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ABSTRACT
Abies ernestii Rehder is endemic to the montane regions of Southwest China. Till now, phylogenetic
relationships between A. ernestii and other closely related species remain unclear. In this study, we first
characterized the complete chloroplast (cp) genome of A. ernestii. The whole cp genome was
121,841bp in size, including one hundred and thirteen genes. Results of comparative cp genome
revealed that only ycf1 and ycf2 was characterized by a considerable variation. Our phylogenetic analy-
ses supported the monophyly of the genus Abies and revealed a clear separation between A. ernestii
and A. chensiensis Tiegh. This study highlights the significance of using cp genomes to examine species
boundaries among closely related fir species.
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Introduction

Abies ernestii Rehder is distributed across Southwest China
and characterized by high economic and ecological import-
ance (Farjon and Rushforth 1989; Farjon 1990). It grows in
cold, moist forests of the Hengduan Mountain region at
2600–3800m elevations, with annual precipitation of
1100–2200mm (Kuan 1981). Abies ernestii differs from Abies
chensiensis in the length of needles and color of cones (green
or pale purplish), in addition to its distribution in the north
and west of the Sichuan province, extending into extreme
north-western Yunnan province (Liu 1971). However, the spe-
cies delimitation between A. ernestii and A. chensiensis has
been a continuous source of debate (Liu 1971; Farjon 2001).

Recently, several studies have been conducted on the spe-
cies delimitation between A. ernestii and A. chensiensis using
morphological or molecular data (Suyama et al. 2000; Xiang
et al. 2004, 2009, 2015; Liepelt et al. 2010; Aguirre-Planter et al.
2012). However, no robust phylogenetic relationships have
been reported owing to the lack of high-resolution molecular
markers (e.g. complete chloroplast [cp] genomes) (Shao and
Xiang 2015; Xiang et al. 2018). Therefore, several distinct taxo-
nomic combinations have been proposed: A. ernestii was
treated as an independent species, a variety, or a subspecies of
A. chensiensis (Liu 1971; Shao and Xiang 2015). In addition, A.
chensiensis and A. ernestii were treated as identical in the stud-
ies conducted by Handel-Mazzetti (1929) and Dallimore and
Jackson (1966). Thus, a more rigorous approach using high-
resolution molecular markers is required to delimitate the rela-
tionships between A. ernestii and A. chensiensis.

In this study, we first determined the cp genome of A.
ernestii using next-generation sequencing technology.
Thereafter, we compared it with other available genomes to
explore their genetic divergence, develop molecular markers,
and reconstruct phylogenetic relationships. This study eval-
uated the significant value of cp genomes to examine the
species boundaries among closely related fir species.

Materials and methods

Sample collection and DNA extraction

The specimens and leaf materials of A. ernestii were collected
by Xianchun Zhang from Wenchuan county, Sichuan prov-
ince, China (30.55�N, 103.03�E). The voucher specimen was
deposited in the herbarium of the Institute of Botany, CAS
(PE) (http://pe.ibcas.ac.cn/, Qin Ban, herbarium2@ibcas.ac.cn)
under the voucher number 5874. The leaf materials were first
desiccated in silica gel, and the Ezup plant genomic DNA
prep kit was used to extract the total DNA. The relevant cp
genome sequence was submitted to the NCBI database (No.
MH706707). The associated numbers were PRJNA790664
(BioProject), SRP351570 (SRA), and SAMN24219951 (Bio-
Sample), respectively.

Polymerase chain reaction amplification, sequencing,
and assembly

The extracted DNA was sequenced on the Illumina HiSeq X
platform with libraries in 350 bp length. The clean reads were
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approximately 10.2 million in 150 bp length. We aligned,
assembled, and annotated the reads using CLC de novo
assembler (v. beta 4.6, CLC Bio, Aarhus, Denmark), GeSeq
(https://chlorobox.mpimp-golm.mpg.de/geseq.html), and
tRNAscan-SE v1.3.1 (Schattner et al. 2005; Tillich et al. 2017).
Few adapt-related reads were recognized in the raw reads.
These reads were trimmed N> 10% or Q� 5 to ensure high-
quality data and then assigned to the genome sequence
using Velvet (Zerbino and Birney 2008). The cp genome
sequence was annotated in tRNAscan-SE and GeSeq
(Schattner et al. 2005; Tillich et al. 2017). To match the gene

predictions, we checked all the start/stop codons and intron/
exon boundaries in Sequin 15.50 and Geneious 8.0.2 (Kearse
et al. 2012; Lohse et al. 2013). Finally, we annotated the
sequences by comparing them with the published genomes
of A. chensiensis (MH706706 and MH047653).

Repeat sequence detection and comparative analysis of
cp genomes

The MISA software was used to check the simple repetitive
DNA sequences (SSRs) in the cp genome of A. ernestii.

