
ORIGINAL RESEARCH
published: 16 May 2022

doi: 10.3389/fvets.2022.893013

Frontiers in Veterinary Science | www.frontiersin.org 1 May 2022 | Volume 9 | Article 893013

Edited by:

Daisuke Hasegawa,

Nippon Veterinary and Life Science

University, Japan

Reviewed by:

Shinji Tamura,

Tamura Animal Clinic, Japan

Sam Long,

Veterinary Referral Hospital, Australia

Adrian Sewell,

Biocontrol, Germany

*Correspondence:

Holger A. Volk

Holger.Volk@tiho-hannover.de

Specialty section:

This article was submitted to

Veterinary Neurology and

Neurosurgery,

a section of the journal

Frontiers in Veterinary Science

Received: 09 March 2022

Accepted: 22 April 2022

Published: 16 May 2022

Citation:

Schmidt T, Meller S, Talbot SR,

Berk BA, Law TH, Hobbs SL,

Meyerhoff N, Packer RMA and

Volk HA (2022) Urinary

Neurotransmitter Patterns Are Altered

in Canine Epilepsy.

Front. Vet. Sci. 9:893013.

doi: 10.3389/fvets.2022.893013

Urinary Neurotransmitter Patterns
Are Altered in Canine Epilepsy
Teresa Schmidt 1, Sebastian Meller 1, Steven R. Talbot 2, Benjamin A. Berk 3,4, Tsz H. Law 4,

Sarah L. Hobbs 4, Nina Meyerhoff 1, Rowena M. A. Packer 4 and Holger A. Volk 1*

1Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany, 2 Institute for

Laboratory Animal Science, Hannover Medical School, Hannover, Germany, 3BrainCheck.Pet® – Tierärztliche Praxis für

Epilepsie, Sachsenstraße, Mannheim, Germany, 4Department of Clinical Science and Services, Royal Veterinary College,

Hatfield, United Kingdom

Epilepsy is the most common chronic neurological disease in humans and dogs. Epilepsy

is thought to be caused by an imbalance of excitatory and inhibitory neurotransmission.

Intact neurotransmitters are transported from the central nervous system to the

periphery, from where they are subsequently excreted through the urine. In human

medicine, non-invasive urinary neurotransmitter analysis is used tomanage psychological

diseases, but not as yet for epilepsy. The current study aimed to investigate if urinary

neurotransmitter profiles differ between dogs with epilepsy and healthy controls. A total

of 223 urine samples were analysed from 63 dogs diagnosed with idiopathic epilepsy and

127 control dogs without epilepsy. The quantification of nine urinary neurotransmitters

was performed utilising mass spectrometry technology. A significant difference between

urinary neurotransmitter levels (glycine, serotonin, norepinephrine/epinephrine ratio,

È-aminobutyric acid/glutamate ratio) of dogs diagnosed with idiopathic epilepsy and

the control group was found, when sex and neutering status were accounted for.

Furthermore, an influence of antiseizure drug treatment upon the urinary neurotransmitter

profile of serotonin and È-aminobutyric acid concentration was revealed. This study

demonstrated that the imbalances in the neurotransmitter system that causes epileptic

seizures also leads to altered neurotransmitter elimination in the urine of affected

dogs. Urinary neurotransmitters have the potential to serve as valuable biomarkers

for diagnostics and treatment monitoring in canine epilepsy. However, more research

on this topic needs to be undertaken to understand better the association between

neurotransmitter deviations in the brain and urine neurotransmitter concentrations in

dogs with idiopathic epilepsy.
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INTRODUCTION

Dogs and humans are affected by naturally occurring epilepsy, a complex brain disorder
characterised by a predisposition to experience recurring seizure events (1–3). It is one of the
most common chronic neurological diseases in both species, with many shared clinical and
epidemiological characteristics (4–6). Around two-thirds of the affected dogs and half of the
human patients do not become seizure free, despite pharmacological treatment (7, 8). Persistent
uncontrollable seizures are a health concern increasing mortality, causing psychological and
physical stress, and culminating in a negative impact on the overall quality of life (9, 10).
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Epileptic seizures are initiated by abnormally excessive
or synchronous neuronal activity in the cerebral cortex or
hippocampus of the brain (11). The exact pathogenesis of this
process has not yet been solved. However, a contributing factor
to the underlying pathophysiology of seizures may arise from
the imbalance of excitatory and inhibitory neurotransmission,
caused by neurotransmitter and receptor alterations (12, 13).

In the past decades, evidence in humans and primates
has suggested that seizures were correlated to altered
neurotransmitter concentrations of glutamate, È-aminobutyric
acid (GABA) and serotonin, which were measured in the
extracellular fluid, cerebrospinal fluid (CSF) and serum (14–
17). A deviating neurotransmitter composition, caused by a
dysfunctional neurotransmitter metabolism in humans, can also
result in seizures and other neurological signs (18).

