, like LRRK2,
Parkin and PLA2G6, are of importance, or that mitochondrial
defects play a role (Small and Petsko, 2015; Williams et al., 2017;
Lin et al., 2018; Williams et al., 2018).

Similar to the case with AD, some forms of PD are
strongly linked with synapses, and primarily with the presynaptic
compartment. Evidence from postmortem and neuroimaging
studies in humans along with animal model data suggest that
the degeneration of substantia nigra DA neurons may originate
in their projections to striatum rather than in the cell bodies
(Burke and O’Malley, 2013; Kordower et al., 2013; Laguna et al.,
2015; Schirinzi et al., 2016; Pan et al., 2018; Soukup et al.,
2018). Among the proteins that have been linked to early PD
pathology, α-synuclein has been most extensively studied. This
protein is normally accumulated in nerve terminals where it is
associated with synaptic vesicles (Burré et al., 2017). Its different
pathological forms—oligomers, protofibrils and aggregates—can
exert toxic effects in nerve terminals (Burré et al., 2017; Bridi
and Hirth, 2018). α-synuclein pathology may spread in the brain
when it occurs in the extracellular space and it has been suggested
that synapses are involved in this process via secretion and/or
uptake of α-synuclein aggregates (Volpicelli-Daley and Brundin,
2018).

The composition and roles of the retromer system in
nigrostriatal nerve terminals yet waits to be defined (apart from
being implicated in DAT handling as discussed above). Its
functional importance is supported by the observation that a
mutation in VPS35, D620N, leads to altered DA turnover in
striatum (Ishizu et al., 2016; Cataldi et al., 2018).

Other neurodegenerative diseases linked with retromer
include Down syndrome, a variant of hereditary spastic
paraplegia, and neuronal ceroid lipofuscinoses (Small and
Petsko, 2015; Zhang et al., 2018). With regard to Down
syndrome, the disease mechanism may be similar to that in AD
as the expression of APP (located at chromosome 21) and Aβ

production are enhanced. Moreover, the expression of miR 155 is
enhanced causing a reduction of SNX27 expression that can both
compromise synaptic glutamate receptor traffic (Wang et al.,
2013) and interfere with APP processing (Zhang et al., 2018).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Although the importance of retromer at synapses is beginning
to become evident, the field is yet at an early stage and many
questions remain to be answered. First and foremost, the scheme
of endosomal cargo retrieval vs. degradation (Figure 1A) has
been worked out in compact cell bodies and its correlates in
distantly located synapses remain largely unexplored. Moreover,
insights into neuronal retromer functions are in most cases
limited to a handful of neuron types or to extrapolation from
cell line studies. A clear priority is thus to expand the study
to a broader set of neuron types. This is particularly true for
presynaptic retromer systems of which the functions are least
well understood. Another priority is to define more precisely
the dynamic localization and composition of retromer systems
and their accessory proteins in distinct types of synapses. High
resolution imaging of these protein complexes at synapses
under different conditions will be one of the challenges.
Knowledge about putative synapse-specific accessory proteins
will permit directed functional studies, and may also facilitate
pharmacological development directed at e.g., GPCRs and
neurotransmitter transporters.

As yet, direct evidence connecting pre- or postsynaptic
retromer systems with pathology are not at hand but, as discussed
above, there are many plausible links (Figure 3). Adding to
these, another possible connection has recently emerged, which
is related to phase separation of proteins (Gomes and Shorter,
2018). Recent evidences indicate that the functional organization
of different proteins in the presynaptic (Milovanovic et al., 2018)
as well as postsynaptic (Zeng et al., 2016) compartment depends
on liquid-liquid phase separation. If phase separation would
apply to intracellular pools of for example α-synuclein, or even
Aβ and Tau, it may be envisioned that subtle defects in synaptic
retromer-dependent protein clearance could initiate a seeding
process eventually leading to transition from soluble proteins to
insoluble aggregates.

Future experiments focused on the link between synaptic
retromer systems and the synapse pathology in AD and PD
may proceed along different lines. One may relate to improved
knowledge about synapse-specific accessory proteins. It would,
for example, be of key interest to identify negative regulators
that could be used as drug targets. Another line may focus
on retromer-stabilizing pharmacological chaperones (Mecozzi
et al., 2014). Ways to target such agents to synapses could
potentially enhance protective effects and reduce side-effects.
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Moreover, elucidating the molecular basis of the reduction
of retromer components in sporadic AD (Small et al., 2005)
may lead to new principles that address the basis of the
synapse loss.
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