Figure 1. The chloroplast genome map of Abies ernestii. Genes shown outside the circle are transcribed clockwise, and genes inside are transcribed counter-clock-
wise. Genes belonging to different functional groups are color-coded. The darker grey in the inner corresponds to the GC content and the lighter grey to the
AT content.
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Thereafter, we detected the long repeats using the REPuter
website (https://bibiserv.cebitec.unibielefeld.de/reputer/)
(Kurtz et al. 2001). The parameters used in the analysis were
as follows: the hamming distance was 3, maximum computed
repeats were 50 bp, and minimal repeat size was 30 bp. Using
the mVista program with Shuffle-LAGAN mode, we compared
the whole cp genome of A. ernestii, A. chensiensis (MH706706
and MH047653), and Abies fargesii Franch. (MH706716)
(Frazer et al. 2004). The repeat units were set to 10, 5, 4, 3, 3,
and 3 for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides,
respectively.

Phylogenetic analyses

Phylogenetic analysis was performed using the complete cp
genomes. We aligned the sequences containing the hotspot
mutation regions and chose the maximum-likelihood (ML)
analysis as the method in this study. The analysis was per-
formed using a rapid bootstrap analysis and 1000 rapid boot-
strap search steps in the RAxML v.7.8 (Stamatakis 2014). The
relevant bootstrap value under each node was obtained from
FigTree v.2.2. We collected the complete plastomes of 16 fir
species from the NCBI database (Figure 3, Table S1).
Juniperus squamata Buchanan–Hamilton ex D. Don in the
family Cupressaceae was used as an outgroup.

Results and discussion

Chloroplast genome features of A. ernestii

The complete cp genome of A. ernestii was 121,841 bp in
length, and its G and C content was �38.30%. This genome
was characterized by a typical quadripartite structure, similar
to the cp genomes in Pinaceae. The large single-copy (LSC)
region and short single-copy (SSC) region were 67,157 and
54,156 bp, respectively. It contained 113 genes, including
peptide-encoding genes (68), tRNA genes (16), open reading

frames (6), and rRNA genes (4), respectively (Figure 1,
Table S2). In the LSC region, there were 53 protein-coding
genes, 16 tRNA genes, and 3 open reading frames. The SSC
region owned all the 4 rRNA. The IR regions were 264 bp and
featured trnI-CAU and trnT-GGU. Among the encoded genes,
ycf3 and rpl2 had two introns, and 11 genes (atpF, trnV-UAC,
trnA-UGC, trnL-UAA, trnK-UUU, trnG-GCC, rps12, petD, rpoC1,
petB, and rpl16) had one intron (Table 1). The palindromic
inverted repeat, including trnS, psaM, ycf12, and trnG, was
located in 52-kb inversion points and 1180bp in length. Such
inverted repeat was identical to the published cp genomes
of fir species (Dong et al. 2021). In addition, all ndh genes
were lost as other cp genomes of Pinaceae, such as Keteleeria
davidiana var. calcarean (W. C. Cheng & L. K. Fu) Silba
(Li et al. 2021). As proposed by Blazier et al. (2011), the ndh
genes were initially discovered through their homology to
complex I in the mitochondrial respiratory electron transport.
The lack of ndh genes across various species in Pinaceae indi-
cated its dispensability, suggesting that there might be alter-
native or supplementary electron transport pathways to
achieve this function.

Repeat sequence analysis

The simple sequence repeats (SSRs) have been widely used
in phylogenetic and phylogeographic analyses of highly poly-
morphic genetic materials (Kaur et al. 2015). In this study, we
detected 67 SSRs in the cp genome of A. ernestii, and they
included 42 mononucleotide repeats, 14 dinucleotide repeats,
2 trinucleotide repeats, 7 tetranucleotide repeats, and 2 pen-
tanucleotides repeats (Figure S1). Compared with other SSRs,
the mononucleotide repeats (62.68%) were the most abun-
dant and they contributed more to the genetic variations.
Most mononucleotide repeats were A or T, and three types
of dinucleotide SSRs AG/CT/AT were identified. In addition,
we detected two types of trinucleotide SSRs (AAT/ATT),

Table 1. List of genes encoded in Abies ernestii chloroplast genomes.