Emerging seizures can also be linked to changes in
neurotransmitter receptors. In earlier studies, the altered GABA
or dopamine (DA) receptor density was accompanied by seizures
or seizure susceptibility in human patients and rodents (19–
22). Changes in receptor function, such as binding potential or
endogenous activity of glutamate, GABA or serotonin receptors
were found in humans suffering from temporal lobe epilepsy
(23–27). Additionally, a divergent composition of glutamate
or GABA receptor subunits has also been associated with
recurring seizures in animal models and humans (28–31). Those
detected subunit compositions were similar to those of the more
excitatory immature brain and facilitated further seizures and
epileptogenesis (32).

In the central nervous system (CNS), glutamate is the major
excitatory neurotransmitter, whereas GABA is the primary
inhibitory counterpart (33, 34). The equilibrium of these two
neurotransmitters maintains the balance of cell excitability.
The aforementioned alterations that affect one or both of these
neurotransmitters are likely to elicit a shift to arousal in the
brain, followed by seizures (13). The neurotransmitter serotonin
is known for its anticonvulsant properties and regulation
of mood and cognition (35, 36). Therefore, disturbances
in the serotonergic system are assumed to evoke seizures
and promote frequently developed neurobehavioural/-
psychiatric comorbidities associated with epilepsy in dogs
and humans (37–43).

In the body, intact neurotransmitters of the CNS are
transported through the blood-brain barrier (BBB) to
the peripheral systemic circulation, from where they are
primarily excreted through the kidney into urine (44–47). The
neurobiological basis of this process is poorly understood. It is

Abbreviations: GABA, È-aminobutyric acid; CSF, cerebrospinal fluid; DA,

dopamine; CNS, central nervous system; BBB, blood-brain barrier; NE,

norepinephrine; ADHD, attention-deficit hyperactivity disorder; E, epinephrine;

PEA, phenylethylamine; MCT, medium-chained triglyceride; IE, idiopathic

epilepsy; IVETF, International Veterinary Epilepsy Task Force; ASD, antiseizure

drug; RVC, Royal Veterinary College; TiHo, University of Veterinary Medicine

Hannover; HPLC-QqQMS/MS, High-performance liquid chromatography triple-

quadrupole mass spectrometry/mass spectrometry; ANOVA, analysis of variance;

SSRIs: selective serotonin reuptake inhibitors; peripheral nervous system;

SSADH, succinic semialdehyde dehydrogenase, AADC, aromatic L-amino acid

decarboxylase.

substrate-specific and can vary for each neurotransmitter (48).
However, several animal studies demonstrated an association
between central and peripheral neurotransmitter output into the
urine (49–52). Moreover, positive correlating neurotransmitter
concentrations of serine, glycine and norepinephrine (NE)
between the CSF, blood and urine in dogs were recently revealed,
emphasising a connection (53).

In human medicine, non-invasive urinary neurotransmitter
analysis is used to manage medical conditions such as depression
and attention-deficit hyperactivity disorder (ADHD) (54–57).
Patients affected by depressive and anxiety symptoms showed
increased urinary catecholamines, like NE and epinephrine
(E) (58–60). Suicide attempts in depression were strongly
associated with urinary excreted DA, even greater than the
CSF concentration (61). ADHD symptoms correlated with
alterations of the urinary catecholamines NE and E, and a
decrease in urinary phenylethylamine (PEA), which is linked to
inattentiveness (62–66).

Urinary neurotransmitter analysis is not as yet used for
epilepsy management in either humans or dogs, to the authors’
knowledge. However, promising evidence was provided in
a recent study, indicating altered urinary neurotransmitter
patterns associated with the treatment efficacy of medium-
chained triglyceride (MCT) oil in drug-resistant canine epilepsy
(67). Intake of MCT oil increased urinary GABA concentration
in dogs with IE. Also, the GABA/glutamate ratio changed
significantly by decreased glutamate levels compared to GABA
levels in dogs affected by epilepsy. Furthermore, non-responders
without a reduction in seizure frequency below 50% excreted
higher glutamate, histamine and serotonin levels in their
urine (67).

This study investigated whether urinary neurotransmitter
profiles differ between dogs with epilepsy and non-epileptic
controls. We hypothesised that urinary neurotransmitter analysis
could provide a non-invasive diagnostic tool, where characteristic
neurotransmitter deviations can serve as valuable biomarkers in
epilepsy research and clinical management.

MATERIALS AND METHODS

Sample Acquisition
In this multicentre study a total of 223 urine samples were
collected from 190 privately owned dogs (both sexes; mixed or
pure breed) and divided into two cohorts. From the first cohort,
96 urine samples from 63 subjects with idiopathic epilepsy (IE)
were obtained. Dogs in the IE cohort had no acute or chronic
diseases of the gastrointestinal tract, kidney, liver or heart failure.
They met at least the requirements of Tier I (n = 15) confidence
level of the International Veterinary Epilepsy Task Force (IVETF)
for the diagnosis of IE, however, most dogs met Tier II (n
= 48). Two adjustments to IVETF criterion were applied, as
long as magnetic resonance imaging was unremarkable: firstly,
abnormalities in the interictal neurological examination caused
by antiseizure drug (ASD) treatment were tolerated and secondly,
the maximum age at seizure onset was increased to 12 years
(68). Samples were collected and analysed as part of three
former epilepsy studies, between October 2012 and September
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2017, at international study sites: Queen Mother Hospital for
Animals, Royal Veterinary College, London, UK (RVC) (n =

59: 29 paired samples collected from the same individual at
certain study stages; 30 unpaired); University of Veterinary
Medicine Hannover, Hannover, Germany (TiHo) (n= 3, paired);
University of Helsinki, Helsinki, Finland (n= 1, paired) (69–72).

The second cohort was a control group of 127 healthy dogs. All
control cohort subjects were at least 1 year of age, did not receive
any medication and had no chronic diseases. One hundred (n
= 100) of the second cohort samples were collected from dogs
owned by TiHo staff and students, between January and June
2020. The remaining 27 samples were obtained from healthy
control dogs at the RVC study site.

To avoid bias of the study results, the dogs were not
fed milk products, fruits and vegetables 48 h before sample
acquisition. Exposition to strenuous exercise was also avoided
for 24 h before sampling. Bitches were not in heat during the
collection process. The urine samples were collected via the free
catch method. The first or second void of morning urine from
the fasting dog (preferable midstream) was used for urinary
neurotransmitter analysis. Samples were transferred into a tube
containing a preservative to ensure sample stability (50mg oxalic
acid/10ml urine), followed by an immediate transport to the
TiHo laboratory. Samples from the other study sites (London,
Helsinki) were collected as part of an enrolment or study visit
for epilepsy trials with MCT, epilepsy behaviour studies or from
healthy controls of the previously mentioned studies and were
directly cooled on ice (69–72).

Sample Preparation and Analysis
Samples were aliquoted and quickly frozen at the different
study site laboratories. They were stored at −80◦C for at
least 4–6 h prior to shipment. The preserved urine samples
were continuously frozen and shipped on dry ice for external
analysis of neurotransmitter concentrations to “Doctor’s
Data,” St. Charles, IL, USA. Nine urinary neurotransmitter
levels (serotonin, histamine, glycine, phenylethylamine,
DA, E, NE, glutamate, GABA) were quantified utilising
High-performance liquid chromatography triple-quadrupole
mass spectrometry/mass spectrometry (HPLC-QqQ MS/MS)
technology. In addition, creatinine levels were measured by
Enzymatic Colorimetric—Kinetic Jaffé method. Those were used
as a reference value to determine urine concentrations and to
evaluate neurotransmitter levels relative to creatinine levels. The
applied neurotransmitter screening method is usually utilised
in human patients. In previous canine studies, the method was
used multiple times and the archived data revealed biologically
reasonable results for this species as well (53, 67).

Statistical Analysis
Statistical analyses were performed with the R software (v4.0.3)
to test the hypothesis, that there is a difference between the
urinary neurotransmitter excretion of dogs affected by epilepsy
and a healthy control group (H1) (73). Additionally, whether
the urinary neurotransmitter excretion of dogs with epilepsy
is affected by ASD administration was explored by comparing
neurotransmitter levels of ASD- treated and untreated dogs with

epilepsy (H2). First, data were log10-transformed to compensate
for wide ranges. Then, the transformed data were tested against
the hypothesis of normal distribution using Shapiro–Wilk’s
test. Finally, in the case of normally distributed data, group
comparisons were analysed with an unpaired two-sided two-
sample t-test. When data did not follow a normal distribution,
the Wilcoxon-Mann-Whitney test was used in the analysis.
Next, multiple group comparisons were analysed with a one-way
analysis of variance (ANOVA) to find between-factor differences.
Finally, a Games-Howell post-hoc test with the Holm correction
for multiple comparisons was used to analyse multiple group
contrasts and compensate for potential heteroscedasticity. If
multiple group data did not follow a normal distribution, the
Kruskal-Wallis test was used. Results were considered significant
at the following p-value thresholds: p ≤ 0.05 (∗), p ≤ 0.01 (∗∗), p
≤ 0.001(∗∗∗), and p ≤ 0.0001 (∗∗∗∗).

RESULTS

Study Population
For the current study, 223 urine samples from 190 dogs of
more than 21 breeds were collected, including the following:
Australian Shepherd (n = 5), Beagle (n = 6), Belgian Shepherd
(n =2 ), Bernese Mountain Dog (n = 1), Border Collie (n =

4), Chihuahua (n = 2), Dachshund (n = 3), Boxer (n = 1),
German Shepherd (n = 4), French Bulldog (n = 1), Golden
Retriever (n = 2), Havanese (n = 1), Jack Russell Terrier (n =

1), Labrador (n = 2), Vizsla (n = 3), Maltese (n = 1), Poodle
(n = 2), Rhodesian Ridgeback (n = 1), Siberian Husky (n =