Groups of genes Name of genes

Ribosomal RNAs rrn16, rrn23, rrn4.5, rrn5
Transfer RNAs trnA-UGCa, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCCa,

trnG-UCC, trnH-GUG, trnI-CAU�, trnI-GAUa, trnK-UUUa, trnL-CAA, trnL-UAAa,
trnL-UAG, trnM-CAU, trnN-GUU, trnP-GGG, trnP-UGG, trnQ-UUG, trnR-ACG,
trnR-CCG, trnR-UCU, trnS-GCU�, trnS-GGA, trnS-UGA, trnT-GGU�, trnT-UGU,
trnV-GAC, trnV-UACa, trnW-CCA, trnY-GUA

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ, psaM�
Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN,

psbT, psbZ
Subunits of cytochrome b/f complex petA, petBa, petDa, petG, petL, petN
Subunits of ATP synthase atpA, atpB, atpE, atpFa, atpH, atpI
Proteins of large ribosomal subunit rpl2a, rpl14, rpl16a, rpl20, rpl22, rpl23, rpl32, rpl33, rpl36
Proteins of small ribosomal subunit rps2, rps3, rps4, rps7, rps8, rps11, rps12b, rps14, rps15, rps18, rps19
Large subunit of RuBisco rbcL
Subunits of RNA polymerase rpoA, rpoB, rpoCa, rpoC2
Conserved hypothetical chloroplast reading frames ycf1, ycf2, ycf3b, ycf4, ycf12�
ATP-dependent protease subunit P clpP
Chloroplast envelope membrane protein cemA
Chlorophyll biosynthesis chlB, chlL, chlN
Miscellaneous proteins accD, ccsA, infA, matK
�Genes with two copies; aGenes with one intron; bGenes with two introns.
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twelve types of tetranucleotide SSRs (AAAG/CTTT/AAAT/
ATTT/AACC/GGTT/ACCT/AGGT/AGAT/ATCT/ATCC/ATGG), and
four types of pentanucleotides SSRs (AACAT/ATGTT/AATCG/
ATTCG) (Figure S1). Furthermore, sixty-four long repeats were
revealed, and they included 37 forward repeats, 14 tandem
repeats, and 13 palindromic repeats (Figure S1).

Comparative genome analysis

To perform the comparative genome analysis, we used three

closely related firs: A. ernestii, A. chensiensis, and A. fargesii

(Figure 2). In the phylogenetic analysis, they clustered

together as a monophyletic lineage, with an extremely high

Figure 2. Comparison of four chloroplast genomes using the mVista alignment program, with Abies chensiensis (MH706706) as a reference. The x-axis means the
midpoint of the window, and the y-axis means nucleotide diversity (Pi). Genome regions are color-coded as protein-coding, rRNA coding, tRNA coding, or conserved
noncoding sequences.
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bootstrap (BSML ¼ 100) (Figure 3). Our results indicated that
the IR region was more conservative than the SSC and LSC
regions. Almost all the genetic variability was concentrated in
the intergenic or noncoding region, corroborating the
extremely low resolution among closely related fir species in
previous phylogenetic studies (Figure 2) (Xiang et al. 2004,
2009, 2015). In the coding regions, only ycf1 and ycf2 were
characterized by a considerable variation between A. ernestii
and A. chensiensis (Figure 2). ycf1 had been proposed as the
most variable coding region that was better than the existing
plastid barcodes and could serve as a DNA barcode (Dong
et al. 2015). Unfortunately, the cp markers widely used in the
Abies phylogenetic studies, for example, matK, rpl16, rps12-
rpl20, rps18, trnC-D, trnS-G, and trnT-F, were highly conserva-
tive among the three closely related species (Xiang
et al. 2018).

Phylogenetic analysis

To infer the phylogenetic status and evolutionary relationship
of A. ernestii, we selected 16 published cp genomes of fir
species, with Juniperus squamata as an outgroup. Based on
the best ML phylogram, 17 Abies species were supported as
one monophyletic lineage (BSML ¼ 100) (Figure 3). Abies bal-
samea (L.) Mill. was distributed in North America and formed
a sister lineage with the firs from East Asia (BSML ¼ 100).

Among the East Asia firs, Abies beshanzuensis M. H. Wu was
nested with others (BSML ¼ 97). Abies ernestii, A. chensiensis,
and A. fargesii clustered together as a monophyletic lineage,
with an extremely high bootstrap (BSML ¼ 100). Our results
further indicated that A. ernestii and A. chensiensis were sepa-
rated with an extremely high bootstrap (BSML ¼ 100); thus,
their current species status was well corroborated. The treat-
ments of A. ernestii as a variety of A. chensiensis, or an identi-
cal subspecies of A. chensiensis were rejected (Handel-
Mazzetti 1929; Dallimore and Jackson 1966). Such a robust
phylogenetic relationship between A. ernestii and A. chensien-
sis has not been revealed previously (Xiang et al. 2004;
Jaramillo-Correa et al. 2008; Semerikova et al. 2011, 2018).

This study provides new insights into the species delimita-
tion and phylogenetic relationship in the genus Abies. Our
results validated the reliability of using cp genome data to
delimitate problematic groups at low taxonomic levels. These
data provided important genetic resources for these ecologic-
ally important Abies species and further cp genome evolu-
tion research.
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