2), cross breeds (n = 46) and other breeds (n = 43). For n =

57 dogs, no information of their breed was available. The study
population consisted of n = 89 males, of which n = 32 were
intact, n = 57 were neutered, and n = 98 females, of which n
= 37 were intact and n = 61 were neutered. For three dogs,
the gender status is not available. The dogs had a mean age
of 5.31 (±SD 3.41) years and weighed a mean of 20.08 (±SD
12.25) kg. Of the n = 63 dogs with IE, n = 42 were treated
with phenobarbital (66.67%) and n = 27 were treated with
potassium bromide (42.86%), of which 26 received potassium
bromide additional to the administered phenobarbital, and one
dog was solely treated with potassium bromide. Forty-four (n
= 44) dogs in the IE cohort received additional ASD treatment
in addition to or instead of the aforementioned ASDs (69.84%):
levetiracetam (n = 16 chronically; n = 3 pulse therapy) (74),
imepitoin (n = 6), Gabapentin (n = 2), rectal diazepam rescue
therapy (n = 7), MCT oil (n = 36), cannabidiol oil (n =

2), coconut oil (n = 1). Seven (n = 7) dogs with IE did
not receive ASD treatment at the time of sample acquisition
and for n = 6 dogs no treatment data were available. Thirty-
three (n = 33) (52.38%) of the affected dogs had at least three
generalised seizures in the past 3 months before study enrolment.
They were chronically treated with at least one ASD without
improving seizure frequency. Seven (n = 7) dogs (11.11%) of
the IE cohort were seizure free during the past 3 months before
sample collection. For n = 23 dogs, the seizure frequency was
not accessible.
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FIGURE 1 | Differences in the urinary neurotransmitter profile between dogs with idiopathic epilepsy (IE) (n = 63 dogs/96 samples) and the healthy control group

(CTRL) (n = 127 dogs/127 samples). Figure shows an increase of urinary (A) glycine (p ≤ 0.05) and (B) serotonin (p ≤ 0.001) concentrations and a decrease of the

(C) norepinephrine/epinephrine ratio (p ≤ 0.05) and the (D) È-aminobutyric acid (GABA)/glutamate ratio (p ≤ 0.01) in dogs affected by idiopathic epilepsy. Data are

presented as box-and-whisker plots (the median is represented by the central line, the 25th and the 75th percentile represent the lower and upper limit, and the length

of the whiskers represent the 1.5 multiple of the interquartile range). Unpaired two-sided two-sample t-test and Wilcoxon–Mann–Whitney test were used to compare

the urinary neurotransmitter excretion between dogs with epilepsy and the healthy control group. *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001.

Neurotransmitter Analysis
A significant difference between urinary neurotransmitter levels
of dogs diagnosed with IE and the control group was revealed,
when sex and neutering status were accounted for (Figures 1,
2). Urinary glycine (p ≤ 0.05, Figure 1A) and serotonin
concentration (p≤ 0.001, Figure 1B) were significantly increased
in dogs with IE. Whereas, the NE/E ratio (p ≤ 0.05, Figure 1C)
and the GABA/glutamate ratio (p ≤ 0.01, Figure 1D) was
significantly decreased in dogs with epilepsy. The sex and
neutering status of the dogs substantially affected the urinary

neurotransmitter excretion (Figure 2). Glycine concentration
was significantly increased in neutered females with epilepsy
(p ≤ 0.05, Figure 2A). The serotonin concentration was
significantly increased in intact males (p ≤ 0.01), neutered
males (p ≤ 0.001) and neutered females (p ≤ 0.001) with
epilepsy (Figure 2B). The NE/E ratio was significantly decreased
in neutered females (p ≤ 0.05, Figure 2C) with epilepsy.
The GABA/glutamate ratio was significantly reduced in intact
males (p ≤ 0.05) and neutered females (p ≤ 0.05) with
epilepsy (Figure 2D). Finally, an influence of ASD treatment on
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FIGURE 2 | Effects of the sex and neutering status on the urinary neurotransmitter profile of dogs with idiopathic epilepsy (IE) compared to the healthy control group

(CTRL). (A) Glycine levels differ significantly in neutered females (nf) (p ≤ 0.05) (IE: n = 22 dogs/31 samples vs. CTRL: n = 39 dogs/39 samples). (B) Serotonin levels

differ significantly in intact males (m) (p ≤ 0.01) (IE: n = 11 dogs/18 samples vs. CTRL n = 21 dogs/21 samples), neutered males (nm) (p ≤ 0.001) (IE: n = 24 dogs/37

samples vs. CTRL n = 33 dogs/33 samples) and neutered females (p ≤ 0.001) (IE: n = 22 dogs/31 samples vs. CTRL n = 39 dogs/39 samples). (C) The

norepinephrine/epinephrine ratio differs significantly in neutered females (p ≤ 0.05) (IE: n = 22 dogs/31 samples vs. CTRL n = 39 dogs/39 samples). (D) The

È-aminobutyric acid (GABA)/glutamate ratio differs significantly in intact males (p ≤ 0.05) (IE: n = 11 dogs/18 samples vs. CTRL n = 21 dogs/21 samples) and

neutered females (p ≤ 0.05) (IE: n = 22 dogs/31 samples vs. CTRL n = 39 dogs/39 samples). In intact females (f) no significant difference (NS.) of all analysed

neurotransmitter between the groups was found (IE: n = 5 dogs/9 samples vs. CTRL n = 21 dogs/21 samples). Data are presented as box-and-whisker plots (the

median is represented by the central line, the 25th and the 75th percentile represent the lower and upper limit, and the length of the whiskers represent the 1.5

multiple of the interquartile range). Unpaired two-sided two-sample t-test and Wilcoxon–Mann–Whitney test were used to compare the urinary neurotransmitter

excretion between dogs with epilepsy and the healthy control group. *p ≤ 0.05, **p ≤ 0.01 and ***p ≤ 0.001.

urinary neurotransmitter excretion was observed in dogs with
epilepsy (Figure 3). Treatment significantly increased serotonin
concentration in dogs with epilepsy compared to untreated dogs
(p ≤ 0.05, Figure 3A), to an even higher level as in healthy
controls (p Holm-corrected = 1.02e-12, Figure 3B). GABA
concentration was significantly decreased in untreated dogs with
epilepsy compared to those treated dogs with IE (p ≤ 0.05,
Figure 3C). The ASD treatment increased GABA concentration
and increased it to a similar level to healthy control dogs (p
Holm-corrected = 0.607, Figure 3D). For the remaining urinary
neurotransmitters (histamine, PEA, DA, E, NE, glutamate) no
statistically significant differences between the two cohorts or an
ASD treatment effect were identified (Supplementary Table 1).

DISCUSSION

The objective of this study was to evaluate the suitability of
urinary neurotransmitter analysis as a non-invasive diagnostic
tool, where characteristic neurotransmitter deviations serve
as valuable biomarkers for canine IE. It was hypothesised
that urinary neurotransmitter profiles differ between dogs
with epilepsy and healthy controls (H1). Sex and neutering
status substantially affected urinary neurotransmitter excretion.
In the present study, urinary neurotransmitter patterns were

significantly altered in dogs with IE, when sex and neutering
status were accounted for, which confirmed the first hypothesis
of our study. Urinary glycine and serotonin concentration
were significantly increased in dogs with IE, whereas the
GABA/glutamate ratio and the NE/E ratio was significantly
decreased. Additionally, it was hypothesised that the urinary
neurotransmitter excretion of dogs with epilepsy was affected
by administered ASD, with hypothesised differences between
ASD-treated dogs compared to untreated dogs with epilepsy
(H2). Results demonstrated that ASD treatment increased GABA
concentration in dogs with epilepsy to the level seen in the
healthy control population.

Glycine serves primarily as an inhibitory neurotransmitter in
the CNS (75). It generally improves mood, mental performance
and memory skills (76, 77). However, elevated levels can
compromise cognitive processing and provoke seizures (78, 79).
In humans, a rare inherited error of glycine metabolism, called
non-ketotic hyperglycinemia, causes an excessive accumulation
of this neurotransmitter in the body, particularly in the nervous
system (80). Clinical signs of this disease include refractory
seizures, hyperactivity and in adults cognitive impairment (79,
80). Affected patients also excrete high levels of glycine in their
urine (80). Non-ketotic hyperglycinemia and epilepsy are two
different diseases, however, parallels in clinical signs exist. The
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FIGURE 3 | Influence of the antiseizure drug treatment on the urinary neurotransmitter profile. (A) Urinary serotonin concentration compared between treated (n = 56

dogs/89 samples) and untreated dogs (n = 7 dogs/7 samples) affected by idiopathic epilepsy (p ≤ 0.05). (B) Multiple group comparison of the urinary serotonin

excretion between treated (n = 56 dogs/89 samples) and untreated dogs (n = 7 dogs/7 samples) with idiopathic epilepsy and the healthy control group (ctrl) (n = 127

dogs/127 samples). (C) Urinary È-aminobutyric acid (GABA) concentration compared between treated (n = 56 dogs/89 samples) and untreated dogs (n = 7 dogs/7

samples) with idiopathic epilepsy (p ≤ 0.05). (D) Multiple comparisons of the urinary È-aminobutyric acid excretion between treated (n = 56 dogs/89 samples) and

untreated dogs (n = 7 dogs/7 samples) with idiopathic epilepsy and the healthy control group (n = 127 dogs/127 samples). Data are presented as box-and-whisker

plots (the median is represented by the central line, the 25th and the 75th percentile represent the lower and upper limit, and the length of the whiskers represent the

1.5 multiple of the interquartile range). Unpaired two-sided two-sample t-test and Wilcoxon–Mann–Whitney test were used for group comparison. For multiple group

comparisons a one-way analysis of variance (ANOVA) and a Games-Howell post-hoc test with the Holm correction was utilised. *p ≤ 0.05.

most prominent clinical sign of human and canine epilepsy
are recurrent seizures. Cognitive impairments and hyperactivity
are often associated as well (81–87). The elevated urinary
glycine levels in dogs with IE found in the current study
are another similarity. The results indicating, increased glycine
concentration might be a contributing factor inducing seizures
and associated cognitive impairment, as well as hyperactivity
in affected patients. However, elevated urinary glycine in dogs
with epilepsy found in this study, should be differentiated
from the massively increased concentrations in human patients
with non-ketotic hyperglycinemia. Further studies are needed
to evaluate whether urinary glycine can serve as a potential

biomarker in canine epilepsy, too. It must be considered, that
for laboratory diagnosis of non-ketotic hyperglycinemia CSF and
serum glycine concentrations are determined. In a previous study
canine glycine levels correlated between CSF, serum and urine,
suggesting non-invasive urinary neurotransmitter analysis as a
good option for glycine screening in dogs (53). A treatment
effect of the ASDs (phenobarbital and potassium bromide),
which might have caused the detected glycine increase, was not
revealed in this study. For valproate, an anticonvulsive drug
administered in human medicine, an elevating effect on urine
and plasma glycine levels exists (88). To the authors’ knowledge,
such an effect is not known from first and second-line drugs
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(phenobarbital and potassium bromide) authorised for canine
epilepsy treatment.

Urinary serotonin levels were increased in dogs with IE,
compared to dogs without epilepsy and were substantially
affected by their sex and neutering status. These findings
match those of a recent study in which urinary serotonin
excretion was altered after ovariohysterectomy in bitches (89).
Serotonin plays a role in regulating sleep, appetite and mood
(36). Grouping the data into treated and untreated epileptic
dogs revealed that untreated dogs with epilepsy excreted
significantly lower urinary serotonin levels than ASD-treated
dogs with epilepsy or healthy control dogs. Decreased serotonin
concentrations are related to the pathogenesis of various
psychiatric and neurological disorders (41). Alterations in
the serotonergic system can lower the seizure threshold and
are associated with frequently co-occurring neurobehavioural
comorbidities (35, 37). Psychological conditions/behavioural
abnormalities are commonly treated with selective serotonin
reuptake inhibitors (SSRIs) in humans and dogs (90, 91).
However, drug manuals suggest that SSRIs are contraindicated
in dogs with epilepsy or a history of seizures (92). In contrast,
the International League Against Epilepsy and experimental
data suggest SSRIs to be of low risk to patients with a
history of seizures or epilepsy, indicating that they can
be cautiously used for the treatment of anxiety in some
epilepsy patients (93). Some experimental data even exists
that SSRIs might be anticonvulsive. For example, the SSRI
fluoxetine is effective in dogs with fly catching syndrome,
a condition which has been considered by some as limbic
epilepsy, but others as a compulsive behavioural disorder (94).
In the current study, ASD treatment significantly increased
the serotonin concentration in dogs with epilepsy compared
to untreated dogs, to an even higher level than in healthy
controls dogs. Elevated serotonin levels can be an amplifying
and beneficial effect of ASD treatment, due to the protective
properties of serotonin against seizures. Increased serotonin
concentration may also improve associated neurobehavioural
disorders in affected dogs, without prescribing contraindicated
SSRIs, however, further studies are required to explore this
potential positive effect.

The current study also revealed a diminished
GABA/glutamate ratio in dogs with IE, which reflects low
GABA levels or high glutamate levels in the examined urine
samples, respectively. Both neurotransmitters are amino acids
with contradictory effects on the body. GABA acts as the primary
inhibitory neurotransmitter, while glutamate is the major
excitatory counterpart in the CNS (33, 34). These findings in
the urine potentially mirror neurotransmitter alterations in the
epileptic brain. Furthermore, low urinary GABA concentrations
in drug naïve dogs, compared to treated dogs with IE and
healthy controls were shown. Dogs with IE who received ASD
treatment excreted a higher urinary GABA concentration, which
was almost at the same level as healthy controls. These findings
reflect the expected lower GABA concentration in untreated
epilepsy and corroborate a treatment effect, which may have
corrected the GABA values up to the healthy controls state.
However, the ASD administered in this study (phenobarbital

and potassium bromide) are not known to directly influence
GABA concentrations. Their anticonvulsant effect is mediated by
other action mechanisms, including GABA receptor interactions
(95, 96). Ultimately, however, acute and chronic phenobarbital
treatment reduce brain GABA levels (97). Why urinary GABA
levels behave differently requires further research.

The NE/E ratio was found to be decreased in dogs affected by
IE, representing low NE levels or high E levels in the examined
urine samples, respectively. Thesemonoamine neurotransmitters
are catecholamines and act receptor-binding-dependent either
as excitatory or inhibitory stimulants in the CNS (98, 99). NE
is known for its anticonvulsant properties in epilepsy, even
though it can also be proconvulsive under certain circumstances
(13, 100–102). Reduced NE levels of dogs with IE compared to
healthy controls in the presented study corroborate the generally
anticonvulsive effect of this neurotransmitter. The lack of NE
might contribute to epileptogenesis and induction of seizures in
the examined dogs. Furthermore, NE affects cognition, attention
and memory ability (103). The noradrenergic system changes
cause various neuropsychiatric and -degenerative disorders,
such as Alzheimer’s disease and ADHD in humans (103–105).
As aforementioned, canine epilepsy can be associated with
cognitive impairments (72, 82–84). The low NE concentrations
detected in this study might contribute to the development
of those impairments. These findings consistent with those of
decreased NE levels assessed in the brain of human patients
with Alzheimer’s disease, which were correlated with the degree
of cognitive impairment (106). Another comorbidity of human
epilepsy is ADHD, with behavioural similarities also documented
in canine epilepsy patients (86, 87). Previous research has
indicated that ADHD can be associated with imbalances in
the noradrenergic and dopaminergic systems (105, 107). Several
studies reported a correlation between ADHD in children and
altered urinary catecholamine excretion (56, 63, 108). Pliszka
et al. detected elevated urinary excretion of NE metabolites
in children with ADHD compared to healthy controls and
increased urinary E excretion when ADHD was accompanied
by anxiety (62). Anxiety disorders are also common in human
and canine epilepsy (39, 109). A relationship between increased
anxiety and exaggerated stress response of the neuroendocrine
system haven been previously described (60, 110). E regulates
many important body functions and is substantially involved
in stress response (99). Elevated E concentrations in dogs with
IE may have caused the identified deviation in the urinary
NE/E ratio and may also be responsible for the co-occurring
anxiety in canine epilepsy. Finally, sleep disturbances are often
associated with epilepsy in humans (111). They are assumed
to occur in dogs as well, although evaluation remains difficult
(112). In former studies, poor sleep quality and disordered sleep
were linked to a profuse activation of the sympathetic nervous
system, resulting in increased nocturnal serum catecholamine
levels (113, 114). As a comorbidity of epilepsy, altered sleeping
patterns might also have existed in the canine participants of
this study. This may have caused elevated nocturnal E levels,
which were excreted and detected in the analysed morning
urine. Overall, the evidence presented indicates that alterations
in the NE/E ratio of dogs with IE in the current study may
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be associated with the development of seizures and common
comorbidities, such as sleep disturbances, ADHD- and anxiety-
like behaviour. The results of this study suggest a potential role
of the nor-/adrenergic pathway alterations in canine epilepsy and
neurobehavioural comorbidities.

A few limitations of the present study should be noted. First,
the multicentred sample acquisition enabled a large sample size
of urine from participants with IE and healthy controls, however,
variability in sample collection and storage may have impacted
results. The number of untreated dogs with IE concerning
the total study population of dogs with epilepsy was small,
therefore, caution must be applied, as findings referring to this
population might not be representative. Another limitation of
this study is that a direct correlation between CNS and urinary
neurotransmitters levels has only been shown to a limited extent
in previous research. Finally, despite us finding differences, these
might not be clinically discriminatory and only be considered as
a monitoring tool. Future studies are needed to identify for which
patient these changes are clinically relevant.

Numerous factors can influence the eliminated urinary
neurotransmitter concentrations. Neurotransmitter passage
from the CNS to the periphery is regulated by the BBB, being
formed by specific endothelial cells, through which the transport
differs for each substrate (48). For glycine a non-carrier-mediated
process for BBB crossing is assumed in rats, whereas for dogs
no significant transfer through the BBB could be shown so far
(115, 116). Serotonin is shuttled via a serotonin transporter,
which enables a bidirectional permeation through the luminal
membrane of the endothelial cells, but only unidirectional
transport to the brain on the abluminal side (117, 118). GABA
can cross the abluminal endothelial membrane through a
transport system and a luminal membrane passage is presumed
as well, even though the transporter has not yet been identified
(45, 119). Glutamate can also pass the BBB across the abluminal
side via several transporters into the endothelial cells, from
where a bidirectional luminal transport is possible (44, 120). NE
is shuttled via an abluminal transporter out of the brain into
the endothelial cells (117, 121). E is proven to be assimilated
into endothelial cells, however the exact process remains elusive
(122). BBB function might be altered during seizure and the
neurotransmitter could pass more readily. The presented
evidence emphasises that the neurotransmitter transfer through
the BBB is still not completely revealed. In the interpretation
of the current study results, substrate-specific permeability and
transport directions of the respective neurotransmitters through
the BBB endothelial cells, should be considered.

After crossing the BBB, the neurotransmitters circulate in the
bloodstream, from which they are subsequently eliminated by
the kidneys into the urine (48). Renal excretion of monoamine
neurotransmitters is affected by two mechanisms: glomerular
ultrafiltration from the arterial blood and active reabsorption
and secretion through specific transporters (48, 52, 123, 124).
All participating dogs had normal renal function and were not
affected by renal diseases. Nevertheless, the above-mentioned
processes can modulate the detected amount of urinary excreted
neurotransmitters in healthy dogs as well and this might have
affected the acquired results of this study.

Another impact on urinary neurotransmitter levels could arise
from additional synthesis outside the CNS. Neurotransmitters
are also produced in the peripheral nervous system (PNS), as in
serotonin secreting enterochromaffin cells of the enteric nervous
system or in norepinephrine producing renal nerves (125–127).
Even bacteria, hosted in the body as microbiota, are capable of
synthesising neuroactive molecules by themselves (e.g., GABA),
or regulating their host’s neurotransmitter metabolism (e.g.,
serotonin), resulting in a modified overall neurotransmitter pool
(128–131). Moreover, neurotransmitters are additively produced
inmany other body organs beside the nervous system, such as the
pancreas (e.g., GABA), the adrenal glands (e.g., NE, E, DA) and
the kidneys (e.g., GABA, E, NE) (132–137). Ingesting nutritional
sources of neurotransmitters or their precursors, can have an
ancillary influence on the neurotransmitter pool of the body
(128, 138, 139). Tominimise this external impact, dairy products,
fruits and vegetables were not fed before sample acquisition.
However, the dog’s personal standard diet, containing meat and
seafood as neurotransmitter sources, might also have influenced
their urinary neurotransmitter concentration on an individual
level (128). It is assumed, that animals and processed foods
contain more stable levels of neurotransmitters, than the avoided
plants, which might have reduced the individual variety (128).
Moreover, endogenous mechanisms of the body, as inactivating
enzymes, intestinal metabolism and certain barriers, limiting the
effect of nutritional neurotransmitter and as well their urinary
excretion (128). Anyhow, nutrition is an important factor for the
neurotransmitter metabolism of the body. In further studies it
needs to be addresses to which extent dietary factors influence
the canine urinary neurotransmitter excretion.

Although the mentioned factors influence on the urinary
neurotransmitter concentration, former studies revealed an
association between central and peripheral neurotransmitter
excretion into the urine. In early studies labelled NE was injected
into the cisterna magna of dogs, followed by detection in their
blood and fast metabolite excretion via the urine (140). Following
these findings, a more recent study showed positively correlating
neurotransmitter concentrations of serine, glycine and NE
mirrored in three canine body fluids: CSF, blood and urine
(53). Orally administered serotonin substrates in rats enhanced
the serotonergic activity in the CNS and urinary serotonin
levels, indicating a shared regulation mechanism (49). In another
study injecting a neurotoxic compound into rat brains induced
diminished DA levels in their brain and urine (50). Furthermore,
a relationship between urinary excreted neurotransmitters and
psychological disorders in humans has been identified. Elevated
concentrations of urinary catecholamines, such as NE and E
were associated with depression and anxiety (58–60). Urinary
excreted DA correlated with suicide attempts in depressed
patients even stronger than the CSF levels (61). In addition to
the presented evidence, a crosstalk between the CNS and PNS
was demonstrated in different studies, further strengthening the
central and peripheral neurotransmitter association (141–143).

In human medicine rare inherited disorders exist, which are
causing seizures and are also associated with neurotransmitter
alterations in the body (144). Disorders of the pyridoxine
metabolism evoke ASD resistant seizures in neonates, responding
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to administered pyridoxine (pyridoxine dependency) or in rare
cases solely to its active form, pyridoxal phosphate (pyridoxal
phosphate dependency) (144–146). Pyridoxal phosphate
is involved in neurotransmitters metabolism of glutamate,
GABA and glycine, but the contribution to the epilepsy
remains controversial (146–148). Cerebral folate deficiency
manifests with late infantile onset seizures and is treatable
with folate acid supplementation (149). It is caused by folate
transport or metabolism disorders, resulting in low CNS
folate concentrations, which can be accompanied with a
peripheral folate deficiency (149, 150). Folate is required
in the neurotransmitter metabolism of glycine and its
influence on serotonin and catecholamine homeostasis is
discussed (144, 151, 152). Further inherited neurotransmitter
disorders associated with seizures are succinic semialdehyde
dehydrogenase (SSADH) deficiency (GABA metabolism
disorder), aromatic L-amino acid decarboxylase (AADC)
deficiency (dopamine/serotonin synthesising enzyme disorder,
seizures are described but uncommon) and the aforementioned
non-ketotic hyperglycinemia (glycine metabolism disorder)
(80, 153–156). These disorders are not known in dogs so far.
However, in canine IE the underlying cause of seizures remains
unknown, which might generate a heterogenous group with
different yet undiscovered diseases (1). The dogs of the current
study met all requirements of the IVETF for the diagnosis of
IE (Tier I/Tier II), but the mentioned human disorders require
specific diagnostic screening and are not included in these
clinical work-up guidelines (68). It is possible that similar
inherited metabolic disorders exist in canine patients undetected,
evoking seizures and altered neurotransmitter concentration.
Nevertheless, in the mentioned human diseases additional
abnormalities in the neurological examination/brain imaging are
present, which are exclusion criteria of canine IE (Tier I/Tier II)
and are therefore considered unlikely (144, 146, 150, 155). The
exact underlying pathophysiology of seizures, and the associated
urinary neurotransmitter alterations revealed in this study,
remains to be elucidated further in the future. The current study
can only be seen as a starting point.

Imbalances in the neurotransmitter system that cause epileptic
seizures also lead to altered neurotransmitter elimination
in the urine of affected dogs and, therefore, can serve as
valuable biomarkers in epilepsy. Urinary neurotransmitter
analysis with its non-invasive collection technique offers a
major advantage over determining neurotransmitters from
other body fluids (e.g., CSF, serum). Recent evidence revealed
an association between urinary neurotransmitter patterns and
treatment efficacy in drug-resistant dogs with IE, suggesting
a benefit of utilising this diagnostic tool, particularly in
epilepsy patients (67). In the future, neurotransmitter analysis
could allow for a better understanding of the underlying
pathomechanisms of epilepsy. These biomarkers may indicate
specific subtypes of epilepsy in this heterogeneous disease,
associated with pharmacoresistance. Applied in a clinical setting,
the non-invasive urinary neurotransmitter analysis could be
used for individual treatment monitoring and customised
adjustments of therapeutic interventions in canine or even
human epilepsy.
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